JPS59171814A - Ultrasonic flowmeter - Google Patents
Ultrasonic flowmeterInfo
- Publication number
- JPS59171814A JPS59171814A JP58047703A JP4770383A JPS59171814A JP S59171814 A JPS59171814 A JP S59171814A JP 58047703 A JP58047703 A JP 58047703A JP 4770383 A JP4770383 A JP 4770383A JP S59171814 A JPS59171814 A JP S59171814A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- flow rate
- liquid
- detector
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する蚊術分野〕
本発明は、工業用水、農業用水、下ホヤの他の液体の流
量を、超音波による流速構出により測定する超音波流量
計に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of mosquito treatment to which the invention pertains] The present invention relates to an ultrasonic flow meter that measures the flow rate of industrial water, agricultural water, and other liquids such as lower sea squirts by setting the flow velocity using ultrasonic waves.
一般に、液体は密度の変動が少な(、従って流量測定の
際に密度に対する補正は行われていない。In general, liquids have little variation in density (therefore, no correction is made for density when measuring flow rate.
ところが、下水流入の集水管渠においては、地上の雨水
が混入することが多く、雨天の際に社、汚濁物質により
汚損芒れるのみでなく、相当量の気泡が混入して液体の
密度が変化することが判明した。従って、このような集
水管渠においても正確に流量計測されることが必要でお
った。However, in the collection pipes where sewage flows in, rainwater from the ground often gets mixed in, and when it rains, not only is it contaminated by pollutants, but also a considerable amount of air bubbles are mixed in, causing a change in the density of the liquid. It turns out that it does. Therefore, it is necessary to accurately measure the flow rate even in such water collection pipes.
超音波流量計の測定方式は、液体中を通過する超音波の
ドツプラ効果により、超音波の通過しプ:道筋の平均流
速を検出する超音波通過型と、超音波が液体に含有され
た混入物により反射することを利用して、管壁から一定
距離才での流速から管内の平均流速を近似的に算出する
超音波反射型とに大別される。このうち、超音波通過型
流量計は、測定精度が良好であるが、液体中に気泡まだ
は粉体等の混入物が多くなると、超音波の通過が妨げら
れるために測定が不可能となるおそれがある。The measurement methods of ultrasonic flowmeters are the ultrasonic passing type, which uses the Doppler effect of ultrasonic waves passing through the liquid to detect the average flow velocity along the path, and the ultrasonic passing type, which detects the average flow velocity in the path of ultrasonic waves passing through the liquid. Ultrasonic waves are broadly classified into the ultrasonic reflection type, which uses reflection from objects to approximately calculate the average flow velocity inside the pipe from the flow velocity at a certain distance from the pipe wall. Among these, ultrasonic transmission type flowmeters have good measurement accuracy, but if there are too many bubbles or particles in the liquid, the passage of ultrasonic waves will be blocked, making measurement impossible. There is a risk.
これに反して、超音波反射型流量計は、混入物を含有す
る液体の流量を測定することが可能で、超音波を反射し
得る混入物が存在しないと6111定することができな
い。In contrast, ultrasonic reflection flowmeters are capable of measuring the flow rate of liquids containing contaminants and cannot determine the absence of contaminants that can reflect ultrasound waves.
従って、例えば下水に雨水が混入して気泡が多くなれば
、超音波通過型流量計では測定不能となるが、このとぎ
超音波反射型流量計に切換えろことにより、流量測定が
可能となる。しかし、超音波反射型流量計は、超音波通
過型流量計に比較して測定精度が低下する。従来、超音
波通過型流量計から、超音波反射型流量計への切換え時
期を、超音波通過型流量計が受信不可能、すなわち検出
信号が断(零)状態になった点としていたために、切換
えのタイミングを取ることが内器であった。Therefore, for example, if rainwater gets mixed into the sewage and a large number of bubbles form, it becomes impossible to measure with an ultrasonic transmission type flowmeter, but by switching to an ultrasonic reflection type flowmeter, flow rate measurement becomes possible. However, the measurement accuracy of the ultrasonic reflection type flowmeter is lower than that of the ultrasonic transmission type flowmeter. Conventionally, the timing for switching from an ultrasonic transmission type flowmeter to an ultrasonic reflection type flowmeter was the point at which the ultrasonic transmission type flowmeter could not receive reception, that is, the detection signal was cut off (zero). , timing of switching was an internal device.
かつ、気泡の量は変動し易いから、切換えが7・ンチン
グして測定不可能となることも多かった。なお、画定値
の密度補正をしてより精度の高い流量値を算出1ろ際に
は、超音波通過型および超音波反射型流量計の相互間の
切換えに同期させて流量補正をする必妥かある等の問題
があった。In addition, since the amount of bubbles tends to fluctuate, switching is often delayed, making measurement impossible. In addition, when calculating a more accurate flow rate value by density correction of the defined value, it is necessary to perform flow correction in synchronization with switching between the ultrasonic passing type and ultrasonic reflection type flowmeters. There were some problems.
本発明は、上述の点に鑑み、従来技術の問題点を有効に
解決して流量測定か安定し、測定精度が同上し得る超音
波流量計を提供することを目αrとする。In view of the above-mentioned points, the present invention aims to provide an ultrasonic flowmeter that effectively solves the problems of the prior art, provides stable flow rate measurement, and has the same measurement accuracy as described above.
このような目的は、本発明によれは、液体を流通する導
管に設けられ前記液体中を通過する超音波の伝搬時間よ
り混入物の小ない前記液体の流量を検出するように互い
に対向する2個の超音波通過型流量検出器と、前記導管
に設けられ前記液体に含有される混入物により反射され
る超音波の伝搬時間より前記混入物を含有する前記液体
の流量を検出する1個の超音波反射型流量検出器と、前
記導管に設けられ前記混入物により変化する前記液体の
密度を検出する@度検出器と、前記導管に設りられ前記
液体の濁度を検出する濁度検出器と、前記導管に設けら
れ前記液体の温度を検出する温度検出素子と、前記超音
波通過型流量検出器を超音波反射型流量検出器にまたは
超音波)X射型検出器を超音波通過型流量検出器に所要
のタイミンクをもって切換える切換設定値を前記液体の
密度および濁度の変化に応じて選定し得ろように演算す
る切換設定値演算機能およびこの切換設定値演算機能に
より切換えられた前記超音波通過型または超音波反射型
流量検出器によるそれぞれの検出流量を前記密度と濁度
および温度の変化に応じて補正演算する流値補正演算機
能を廟する演算器と2備えることにより達成される。According to the present invention, two pipes are provided in a conduit through which a liquid flows and are arranged opposite to each other so as to detect a flow rate of the liquid with less contaminants than the propagation time of the ultrasonic wave passing through the liquid. one ultrasonic passing type flow rate detector installed in the conduit and detecting the flow rate of the liquid containing the contaminants based on the propagation time of the ultrasonic waves reflected by the contaminants contained in the liquid; an ultrasonic reflection type flow rate detector; a @degree detector installed in the conduit to detect the density of the liquid that changes due to the contaminants; and a turbidity detector installed in the conduit to detect the turbidity of the liquid. a temperature detection element provided in the conduit to detect the temperature of the liquid; A switching setting value calculation function that calculates a switching setting value to be switched to a type flow rate sensor at a required timing according to changes in the density and turbidity of the liquid, and a switching setting value calculation function that calculates the switching setting value to be changed at a required timing, This is achieved by providing a computing unit with a flow value correction computing function for correcting each flow rate detected by the ultrasonic transmission type or ultrasonic reflection type flow rate detector according to changes in the density, turbidity, and temperature. Ru.
次に、本発明の実施例を図面に基づき、詳細に説明する
。Next, embodiments of the present invention will be described in detail based on the drawings.
第1図は本発明の一実施例の概略構成図を示す。FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention.
図において超音波通過型1は、検出器2.2Aを有する
超音波通過型流量発信器3と、検出器4を有する超音波
反射型流量発信器5と、本実施例ではγ線線源部6と検
出器7とを有する密度発信ム8と、濁度検出器9を有す
る濁度発信器9Aと、温度検出素子15を有する温度発
信器15Aと、これらの発信器3,5,8,9A、15
Aに接続された演算器]1およびこの演n器】1に接続
される流量指示記録計12とカ・ら構raされる。2個
の超音波通過型流量検出器2,2Aは、5w1oの周壁
に沿って互いに対向して設りられ超音波を送受化する際
に、流体中を通過する超音波の伝搬時間により平均流速
を検出する。流量発信器3はこの平均流速を流量、1に
変換し、演算器11の入力とする。超音波反射型流量検
出器4は、送受信素子13.14を収容し、導管100
周壁に設けられ、超音波の送受を行う。この送受信素子
13゜140相互間で、液体中の混入物により反射場れ
る超音波を受信し、超音波の伝搬時間により導管100
周壁から一定の距離までの流速を検出する。In the figure, the ultrasonic passing type 1 includes an ultrasonic passing type flow transmitter 3 having a detector 2.2A, an ultrasonic reflecting type flow transmitter 5 having a detector 4, and a gamma ray source section in this embodiment. 6 and a detector 7, a turbidity transmitter 9A having a turbidity detector 9, a temperature transmitter 15A having a temperature detection element 15, and these transmitters 3, 5, 8, 9A, 15
The flow rate indicator recorder 12 is connected to the computing unit A and the flow rate indicator recorder 12 connected to the computing unit. The two ultrasonic passing type flow rate detectors 2 and 2A are provided facing each other along the circumferential wall of the 5w1o, and when transmitting and receiving ultrasonic waves, the average flow velocity is determined by the propagation time of the ultrasonic waves passing through the fluid. Detect. The flow rate transmitter 3 converts this average flow velocity into a flow rate of 1, which is input to the calculator 11. The ultrasonic reflection flow rate detector 4 houses transmitting/receiving elements 13 and 14 and is connected to a conduit 100.
It is installed on the peripheral wall and transmits and receives ultrasonic waves. Between these transmitting and receiving elements 13° and 140, ultrasonic waves reflected by contaminants in the liquid are received, and depending on the propagation time of the ultrasonic waves, the conduit 100
Detects the flow velocity up to a certain distance from the surrounding wall.
流量発信器5はこの流速を全体的平均流蓋、2に近似的
に変換し、演算器110入力とする。また、γ線線源部
6および検出器7は導管10の周壁に対間して設けられ
、γ線線諒部6より放射ぢれろγ線の液体中を透過する
際の透過量を検出する。The flow rate transmitter 5 approximately converts this flow rate into an overall average flow rate, 2, and inputs it to the calculator 110. Further, the gamma ray source section 6 and the detector 7 are provided in pairs on the peripheral wall of the conduit 10, and detect the amount of transmitted gamma rays emitted from the gamma ray center section 6 when they pass through the liquid. .
γ線発信器8はこの透過量を密度γに変換し、演算器1
1の入力とする。なお、濁度検出器9は光学的に液体中
の光透過度を検出し、発信器9八はこの光透過度を濁度
dに変換し、演算器IIの人力とする。さらに、温度横
出系子15は液体温度を検出し、温度発信器15Aは温
度Tを演算器11の入力とする。プらに1だ、l1jt
I!−器11は、切換設定値演算機能および流童袖止@
具機能を有する。The γ-ray transmitter 8 converts this amount of transmission into density γ, and the arithmetic unit 1
1 input. Note that the turbidity detector 9 optically detects the light transmittance in the liquid, and the transmitter 98 converts this light transmittance into turbidity d, which is used as the manual power of the computing unit II. Further, the temperature output system 15 detects the liquid temperature, and the temperature transmitter 15A inputs the temperature T to the calculator 11. It's 1 for Pura, l1jt
I! - The device 11 has a switching set value calculation function and
It has a tool function.
第2図は流体の密度変化に応じて切換える超音波通過型
および超音波反射型流量検出器の切換設定点説明図全示
し、囚は気泡のみを混入物とし濁質物を含まない場合、
(B)は濁質物のみを混入物とし気泡を含まない場合で
ある。図において曲線Pは、密度γが1 g/Cm”で
ある水に、気泡が混入して密度γが時間tと共に減少し
、気泡が減少するに従って密度γが増加しl g/cm
3に近づくことを示す。この際、範囲Aおよび範囲Cは
、超音波通過型流量検出器2,2Aにより流量検出する
範囲である。また、範囲Bは、超音波反射型流量検出器
4により流量検出する範囲である。点P ] + P
2は超音波通過型流量検出器2,2Aから超音波反射型
流量検出器4におよび超音波反射型流量検出器4から超
音波通過型流量検出器2,2人に切換える検出器切換点
である。このような切換点P】。Figure 2 is a complete diagram showing the switching setting points of the ultrasonic transmission type and ultrasonic reflection type flow rate detectors that switch according to changes in fluid density.
(B) is a case in which only suspended matter is used as a contaminant and no air bubbles are included. In the figure, a curve P indicates that air bubbles are mixed into water whose density γ is 1 g/cm, and the density γ decreases with time t, and as the air bubbles decrease, the density γ increases and becomes l g/cm.
It shows that it approaches 3. At this time, range A and range C are ranges in which the flow rate is detected by the ultrasonic passing type flow rate detectors 2 and 2A. Further, range B is a range where the flow rate is detected by the ultrasonic reflection type flow rate detector 4. Point P ] + P
2 is a detector switching point for switching from the ultrasonic passing type flow rate detector 2, 2A to the ultrasonic reflecting type flow rate detector 4, and from the ultrasonic reflecting type flow rate detector 4 to the ultrasonic passing type flow rate detector 2, 2A. be. Such a switching point P].
P2は密度γがε1.ε2に変化する点で、この、1゜
、2を切換設定値とラ−れば、適宜なタイミンク幅t2
t+e有し、切換えの際のノ・ンナングを防止するこ
とができろ。なお、点P3は、液体中の気泡の増加によ
り、超音波通過型流量検出器2゜2人の出力信号が零と
なり、流量測定が不可能となる点である。P2 has a density γ of ε1. At the point where ε2 changes, if 1° and 2 are set as the switching setting value, an appropriate timing width t2 can be set.
It should have t+e and be able to prevent noise during switching. Note that at point P3, due to an increase in the number of bubbles in the liquid, the output signal of the ultrasonic transmission type flow rate detector 2 becomes zero, making it impossible to measure the flow rate.
また、曲線Rは、密度γが1 g/cがである水に、濁
質物が混入して密度γが時間と共に増加し、濁質物が減
少するに従って密度γが減少しl g/crn”に近う
(ことを示す。この際、範囲Aおよび範囲Cは、超音波
通過型流量検出器2,2人により流量検出する範囲であ
る。々お、範囲Bは、超音波反射型流量検出器4により
流量検出する範囲である。In addition, curve R shows that in water whose density γ is 1 g/c, the density γ increases with time due to the mixing of suspended matter, and as the suspended matter decreases, the density γ decreases to 1 g/crn”. In this case, range A and range C are the ranges where the flow rate is detected by the ultrasonic passing type flow rate detector 2 and two people. 4 is the range in which the flow rate is detected.
点R1r R2は、超音波通過型流量検出器2,2人か
ら超音波反射型流量検出器4におよび超音波反射型流量
検出器4から超音波通過型流量検出器2゜2人に切換え
る検出器切換点である。このような切換点R1r R2
は、密度γがε3.ε4に変化する点で、このε3.ε
4を切換設定値とすれば、適宜タイミング幅t3−t4
を有し、切換えの際のハンチンクを防止することができ
ろ。さらに、点R3は、液体中の濁質物の増加により、
超音波通過型流量検出器2,2人の出力信号が零となり
、流量測定が不可能となる点である。Points R1r and R2 indicate the detection of switching from the ultrasonic passing type flow rate detector 2, 2 people to the ultrasonic reflection type flow rate detector 4, and from the ultrasonic reflection type flow rate detector 4 to the ultrasonic passing type flow rate detector 2° and 2 people. This is the switching point. Such switching points R1r R2
, the density γ is ε3. This ε3. ε
If 4 is the switching setting value, the timing width t3-t4 is set as appropriate.
It should be possible to prevent hunting during switching. Furthermore, point R3 is due to an increase in turbidity in the liquid.
This is the point at which the output signals of the ultrasonic passing type flow rate detectors 2 become zero and flow rate measurement becomes impossible.
第2図囚、(B)は、気泡または濁質物が単独で液体に
混入する場合であるか、共存する場合が多い。Figure 2 (B) is a case where air bubbles or suspended matter are mixed into the liquid alone, or they often coexist.
従って、切換設定値S l (S 1+ S 2 +
b 3 + 84 )は、それぞれ安全を考慮して選定
した初期的設定値A jr (、、I + 22 +
73 + 、il 4 )、密度γに対する定数Q、
b (eLI + 、R2+ CL 3 + (L 4
)、濁%ctに対する定数bi7(1!r 1+薯2
.啓3+A4)とから々る第(IJ式のような一般式が
成立する。Therefore, the switching setting value S l (S 1 + S 2 +
b 3 + 84 ) are the initial setting values A jr (,, I + 22 +
73 + , il 4 ), constant Q for density γ,
b (eLI + , R2+ CL 3 + (L 4
), constant bi7 (1!r 1+薯2
.. A general formula like the IJ formula is established.
S 1:+l’ir+ab’γ+bル 1d
………(1)この第(1)式に基ついて、演算器11
の有する切換設定値演算機能は、それぞれ液体の密度お
よび濁度の変化に応じて切換設定値b I (S+ +
S2 + b 3 +S4)を選定し得るように演算
する。S 1:+l'ir+ab'γ+bru 1d
......(1) Based on this formula (1), the arithmetic unit 11
The switching set value calculation function of , respectively, calculates the switching set value b I (S+ +
S2 + b 3 + S4) is calculated.
ところで、液体中の濁質物の種類により、密度に対する
超音波の減衰率が変化し、壕だ濁質物の粒子の細・粗に
より光の散乱度が変化するために濁度が変化し、かつ超
音波の波長との兼ね合いにより超音波の減衰率が変化す
る。従って、下水道または河川等の立地条件に基ついて
、定数、j、。By the way, the attenuation rate of ultrasonic waves with respect to density changes depending on the type of turbidity in the liquid, and the degree of light scattering changes depending on the fineness or coarseness of the particles of turbidity, so turbidity changes. The attenuation rate of ultrasonic waves changes depending on the wavelength of the sound waves. Therefore, based on the location conditions such as sewers or rivers, the constant, j,.
kカは適宜選定されろものとする。k should be selected appropriately.
なお、超音波通過型および超音波反射型流量発信器3,
5により、検出流量、□2,2は、それぞれ流体温度発
信器15Aによる温度T、濁度発信器9Aによる濁度d
、および密度発信器8による密度Tにより補正される。In addition, ultrasonic transmission type and ultrasonic reflection type flow transmitter 3,
5, the detected flow rate, □2, 2 is the temperature T determined by the fluid temperature transmitter 15A, and the turbidity d determined by the turbidity transmitter 9A, respectively.
, and the density T from the density transmitter 8.
この補正された流量をQとすれば、第(2)式および第
(3)式のような一般式が成立する。If this corrected flow rate is Q, general equations such as equation (2) and equation (3) are established.
Q−ヨF+Cg:+、T、、<、r)・・・・・・・・
(2)Q ”” J” 2 (tl ” r T+ c
l +γ) ・・・・・・・・・(3)ところで
、第(2)式は、超音波通過型流量発信器3により流量
fP+が検出されるときの補正流量Qである。まだ、第
(3)式は、超音波反射型流量発信器5により流量、、
2が検出されるときの補正流量Qである。このようにし
て、演算器11は、切換設定値演算機能により、超音波
通過型および超音波反射型流量検出器2,2A、4の切
換えケすると共に、この切換えに同期して、流量補正演
算機能による流量11+i2の補正が液体の密度、濁度
督よび温度の変化に応じて行われ、その測定精度が向上
する。Q-YoF+Cg:+,T,,<,r)・・・・・・・・・
(2) Q ”” J” 2 (tl ” r T+ c
l + γ) (3) By the way, the equation (2) is the corrected flow rate Q when the flow rate fP+ is detected by the ultrasonic passing type flow rate transmitter 3. However, equation (3) is still the same as the flow rate by the ultrasonic reflection flow rate transmitter 5.
This is the corrected flow rate Q when 2 is detected. In this way, the calculator 11 switches between the ultrasonic passing type and the ultrasonic reflecting type flow rate detectors 2, 2A, and 4 using the switching setting value calculation function, and in synchronization with this switching, calculates the flow rate correction. The flow rate 11+i2 is corrected by the function according to changes in liquid density, turbidity, and temperature, improving measurement accuracy.
次に、第3図は本発明の他の実施例の概略構成図を示す
。図において第1図と同一の機能を有する部分には、同
一の符号が句されている。超音波流量計16は、超音波
通過型および超音波反射型流量検出器2,2A、4と、
密度検出器7と、温度検出素子15と、濁度検出器9と
、これら検出器2,2A、4,7.9および温度検出素
子15のそれぞれの検出信号を入力とする綜合発信器1
7および流量指示記録計12とからなる。綜合発信器1
7は、マイコン化され、それぞれの検出信号を変換処理
すると共に、切換設定値を演算処理する切換設定値演算
機能およびこの切換設定値演算機能により切換えられた
超音波通過型および超音波反射型流量検出器2.2A、
4による検出信号を、それぞれ密度、濁度および温度に
より補正演算テる流量補正演算機能を有する演算器であ
る。このように、超音波流量計16は、集約化された綜
合発信器17により、その構成が簡易化され、その取扱
いが容易である。Next, FIG. 3 shows a schematic configuration diagram of another embodiment of the present invention. In the figure, parts having the same functions as those in FIG. 1 are designated by the same reference numerals. The ultrasonic flowmeter 16 includes ultrasonic passing type and ultrasonic reflection type flow rate detectors 2, 2A, 4,
Density detector 7, temperature detection element 15, turbidity detector 9, and integrated transmitter 1 which receives the detection signals of these detectors 2, 2A, 4, 7.9, and temperature detection element 15 as inputs.
7 and a flow rate indicator recorder 12. Integrated transmitter 1
7 is a microcomputerized switching setting value calculation function that converts each detection signal and calculates the switching setting value, and an ultrasonic passing type and ultrasonic reflection type flow rate that are switched by this switching setting value calculation function. Detector 2.2A,
This calculation unit has a flow rate correction calculation function that corrects the detection signal from 4 according to density, turbidity, and temperature. In this way, the ultrasonic flowmeter 16 has a simplified configuration due to the integrated transmitter 17, and is easy to handle.
次に、第4図−は本発明のさらに他の実施例の概略構成
図を示す。図において超音波流量計18は、第1綜合検
出器19と、第2綜合検出器2oと、濁度検出器9と、
綜合発信器17および流量指示記録計12とから構成さ
れる。第5図に示すように第1綜合検出器79は、導管
100周壁に装備され、第5図に示すようにケース21
内に超音波通過型流量検出用送受信菓子22、超音波反
射型流量検出用送受(a素子24,25、温度検出素子
15および放射線密度検出素子26を、合成樹脂等の充
横拐により一体的に収容する。また、第2綜合検出器2
0は、第1綜合検出器19と対向する導管100周壁に
装備され、第6図に示すようにケース28内に超音波通
過型流量検出用送受信素子23および放射線密度検出用
線源部挿入管28を、合成樹脂等の充填材により一体的
に収容する。この線源部挿入管28内に、放射線検出素
子27はカートリッジ式に着脱自在に設置され、線源の
劣化の際の交換が容易である。このように、超音波流量
計18は、第1および第2綜合検出器19.20に集約
されて、小型化され、導管10への取付けが容易となる
。Next, FIG. 4 shows a schematic configuration diagram of still another embodiment of the present invention. In the figure, the ultrasonic flowmeter 18 includes a first integrated detector 19, a second integrated detector 2o, a turbidity detector 9,
It is composed of a total transmitter 17 and a flow rate indicator recorder 12. As shown in FIG. 5, the first integrated detector 79 is installed on the peripheral wall of the conduit 100, and as shown in FIG.
Inside, an ultrasonic transmission type flow rate detection transmitter/receiver 22, an ultrasonic reflection type flow rate detection transmitter/receiver (A elements 24, 25, a temperature detection element 15, and a radiation density detection element 26) are integrated by filling synthetic resin or the like. Also, the second combined detector 2
0 is installed on the circumferential wall of the conduit 100 facing the first integrated detector 19, and as shown in FIG. 28 is integrally housed with a filler such as synthetic resin. The radiation detection element 27 is removably installed in the radiation source insertion tube 28 in the form of a cartridge, and can be easily replaced when the radiation source deteriorates. In this way, the ultrasonic flowmeter 18 is integrated into the first and second combined detectors 19,20, making it more compact and easier to attach to the conduit 10.
以上に説明するように本発明によれば、2個の超音波通
過型に量検出器と、1個の超音波反射型流量検出器と、
液体中の混入物により変化する密度を検出ブーる重度検
出器と、前記液体中の濁度を検出する濁朋検出器と、前
記液体の温度を検出する温14出素子と、前記超音波通
過型および超音波反射型流量検出器間を所要の夕1ミン
グをもって切換える切換設定値を前記液体の密度および
濁度の変化に応じて選定するように演算する切換設定値
演算機能およびこの切換設定値演算機能による切換えと
同期して前記超音波通過型または超音波反射型流量検出
器によるそれぞれの流量を前記液体の密度、濁度および
温度の変化に応じて補正演算する流量補正演算機能を有
する演舞4器とを備えたことにより、液体中に含有する
混入物による密度および濁度の変化に応じて超音波検出
器の通過型または反射型への切換えが円滑に行われると
共に、この切換えに同期させてそれぞれの超音波検出器
の検出流量の適正な補正が可能となり、その測定精度が
向上し、さらにそれぞれの検出器および発信器が集約さ
れ、その結成が簡易化され、小型化され、その取扱いが
容易である等の効果を有する。As explained above, according to the present invention, there are two ultrasonic transmission type quantity detectors, one ultrasonic reflection type flow rate detector,
a gravity detector that detects density that changes due to contaminants in the liquid; a turbidity detector that detects turbidity in the liquid; a temperature sensor that detects the temperature of the liquid; A switching setting value calculation function that calculates a switching setting value for switching between a type and an ultrasonic reflection type flow rate detector at a required interval according to changes in the density and turbidity of the liquid, and a switching setting value for this switching setting value. A function having a flow rate correction calculation function that corrects each flow rate of the ultrasonic transmission type or ultrasonic reflection type flow rate detector according to changes in density, turbidity, and temperature of the liquid in synchronization with switching by the calculation function. By being equipped with 4 detectors, the ultrasonic detector can be smoothly switched to a passing type or a reflective type according to changes in density and turbidity due to contaminants contained in the liquid, and can be synchronized with this switching. This makes it possible to appropriately correct the detected flow rate of each ultrasonic detector, improving measurement accuracy, and furthermore, by consolidating each detector and transmitter, its assembly is simplified, miniaturized, and It has advantages such as easy handling.
第1図は本発明の一実施例の概略構成図、第2図は流体
の密度変化に応じて切換える超音波通過型および超音波
反射型流量検出器の切換設定点説明図を示し、(4)は
気泡のみを混入物とし濁質物を含まない場合、(B)社
濁質物のみを混入物とし気泡を含まない場合、第3図は
不発明の他の実施例の概略構成図、第4図は本発明のさ
らに他の実施例の概略構成図、第5図は第1綜合検出器
の概略構成図、第6図は第2綜合検出器の概略構成図で
ある。
1.16.18:超音波流量計、2,2A:超音波通過
型流量検出器、4:超音波反射型流量検出器、6:γ線
線源部、7:r線検出器、ll:演算器、17:綜合発
信器、19:第1綜合検出器、20:第2綜合検出器。
特許出願人 富士電機製造株式会社
代理人 升理士横屋赳夫−′。
第3図
寡 4 図
第 5 図 第6 図FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of switching set points of an ultrasonic transmission type and an ultrasonic reflection type flow rate detector that switch according to changes in fluid density. ) is a case in which only air bubbles are included as a contaminant and no turbid matter is included; (B) is a case in which only a turbid substance is in a contaminant and no air bubbles are included; FIG. 3 is a schematic configuration diagram of another embodiment of the invention; The figures are schematic diagrams of still another embodiment of the present invention, FIG. 5 is a schematic diagram of the first integrated detector, and FIG. 6 is a schematic diagram of the second integrated detector. 1.16.18: Ultrasonic flow meter, 2, 2A: Ultrasonic passing type flow rate detector, 4: Ultrasonic reflection type flow rate detector, 6: γ-ray source, 7: R-ray detector, ll: Arithmetic unit, 17: integrated oscillator, 19: first integrated detector, 20: second integrated detector. Patent applicant Fuji Electric Seizo Co., Ltd. Agent Masu Takeo Yokoya-' Figure 3 Figure 4 Figure 5 Figure 6
Claims (1)
音波の伝搬時間により混入物の少ない前記液体の流量を
検出するように互いに対向する2個の超音波通過型流量
検出器と、前記導管に設けられ前記液体に含有された混
入物により反射される超音波の伝搬時間により前記液体
の流量を検出する1個の超音波反射型流量検出器と、前
記導管に設けられ前記混入物により変化する前記液体の
密度を検出する密度検出器と、前記導管に設りられ前記
液体の濁度を検出する濁度検出器と、前記導管に設けら
れ前記液体の温度を検出する温度検出素子と、前記超音
波通過型流量検出器を超音波反射型流量検出器にまたは
超音波反射型検出器を超音波通過型流量検出器に所要の
タイミングをもって切換える切換設定値を前記液体の密
度および濁度の変化に応じて選定し得るように演算する
切換設定値演算機能およびこの切換設定値演算機能によ
る切換えと同期して前記超音波通過型または超音波反射
型流量検出器によるそれぞれの検出流量を前記液体の密
度と濁度および温度の変化に応じて補正演算する流量補
正演′J1.機能を弔する演算器とを備えたことを%徴
とする超音波流量計。1) two ultrasonic passing type flow rate detectors installed in a conduit through which a liquid flows and facing each other so as to detect the flow rate of the liquid with few contaminants based on the propagation time of the ultrasonic waves passing through the liquid; one ultrasonic reflection type flow rate detector provided in the conduit and detecting the flow rate of the liquid based on the propagation time of ultrasonic waves reflected by the contaminants contained in the liquid; a density detector that detects the changing density of the liquid; a turbidity detector that is installed in the conduit and detects the turbidity of the liquid; and a temperature detection element that is installed in the conduit that detects the temperature of the liquid. , the switching setting value for switching the ultrasonic passing type flow rate detector to the ultrasonic reflection type flow rate detector or the ultrasonic reflection type detector to the ultrasonic passing type flow rate detector at the required timing is set according to the density and turbidity of the liquid. A switching setting value calculation function calculates the selection according to the change in the switching setting value calculation function, and in synchronization with the switching by this switching setting value calculation function, the respective detected flow rates by the ultrasonic passing type or ultrasonic reflection type flow rate detector are calculated as follows. Flow rate correction calculation that performs correction calculation according to changes in liquid density, turbidity, and temperature 'J1. An ultrasonic flow meter that is characterized by being equipped with a calculator that performs functions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58047703A JPS59171814A (en) | 1983-03-22 | 1983-03-22 | Ultrasonic flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58047703A JPS59171814A (en) | 1983-03-22 | 1983-03-22 | Ultrasonic flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59171814A true JPS59171814A (en) | 1984-09-28 |
Family
ID=12782655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58047703A Pending JPS59171814A (en) | 1983-03-22 | 1983-03-22 | Ultrasonic flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59171814A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2607249A1 (en) * | 1986-11-26 | 1988-05-27 | Schlumberger Cie Dowell | Electromagnetic flow meter for conducting or dielectric fluids, and application in particular to fluids of the petrochemicals sector |
JPWO2005083370A1 (en) * | 2004-02-26 | 2007-11-22 | 富士電機システムズ株式会社 | Ultrasonic flow meter and ultrasonic flow measuring method |
-
1983
- 1983-03-22 JP JP58047703A patent/JPS59171814A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2607249A1 (en) * | 1986-11-26 | 1988-05-27 | Schlumberger Cie Dowell | Electromagnetic flow meter for conducting or dielectric fluids, and application in particular to fluids of the petrochemicals sector |
JPWO2005083370A1 (en) * | 2004-02-26 | 2007-11-22 | 富士電機システムズ株式会社 | Ultrasonic flow meter and ultrasonic flow measuring method |
JP4544247B2 (en) * | 2004-02-26 | 2010-09-15 | 富士電機システムズ株式会社 | Ultrasonic flow meter and ultrasonic flow measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4397194A (en) | Ultrasonic flowmeter including means to measure pipe geometry | |
JP3216769B2 (en) | Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter | |
US6487916B1 (en) | Ultrasonic flow metering system | |
US5533408A (en) | Clamp-on ultrasonic volumetric flowmeter | |
US6769293B2 (en) | Detection of liquid in gas pipeline | |
US9140594B2 (en) | Ultrasonic, flow measuring device | |
US4391149A (en) | Doppler-type ultrasonic flowmeter | |
US7270001B2 (en) | Ultrasonic measurement of the running time and quantity for detecting the concentration of particles in a flowing fluid | |
RU2298769C2 (en) | Device for determining and/or controlling volume and/or mass medium discharge in reservoir | |
JP2002340644A (en) | Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method | |
JP2006078362A (en) | Coaxial-type doppler ultrasonic current meter | |
JPS59171814A (en) | Ultrasonic flowmeter | |
JPS6098313A (en) | Ultrasonic flowmeter | |
CN104296814A (en) | Flow measuring device for sewage containing solid garbage | |
JPH1090028A (en) | Ultrasonic wave mass flowmeter | |
Vermeyen | A Laboratory Evaluation of Unidata's Starflow Doppler Flowmeter and MGD Technologies' Acoustic Doppler Flow Meter | |
JPS55113974A (en) | Ultrasonic current and flow meter utilizing doppler's shift | |
JP6149587B2 (en) | Ultrasonic flow meter | |
JPS60115810A (en) | Ultrasonic flowmeter | |
JP2003215112A (en) | Ultrasonic wave density meter | |
JPH07260532A (en) | Ultrasonic flowmeter | |
Mahadeva et al. | Studies of the accuracy of clamp-on transit time ultrasonic flowmeters | |
JP2001281031A (en) | Multifunctional type ultrasonic gas meter | |
EP0843160A1 (en) | Method and device for determining the flow velocity and/or throughput of a flowing fluid | |
JP7568445B2 (en) | Ultrasonic Flow Meter |