JPH0158692B2 - - Google Patents

Info

Publication number
JPH0158692B2
JPH0158692B2 JP11993983A JP11993983A JPH0158692B2 JP H0158692 B2 JPH0158692 B2 JP H0158692B2 JP 11993983 A JP11993983 A JP 11993983A JP 11993983 A JP11993983 A JP 11993983A JP H0158692 B2 JPH0158692 B2 JP H0158692B2
Authority
JP
Japan
Prior art keywords
circuit
phase
resonant
phase shift
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11993983A
Other languages
Japanese (ja)
Other versions
JPS6010907A (en
Inventor
Kenji Kokuryo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP11993983A priority Critical patent/JPS6010907A/en
Publication of JPS6010907A publication Critical patent/JPS6010907A/en
Publication of JPH0158692B2 publication Critical patent/JPH0158692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/20Two-port phase shifters providing an adjustable phase shift

Landscapes

  • Networks Using Active Elements (AREA)

Description

【発明の詳細な説明】 本発明は、核磁気共鳴装置内の磁場制御装置等
に用いられる位相シフト回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase shift circuit used in a magnetic field control device or the like in a nuclear magnetic resonance apparatus.

核磁気共鳴装置に使用される磁場は、長時間に
わたつて、10-8〜10-9程度の安定度を要求され
る。このために、磁気共鳴信号に基づいて磁場変
動を検出しそれを打消す磁場制御装置が従来から
使用されている。この磁場制御装置では、例えば
測定用試料中に、制御用試料を混入したり、或い
は測定試料の近傍に制御用試料を配置して、これ
ら制御試料より得られる共鳴信号(分散形)を磁
場制御信号として用い、磁石の励磁電流制御手段
に負帰還することにより磁場を安定化している。
特に近時用いられている磁場制御装置では、制御
試料に高周波を一定周期で間歇的に照射し、共鳴
信号の検出は非照射期間に行う所謂タイムシエア
リング方式が採用されている。
The magnetic field used in a nuclear magnetic resonance apparatus is required to have a stability of about 10 -8 to 10 -9 over a long period of time. To this end, magnetic field control devices have been used that detect magnetic field fluctuations based on magnetic resonance signals and cancel them. In this magnetic field control device, for example, a control sample is mixed into a measurement sample, or a control sample is placed near the measurement sample, and resonance signals (dispersion type) obtained from these control samples are controlled by magnetic field control. The magnetic field is stabilized by using it as a signal and providing negative feedback to the magnet's excitation current control means.
In particular, magnetic field control devices that have been used recently employ a so-called time sharing method in which a control sample is intermittently irradiated with high frequency waves at a constant cycle, and resonance signals are detected during non-irradiation periods.

ところで、この磁場制御装置には、上記磁場の
安定性を確保し、常に共鳴条件を満足させるた
め、高周波位相シフト回路が用いられている。第
1図はこの位相シフト回路を示す回路図で、図
中、1は高周波入力Vinを受ける入力回路部、2
はコンデンサC1を介して入力回路1に接続され
た第1のシフト回路部、3はコンデンサC2を介
して第1のシフト回路部2に接続された第2のシ
フト回路部、4はコンデンサC3を介して第2の
シフト回路部3に接続された第3のシフト回路部
である。これらシフト回路部2〜4は同一の回路
構成となつている。即ち、シフト回路部2,3,
4は、それぞれ、ドレイン及びソースにLCR並
列共振回路が接続され各シフト回路部2,3,4
への入力信号をゲートを受けるFETQ21,Q31
Q41を有し、該FETQ21,Q31,Q41のドレインの
信号をコンデンサC21,C31,C41に与え、ソース
の信号をFETQ22,Q32,Q42に与え、これらを通
つた両信号を加算して次段に出力するような構成
になつている。各シフト回路部2,3,4の位相
シフト量は、各FETQ22,Q32,Q42のゲートに印
加される位相制御電圧Vcによつて決定される。
5は第3のシフト回路部4の出力をコンデンサ
C4を介して受ける出力回路部で、位相シフト回
路としての出力信号Voutを出力するものである。
尚、電源電圧Eは、フイルタ6等を介して各シフ
ト回路部2,3,4及び出力回路5に与えられ
る。
By the way, this magnetic field control device uses a high frequency phase shift circuit in order to ensure the stability of the magnetic field and always satisfy the resonance condition. FIG. 1 is a circuit diagram showing this phase shift circuit, in which 1 is an input circuit section receiving high frequency input Vin, 2
3 is a first shift circuit section connected to the input circuit 1 via a capacitor C1, 3 is a second shift circuit section connected to the first shift circuit section 2 via a capacitor C2, and 4 is a capacitor. This is a third shift circuit section connected to the second shift circuit section 3 via C3 . These shift circuit sections 2 to 4 have the same circuit configuration. That is, the shift circuit sections 2, 3,
4, each shift circuit section 2, 3, 4 has an LCR parallel resonant circuit connected to its drain and source, respectively.
FETQ 21 , Q 31 , which receives the gate input signal to
The drain signals of the FETs Q 21 , Q 31 , and Q 41 are applied to the capacitors C 21 , C 31 , and C 41 , and the source signals are applied to the FETs Q 22 , Q 32 , and Q 42 , and the signals are passed through them. The configuration is such that both signals are added and output to the next stage. The amount of phase shift of each shift circuit section 2, 3, 4 is determined by the phase control voltage Vc applied to the gate of each FETQ22 , Q32 , Q42 .
5 connects the output of the third shift circuit section 4 to a capacitor
This is an output circuit section that receives signals via C4 and outputs an output signal Vout as a phase shift circuit.
Note that the power supply voltage E is applied to each shift circuit section 2, 3, 4 and the output circuit 5 via a filter 6 and the like.

ところで、このような構成の従来回路では、各
シフト回路部2,3,4のQを高くする必要があ
るため、入力Vinの周波数が少し変わつただけで
も出力Voutのレベルが大幅に変化したり、位相
可変幅が変化するという問題や、位相を変化させ
た時に出力レベルを一定に保とうとすると発振し
たりするという問題があつた。又、部品点数が多
いため、プリント板上での占有スペースが大き
く、コストも高いという問題もあつた。
By the way, in the conventional circuit with such a configuration, it is necessary to increase the Q of each shift circuit section 2, 3, and 4, so even a slight change in the frequency of the input Vin causes a large change in the level of the output Vout. There was a problem that the phase variable width changed, and that oscillation occurred when trying to keep the output level constant when changing the phase. Furthermore, since there are a large number of parts, the space occupied on the printed board is large, and the cost is also high.

本考案は、このような問題に鑑みてなされたも
ので、その目的は、位相シフト量に対して出力レ
ベルの変動を小さくでき、発振の問題も生じず、
且つ部品点数が少ない位相シフト回路を提供する
ことにある。
The present invention was developed in view of these problems, and its purpose is to reduce fluctuations in the output level relative to the amount of phase shift, and to avoid the problem of oscillation.
Another object of the present invention is to provide a phase shift circuit with a small number of parts.

この目的を達成する本発明の構成は、可変容量
ダイオードを含む共振回路であつて互いに共振周
波数がずれた複数の共振回路を縦列接続し、前記
可変容量ダイオードに印加する制御電圧を変える
ことにより、位相のシフト量を変えるように構成
したことを特徴とするものである。
The configuration of the present invention that achieves this objective is to connect a plurality of resonant circuits including variable capacitance diodes in series and whose resonance frequencies are shifted from each other, and to change the control voltage applied to the variable capacitance diodes. This device is characterized in that it is configured to change the amount of phase shift.

以下、図面を参照し、本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例を示す回路図で、図
中、F1は一端が接地されたコンデンサC10の他端
に印加される入力VinをコンデンサC11を介して
受ける第1の共振回路、F2は該第1の共振回路
F1の出力をコンデンサC12を介して受ける第2の
共振回路、F3は該第2の共振回路F2の出力をコ
ンデンサC13を介して受ける第3の共振回路であ
る。各共振回路F1,F2,F3は、それぞれ、コン
デンサC01,C02,C03及び可変容量ダイオードD1
D2,D3の直列回路と該直列回路に並列接続され
たコイルL1,L2,L3とから成るLC並列共振回路
で構成されている。LC並列共振回路のゲイン及
び位相特性は、第3図で示すことができる。この
図から、共振周波数からずれた周波数の入力信
号に対して、この回路は位相をシフトして出力す
ることがわかる。しかし、バンドパスフイルタと
しての機能を有するものであるため、共振周波数
からずれると、ゲインも大幅に変化することに
なる。上記共振回路F1,F2,F3の個々の特性は
全く第3図の場合と同様であるが、これら共振回
路F1,F2,F3の共振周波数123は少しずつ
異なるように構成され(例えば123)、且
つ、抵抗R1,R2,R3を介して可変容量ダイオー
ドD1,D2,D3に印加される制御電圧Vcの変化に
応じて増減するように構成されている。第4図a
はこれら共振回路F1,F2,F3の個々のゲイン及
び位相特性の関係を示したもので、これらの特性
を合成して得た共振回路F1,F2,F3の縦列接続
回路全体のゲイン及び位相特性を示したのが第4
図bである。この全体特性図においては、略1
3の周波数帯域にてゲインが略平坦になつてい
る。又、位相可変幅は共振回路数が増えた分だけ
大きくなり、位相変化のリニアリテイも同様に向
上している。
FIG. 2 is a circuit diagram showing an embodiment of the present invention. In the figure, F1 is a first terminal that receives the input Vin applied to the other end of a capacitor C10 whose one end is grounded via a capacitor C11 . Resonant circuit, F 2 is the first resonant circuit
A second resonant circuit receives the output of F1 via a capacitor C12 , and F3 is a third resonant circuit that receives the output of the second resonant circuit F2 via a capacitor C13 . Each resonant circuit F 1 , F 2 , F 3 includes a capacitor C 01 , C 02 , C 03 and a variable capacitance diode D 1 , respectively.
It is composed of an LC parallel resonant circuit consisting of a series circuit of D 2 and D 3 and coils L 1 , L 2 , and L 3 connected in parallel to the series circuit. The gain and phase characteristics of the LC parallel resonant circuit can be shown in FIG. From this figure, it can be seen that this circuit outputs an input signal with a frequency shifted from the resonant frequency with a phase shift. However, since it has the function of a bandpass filter, if it deviates from the resonant frequency, the gain will also change significantly. The individual characteristics of the above-mentioned resonant circuits F 1 , F 2 , F 3 are exactly the same as those shown in Fig. 3, but the resonant frequencies 1 , 2 , 3 of these resonant circuits F 1 , F 2 , F 3 are gradually depending on the change in the control voltage Vc applied to the variable capacitance diodes D 1 , D 2 , D 3 via the resistors R 1 , R 2 , R 3 and configured differently (for example 1 < 2 < 3 ). It is configured to increase or decrease depending on the amount of time. Figure 4a
shows the relationship between the individual gain and phase characteristics of these resonant circuits F 1 , F 2 , F 3 , and the cascade connection circuit of resonant circuits F 1 , F 2 , F 3 obtained by combining these characteristics The fourth one shows the overall gain and phase characteristics.
Figure b. In this overall characteristic diagram, approximately 1 to
The gain is approximately flat in the frequency band 3 . Furthermore, the phase variable width increases as the number of resonant circuits increases, and the linearity of phase change also improves.

上記最終段の共振回路F3の出力は、コンデン
サC14を介してコンデンサC15に与えられ、該コン
デンサC15の端子電圧が増幅器Aに入力するよう
に構成され、該増幅器Aの出力がコンデンサC20
を介して位相シフト回路の出力信号Voutとして
出力される。尚、コンデンサC16,C17及びコイル
L4はフイルタを構成するもので、該フイルタを
介して電源電圧Eが増幅器Aに与えられる。又、
C30は制御電圧Vcラインとアースとの間に接続さ
れたコンデンサである。
The output of the final stage resonant circuit F 3 is applied to a capacitor C 15 via a capacitor C 14 , and the terminal voltage of the capacitor C 15 is input to an amplifier A. C20
is output as the output signal Vout of the phase shift circuit. In addition, capacitors C 16 , C 17 and coils
L4 constitutes a filter, and the power supply voltage E is applied to the amplifier A through this filter. or,
C 30 is a capacitor connected between the control voltage Vc line and ground.

このような構成によれば、可変容量ダイオード
D1〜D3に印加する制御電圧Vcを変えることによ
り、第4図bに示す特性曲線を低周波側若しくは
高周波側にずらすことができる。従つて、今仮
に、入力Vinの周波数02であつたとすれば、
制御電圧Vcを変えて、第3図bにおける左方に
32程度特性曲線を移動することにより、ゲイ
ンを落とすことなく、出力Voutの位相をφ1まで
遅らせることができる。逆に21程度右方に移
動することにより、ゲインを落とすことなく、出
力Voutの位相をφ2まで進めることができる。即
ち、13範囲で特性曲線を移動させることによ
り、出力Voutの位相を−φ1〜+φ2の範囲で変化
させることができ、しかもその範囲で出力Vout
を略一定に保つことができる。又、この位相シフ
ト回路の場合、共振回路数(上記実施例では3
個)を増やすことでゲインが平坦な帯域を広げる
ことができるため、入力Vinの周波数0の変動に
も十分対処できる。更にこのようなに帯域を広げ
れば、位相差0゜での遅延時間を小さくでき、又、
ゲーテツドRFパルス(Gated RF Pulse)入力
時でも、立上り・立下り特性が損われないように
できる。更に、第1図と第2図との対比から明ら
かなように、回路構成が従来のものと比べて簡単
になるため、コンパクトでローコストの位相シフ
ト回路が得られる。勿論、従来回路のような発振
の問題は生じない。
According to such a configuration, the variable capacitance diode
By changing the control voltage Vc applied to D1 to D3 , the characteristic curve shown in FIG. 4b can be shifted to the lower frequency side or the higher frequency side. Therefore, if the frequency 0 of the input Vin is 2 , then
By changing the control voltage Vc, to the left in Fig. 3b
By moving the characteristic curve by about 3-2 , the phase of the output Vout can be delayed to φ1 without reducing the gain. Conversely, by moving to the right by about 2 - 1 , the phase of the output Vout can be advanced to φ2 without reducing the gain. That is, by moving the characteristic curve in the range of 1 to 3 , the phase of the output Vout can be changed in the range of -φ 1 to +φ 2 , and the output Vout can be changed within that range.
can be kept approximately constant. In addition, in the case of this phase shift circuit, the number of resonant circuits (in the above example, 3
Since it is possible to widen the band where the gain is flat by increasing the number of inputs, it is possible to sufficiently cope with fluctuations in the frequency 0 of the input Vin. Furthermore, by widening the band in this way, the delay time at a phase difference of 0° can be reduced, and
Even when inputting a gated RF pulse, it is possible to prevent the rise and fall characteristics from being impaired. Furthermore, as is clear from the comparison between FIG. 1 and FIG. 2, the circuit configuration is simpler than the conventional one, so a compact and low-cost phase shift circuit can be obtained. Of course, the problem of oscillation unlike the conventional circuit does not occur.

尚、上記実施例の増幅器A部分の構成は、前段
の共振回路F3のインサーシヨンロス(Inser―
sion Loss)やリツプルが小さい場合には必要な
い。又、共振回路の数を任意に選べることは勿論
であるが、その構成についても他のものを選択で
きる。例えば、LC並列共振回路の代わりにLC直
列共振回路を用いてもよい。第5図は第2図の
LC並列共振回路F2の代わりにLC直列共振回路F4
を用いたもので、その共振周波数は前述の場合と
同様に選ばれており、同様の位相シフト量を得る
ことができる。
Note that the configuration of the amplifier A portion in the above embodiment is based on the insertion loss of the resonant circuit F3 in the previous stage.
sion Loss) or ripple is small. Furthermore, it goes without saying that the number of resonant circuits can be arbitrarily selected, and other configurations can also be selected. For example, an LC series resonant circuit may be used instead of an LC parallel resonant circuit. Figure 5 is similar to Figure 2.
LC series resonant circuit F 4 instead of LC parallel resonant circuit F 2
The resonant frequency is selected in the same way as in the previous case, and the same amount of phase shift can be obtained.

以上説明したように、本発明によれば、位相シ
フト量に対して出力レベルの変動を小さくでき、
発振の問題も生じず、且つ部品点数が少ない位相
シフト回路を実現できる。
As explained above, according to the present invention, it is possible to reduce fluctuations in the output level with respect to the amount of phase shift,
It is possible to realize a phase shift circuit that does not cause the problem of oscillation and has a small number of parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の位相シフト回路を示す回路図、
第2図は本発明の一実施例の構成を示す回路図、
第3図はLC並列共振回路のゲイン及び位相特性
曲線図、第4図は縦列接続された3つのLC並列
共振回路の個々及び全体のゲイン及び位相特性曲
線図、第5図は本発明の他の実施例の構成を示す
回路図である。 F1〜F3…共振回路、L1〜L3…コイル、D1〜D3
…可変容量ダイオード、C01〜C03…コンデンサ。
Figure 1 is a circuit diagram showing a conventional phase shift circuit.
FIG. 2 is a circuit diagram showing the configuration of an embodiment of the present invention;
Fig. 3 is a gain and phase characteristic curve diagram of an LC parallel resonant circuit, Fig. 4 is an individual and overall gain and phase characteristic curve diagram of three cascade-connected LC parallel resonant circuits, and Fig. 5 is a diagram of the gain and phase characteristic curves of the LC parallel resonant circuit. FIG. 2 is a circuit diagram showing the configuration of an embodiment of the present invention. F 1 ~ F 3 ... Resonant circuit, L 1 ~ L 3 ... Coil, D 1 ~ D 3
…variable capacitance diode, C 01 to C 03 … capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 可変容量ダイオードを含む共振回路であつて
互いに共振周波数がずれた複数の共振回路を縦列
接続し、前記可変容量ダイオードに印加する制御
電圧を変えることにより、位相のシフト量を変え
るように構成したことを特徴とする位相シフト回
路。
1 A resonant circuit including variable capacitance diodes, in which a plurality of resonant circuits whose resonance frequencies are shifted from each other are connected in series, and the amount of phase shift is changed by changing the control voltage applied to the variable capacitance diodes. A phase shift circuit characterized by:
JP11993983A 1983-06-30 1983-06-30 Phase shift circuit Granted JPS6010907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11993983A JPS6010907A (en) 1983-06-30 1983-06-30 Phase shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11993983A JPS6010907A (en) 1983-06-30 1983-06-30 Phase shift circuit

Publications (2)

Publication Number Publication Date
JPS6010907A JPS6010907A (en) 1985-01-21
JPH0158692B2 true JPH0158692B2 (en) 1989-12-13

Family

ID=14773904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11993983A Granted JPS6010907A (en) 1983-06-30 1983-06-30 Phase shift circuit

Country Status (1)

Country Link
JP (1) JPS6010907A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121978U (en) * 1987-02-02 1988-08-08
US6249403B1 (en) * 1997-05-23 2001-06-19 Hitachi, Ltd. Magnetic hard disk drive and process for producing the same
JP3508620B2 (en) 1998-11-26 2004-03-22 三菱電機株式会社 Phase compensation circuit, frequency converter, and active phased array antenna
JP2005311762A (en) 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Variable matching circuit

Also Published As

Publication number Publication date
JPS6010907A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
US4162452A (en) Channel selection for a television receiver having low-gain high frequency RF-IF section
US5317217A (en) Universal active filter
US4931921A (en) Wide bandwidth frequency doubler
US5451915A (en) Active filter resonator and system and negative resistance generator usable therein
US4162451A (en) MESFET-device surface-wave-device channel selector
US4408347A (en) High-frequency channel selector having fixed bandpass filters in the RF section
JPH0158692B2 (en)
JPS612407A (en) Adaptive band width amplifier
KR19980018571A (en) Electronic circuit and resistor network
JPH0652878B2 (en) Antenna input circuit
EP0663723B1 (en) Filter circuit
JPH0241934Y2 (en)
JP3308352B2 (en) Variable delay circuit
US4652835A (en) Gain control bandpass LCR filter with variable bandwidth
JP3106513B2 (en) Electronic tuning tuner
JP2972379B2 (en) Frequency conversion circuit
JPS62200902A (en) Frequency characteristic compensation circuit
JP2568571B2 (en) Band rejection frequency control device
US3430163A (en) Bandpass filter having variable bandwidth but constant midband response and variable loading circuit for the same
JPS6233383Y2 (en)
JPH04230110A (en) Active filter circuit
JPS62101109A (en) Logarithmic amplifier
KR910005239Y1 (en) Audio trap circuit for tv
JP2814248B2 (en) High frequency amplifier
JP2599194B2 (en) Filtering frequency control device