JPS5917167B2 - How to harden steel - Google Patents

How to harden steel

Info

Publication number
JPS5917167B2
JPS5917167B2 JP7662780A JP7662780A JPS5917167B2 JP S5917167 B2 JPS5917167 B2 JP S5917167B2 JP 7662780 A JP7662780 A JP 7662780A JP 7662780 A JP7662780 A JP 7662780A JP S5917167 B2 JPS5917167 B2 JP S5917167B2
Authority
JP
Japan
Prior art keywords
ammonia gas
austenite
nitrogen
cooled
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7662780A
Other languages
Japanese (ja)
Other versions
JPS572826A (en
Inventor
淳 竹内
海守 山住
孝夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Fujikoshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoshi KK filed Critical Fujikoshi KK
Priority to JP7662780A priority Critical patent/JPS5917167B2/en
Publication of JPS572826A publication Critical patent/JPS572826A/en
Publication of JPS5917167B2 publication Critical patent/JPS5917167B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 この発明は鋼の新規な焼入方法、特に表面層には機械部
品等に要求される十分な硬度を与え内部地質は、主とし
てフェライトで浸炭焼入等よりは0 るかに歪発生の程
度が少い焼入方法に関するものである。
[Detailed Description of the Invention] This invention provides a novel hardening method for steel, in particular, the surface layer has sufficient hardness required for machine parts, etc., and the internal geology is mainly ferrite, which is less hard than carburizing and hardening. The present invention relates to a quenching method that causes less distortion.

鋼p表面層のみを硬化し歪を防ぐために従来から多くの
表面処理方法が行われている。
Conventionally, many surface treatment methods have been used to harden only the surface layer of steel and prevent distortion.

その内、高周波焼入は焼入可能な鋼材が限定されるし、
ま5 た複雑な形状のものの焼入方法としては不向きで
ある。また浸炭焼入は800℃〜950℃のようにAl
変態点以上の高い温度で加熱して炭素を浸透させるため
処理時間は比較的に短いが、特に浅い浸炭層を得る場合
には、硬化深さの精度が保持0 し難い。また、焼入時
に内部がオーステナイトからフエライ トに変化し、同
時に急激な体積変化が起るため歪の発生が大きい。また
従来の窒化処理は鋼を500℃〜570℃の低い温度で
処理するため鋼内部の相変化が起らず、歪の発生は少い
が、・5 硬さは窒化物および拡散層に因るものであり
、表面に厚い硬化層を得ることは出来ない、そのため表
面層の硬化度合を高めるにはAl、W、Mo、Cr、V
などの窒素との親和力の高い元素を添加することが必要
である。j0この発明は上述の問題点を解決するために
なされたもので、従来の窒化処理と異なり鋼中に窒素を
浸透させると、Al変態点が降下する現象およびオース
テナイト状態で鋼中に窒素を浸透させて急冷するとマル
テンサイトが生成され硬度が上昇’5 する現象を利用
したものである。
Among these, the steel materials that can be hardened with induction hardening are limited,
Furthermore, it is not suitable as a hardening method for objects with complex shapes. In addition, carburizing and quenching is performed at 800°C to 950°C.
Although the treatment time is relatively short because the carbon is infiltrated by heating at a high temperature above the transformation point, it is difficult to maintain the precision of the hardening depth, especially when obtaining a shallow carburized layer. Furthermore, during quenching, the interior changes from austenite to ferrite, and at the same time a rapid volume change occurs, which causes large amounts of strain. In addition, in conventional nitriding treatment, steel is treated at a low temperature of 500°C to 570°C, so no phase change occurs inside the steel and less strain occurs. Therefore, in order to increase the degree of hardening of the surface layer, Al, W, Mo, Cr, V
It is necessary to add elements that have a high affinity with nitrogen, such as. j0 This invention was made to solve the above-mentioned problems, and unlike conventional nitriding treatment, when nitrogen is infiltrated into steel, the Al transformation point decreases, and nitrogen is infiltrated into steel in an austenitic state. This method takes advantage of the phenomenon in which martensite is generated and the hardness increases when the steel is allowed to cool rapidly.

Al変態点以上で850℃以内の温度範囲で鋼を加熱す
ると、鋼の地質はオーステナイ トまたはに−オーステ
ナイト+フエライトの混合組織となる。
When steel is heated in a temperature range above the Al transformation point and within 850°C, the geology of the steel becomes austenite or a mixed structure of austenite and ferrite.

こ\で鋼の表面に窒素を浸透させると窒素の浸透が進む
につれて表面層のA1変態点が降下し表面層は均一なオ
ーステナイト組織となり内部はオーステナイトまたはオ
ーステアイト+フエライトの混合組織の状態で保持され
る。その後、A1変態点(約723℃)から650℃の
温度範囲まで徐冷するど表面層はオーステナイト組織の
ま\保持さべ 内部地質はフエライト組織に変化する。
次いで急冷すると表面のオーステナイトはマルテンサイ
トに変化し、表面層のみ十分硬化し、内部のフエライト
は変化を生じない。この発明は、A1変態点以下の温度
で加熱して窒素を浸透させ、その後急冷した場合は歪は
極めて少ないが硬化深さが浅いし、またA1変態点以上
の温度で同様の処理をおこなうと、硬化深さは増すが歪
は大きくなるという、この両者の欠点をおぎなうために
なされたもので、A1変態点以上で850℃以内の任意
の温度での処理によつて硬化深さを増し、その後A1変
態点以下で650℃以内の任意の温度まで徐冷した後焼
入することによつて歪を極力おさえたものである。
When nitrogen is penetrated into the surface of the steel, the A1 transformation point of the surface layer falls as the nitrogen penetration progresses, and the surface layer becomes a uniform austenite structure, and the interior is maintained in a state of austenite or a mixed structure of austeite + ferrite. Ru. After that, it is slowly cooled from the A1 transformation point (approximately 723°C) to 650°C, but the surface layer retains an austenite structure, while the internal geology changes to a ferrite structure.
When it is then rapidly cooled, the austenite on the surface changes to martensite, and only the surface layer is sufficiently hardened, while the ferrite inside remains unchanged. In this invention, if the material is heated at a temperature below the A1 transformation point to infiltrate nitrogen, and then rapidly cooled, the distortion will be extremely small, but the hardening depth will be shallow, and if the same treatment is performed at a temperature above the A1 transformation point, This was done to overcome the drawbacks of increasing the hardening depth but increasing strain.The hardening depth is increased by treatment at any temperature above the A1 transformation point and within 850°C. Thereafter, it is slowly cooled to an arbitrary temperature below the A1 transformation point and within 650°C, and then quenched to suppress distortion as much as possible.

アンモニアガスの供給を制御する方法としては、低い分
圧のアンモニアガスを継続して供給し所要時間加熱して
から急冷する方法か、あるいは高い分圧のアンモニアガ
スを供給し途中でアンモニアガスの供給を停止しそのま
〜加熱を継続して拡散処理を施し、窒素量を低減、分散
させてから急冷する方法のいずれかを用いる。
The method of controlling the supply of ammonia gas is to continuously supply ammonia gas with a low partial pressure, heat it for the required time, and then rapidly cool it, or to supply ammonia gas with a high partial pressure and then stop the ammonia gas midway through the supply. One of the following methods is used: stop the heating, continue heating, perform a diffusion treatment, reduce the amount of nitrogen, disperse it, and then rapidly cool it.

こ〜で拡散処理をおこなう時期としてはA1変態点以下
で650℃以内の任意の温度まで徐冷の後、適当時間保
持して実施すればよい。(以下アンモニアガスの供給を
断つて加熱する処理を拡散処理という。)次に、この発
明の実施例を図面を参照しながら説明する。雰囲気とし
てはアンモニアガス単独かあるいはテンモニアガスに石
油ガス類、変成した吸熱ガス、アルコール類、エステル
類、ケトン類等の有機液体で浸炭性かつ還元性のガスま
たは液体および中性ガスのうち一種または数種を添加し
たものを用いる。加熱温度はA1変態点以上であるが8
50℃までの温度範囲で任意の温度に加熱しその後A1
変態点以下であつて650℃までの温度範囲で任意の温
度まで徐冷するものとする。更に、本発明に係る焼入方
法は例えばSPC,S25C,S45,SCr,SCM
,SNCM,SUS,SUJ等の炭素鋼、合金鋼、その
他特殊用途鋼等、種々の鋼種に対し好結果が得られたが
、以下においては鋼種S45C材を主体にして説明する
。第1図、第2図は熱サイクル線図の一例で、第1図は
上述の温度範囲内でアンモニアガス単独あるいは有機液
体を添加した雰囲気中で加熱し、適当時間保持の後上述
の温共範囲内に徐冷し、適当時間保持の後急冷する方法
を、第2図は土述の温度範囲内でアンモニアガス単独あ
るいは有機液体を添加した雰囲気中で加熱し、適当時間
保持した後、上述の温度範囲に徐冷し、適当時間保持し
その間にアンモニアガスの供給を断つた状態で加熱を続
け拡散処理を施した後、急冷する焼入方法を示している
The diffusion treatment may be carried out after slow cooling to an arbitrary temperature below the A1 transformation point and within 650° C., and then holding it for an appropriate period of time. (Hereinafter, the process of cutting off the supply of ammonia gas and heating will be referred to as a diffusion process.) Next, embodiments of the present invention will be described with reference to the drawings. The atmosphere is ammonia gas alone, or ammonia gas, petroleum gas, denatured endothermic gases, organic liquids such as alcohols, esters, and ketones, and one or more of carburizing and reducing gases, liquids, and neutral gases. Use one with added seeds. Although the heating temperature is above the A1 transformation point, 8
Heat to any temperature within the temperature range up to 50℃, then A1
It shall be slowly cooled to an arbitrary temperature within the temperature range below the transformation point and up to 650°C. Furthermore, the quenching method according to the present invention can be applied to, for example, SPC, S25C, S45, SCr, SCM.
Although good results have been obtained for various steel types such as carbon steels such as , SNCM, SUS, and SUJ, alloy steels, and other special purpose steels, the following description will mainly be made of steel type S45C material. Figures 1 and 2 are examples of thermal cycle diagrams. Figure 1 shows heating within the above temperature range in an atmosphere containing ammonia gas alone or an organic liquid, and after holding for an appropriate time, Figure 2 shows a method in which the temperature is gradually cooled within a temperature range, held for an appropriate time, and then rapidly cooled. This method shows a quenching method in which the material is slowly cooled to a temperature range of , held for an appropriate period of time, continued heating with the supply of ammonia gas cut off during that period, performs a diffusion treatment, and then rapidly cools.

第3図は鋼種S45Cをアンモニアガス0.91?/i
1メタノール10CC/iの雰囲気中で780℃で2時
間処理した後、同一雰囲気中で700℃まで徐冷しその
後30分間保持し次いで油冷した場合の硬さ分布図で表
面から約0.2371i11tまで表面焼入としての有
効深度が得られている。
Figure 3 shows steel type S45C with ammonia gas of 0.91? /i
The hardness distribution diagram shows a hardness distribution of approximately 0.2371i11t from the surface after being treated at 780°C for 2 hours in an atmosphere of 1 methanol 10CC/i, then gradually cooled to 700°C in the same atmosphere, then held for 30 minutes, and then cooled in oil. The effective depth for surface quenching has been obtained up to the maximum depth.

第4図イは鋼種S45Cをアンモニアガス15f/i、
メタノール10(1)/iの雰囲気中で780℃で2時
間処理した後、同一雰囲気中で700℃まで徐冷しその
後30分間保持し、次いで油冷した場合、口は鋼種S4
5Cをイと同一雰囲気で780℃で2時間処理した後同
一雰囲気中で700℃まで徐冷し次いでアンモニアガス
の供給を断つた状態で30分間保持し、次いで油冷した
場合の硬さ分布図である。
Figure 4 A shows steel type S45C with ammonia gas 15f/i.
After processing at 780°C for 2 hours in an atmosphere of methanol 10(1)/i, the opening was made of steel type S4.
Hardness distribution diagram when 5C was treated at 780°C for 2 hours in the same atmosphere as A, then slowly cooled to 700°C in the same atmosphere, then held for 30 minutes with the supply of ammonia gas cut off, and then cooled in oil. It is.

第3図および第4図に示した実施例は拡散処理を施さな
いかまたは施すかの違いであるが、その区別はアンモニ
アの分圧にか\つている。
The embodiments shown in FIGS. 3 and 4 differ in whether diffusion treatment is not performed or in which diffusion treatment is performed, and the distinction is based on the partial pressure of ammonia.

すなわちアンモニアの分圧が0,13気圧程度に低い場
合は拡散処理を施す必要はなく鋼中に浸透した窒素量が
適当で、しかも比較的均一で焼入時のオーステナイトか
らマルテンサイトへの変態が容易におこなうことが出来
る。また、アンモニアの分圧が0.7気圧程度に高い場
合は鋼中に浸透した窒素量が多く焼入時のオーステナイ
トからマルテンサイトへの変態が進行せず表面層に多量
の残留オーステナイトを生ずる結果になりその部分の硬
さの上昇が得られない、このような場合は拡散処理を施
すことにより窒素を拡散せしめ、マルテンサイト変態を
容易にすることが出来る。第5図は鋼種S45Cをアン
モニアガス151?Zi、メタノール10cc/111
inの雰囲気中で780℃で2時間処理した後、同一雰
囲気中で700′Cまで徐冷しそのま′>30分間保持
し次いで油冷した場合の組織写真を示す。
In other words, when the partial pressure of ammonia is as low as 0.13 atm, there is no need to perform a diffusion treatment, and the amount of nitrogen permeated into the steel is appropriate, and is relatively uniform, preventing the transformation from austenite to martensite during quenching. It can be done easily. In addition, when the partial pressure of ammonia is as high as 0.7 atm, the amount of nitrogen penetrating into the steel is large, and the transformation from austenite to martensite during quenching does not proceed, resulting in a large amount of retained austenite in the surface layer. In such a case, a diffusion treatment can be performed to diffuse nitrogen and facilitate martensitic transformation. Figure 5 shows steel type S45C with ammonia gas 151? Zi, methanol 10cc/111
A microstructure photograph is shown in which the sample was treated at 780° C. for 2 hours in the same atmosphere, then slowly cooled to 700° C., held for >30 minutes, and then cooled in oil.

表面には極く薄い窒化物層Aがあり次いでオーステナイ
ト層B、マルテンサイト層C1地質Dとなつている。
There is an extremely thin nitride layer A on the surface, followed by an austenite layer B, a martensite layer C1, and a geological layer D.

第6図は鋼種S45Cをアンモニアガス0.91ノi、
メタノール10CC/〒の雰囲気中で780℃で2時間
処理した後、同一雰囲気中で700′Cまで徐冷しその
まま30分保持し、次いで油冷した場合の組織写真を示
す。
Figure 6 shows steel type S45C with ammonia gas of 0.91 noi.
A photograph of the structure is shown in which the sample was treated at 780° C. for 2 hours in an atmosphere containing 10 cc of methanol/〒, then slowly cooled to 700'C in the same atmosphere, held for 30 minutes, and then cooled in oil.

表面には極く薄い窒化物層Aがあり次いでマルテンサイ
ト層C、地質Dとなつている。第7図は鋼種S45Cを
アンモニアガス0.9f/i、窒素ガス101?/1U
″nの雰囲気中で780℃で2時間処理した後、同一雰
囲気中で700℃まで徐冷し、そのまま30分保持し、
次いで油冷した場合の硬サ分布図を示す。
There is a very thin nitride layer A on the surface, followed by a martensite layer C and a geological layer D. Figure 7 shows steel type S45C with ammonia gas of 0.9f/i and nitrogen gas of 101? /1U
After being treated at 780°C for 2 hours in an atmosphere of
Next, a hardness distribution map when oil-cooled is shown.

第8図は鋼種S45Cをアンモニアガス0.9f/1a
(窒素ガス10f?ノiおよびプロパンガス0.1′/
iめ雰囲気中で780℃で2時間処理した後、同一雰囲
気中で700℃まで徐冷し、そのま\30分保持し、次
いで油冷した場合の硬サ分布図を示す。
Figure 8 shows steel type S45C with ammonia gas 0.9f/1a
(Nitrogen gas 10f?noi and propane gas 0.1'/
The hardness distribution diagram is shown when the sample was treated at 780° C. for 2 hours in the same atmosphere, then slowly cooled to 700° C. in the same atmosphere, held for 30 minutes, and then cooled in oil.

第9図は鋼種S45Cをアンモニアガス0.91/7!
1t′11,アルゴンガス51?/iの雰囲気中で、7
80℃で2時間処理した後、同一雰囲気中で700℃ま
で徐冷しそのま\30分保持し、次いで油冷した場合の
硬サ分布を示す。
Figure 9 shows steel type S45C with ammonia gas of 0.91/7!
1t'11, argon gas 51? /i atmosphere, 7
The hardness distribution when treated at 80°C for 2 hours, slowly cooled to 700°C in the same atmosphere, held for 30 minutes, and then cooled in oil is shown.

第10図は鋼種S45Cをアンモニアガス0.91?/
緘の雰囲気中で780℃で2時間処理した後、同一雰囲
気中で700℃まで徐冷し、その後30分保持し、次い
で油冷した場合の硬サ分布図を示す。
Figure 10 shows steel type S45C with ammonia gas of 0.91? /
The hardness distribution diagram is shown when the sample was treated at 780° C. for 2 hours in a thick atmosphere, then gradually cooled to 700° C. in the same atmosphere, then held for 30 minutes, and then cooled in oil.

第11図は鋼種S45Cをアンモニアガス0.91/i
め雰囲気中で740アC,7800C,820℃,85
0℃で4時間処理した後、同一雰囲気中で700℃まで
徐冷し、その後30分保持し、次いで油冷した場合、表
面硬さHV55Oが得られる硬化深さを示す。
Figure 11 shows steel type S45C with ammonia gas 0.91/i
740A, 7800C, 820℃, 85
It shows the hardening depth at which a surface hardness of HV550 is obtained when treated at 0°C for 4 hours, then slowly cooled to 700°C in the same atmosphere, held for 30 minutes, and then cooled with oil.

この処理方法で850℃以上での処理は勿論さしつかえ
ないが同一のアンモニア分圧では硬化深さの増大が望め
ない。第12図は鋼種S45Cをアンモニアガス0.9
f?/iめ雰囲気中で740ンC,780℃,820℃
,850℃で2時間処理した後同一雰囲気中で700℃
まで徐冷し、その後30分保持し、次いで油冷した場合
の内部硬さをイに示し、同一鋼種を窒素ガス中で740
℃,780℃,820℃,850℃で30分保持し油冷
した場合の硬さの程度を口に示す。
With this treatment method, it is of course possible to treat at 850° C. or higher, but an increase in hardening depth cannot be expected with the same ammonia partial pressure. Figure 12 shows steel type S45C with ammonia gas of 0.9
f? 740°C, 780°C, 820°C in /i atmosphere
, 700℃ in the same atmosphere after treatment at 850℃ for 2 hours.
The internal hardness is shown in A when the same steel type was cooled to 740 in nitrogen gas, then kept for 30 minutes, and then oil cooled.
℃, 780℃, 820℃, 850℃ for 30 minutes and cooled with oil.

硬さの上昇は地質の相変化を意味し、歪の発生により変
形を生ずることになる。すなわち、例えば780℃で窒
?ガス中で加熱して焼入れるとかたさはHV35Oとな
り、組織的には相変化が生じ歪が発生したことを意味す
る。方、本発明の方法では780℃で窒素を浸透せしめ
てその後700℃まで徐冷する場合の内部かたさはH2
lOである。この場合は組織的こは相変化が徐冷によつ
て改善され歪の発生をおさえることができる。第13図
は鋼種S45Cをアンモニアガス0.91/:メタノー
ル10CCノiの雰囲気中で780℃で2時間処哩した
後、同一雰囲気で72『C,7OOOC,68O℃,6
60℃,650℃まで徐冷しその後30分保持し次いで
油冷した場合の表面層の硬サの程度の変化を示す。
An increase in hardness means a geological phase change, which causes deformation due to the generation of strain. That is, for example, nitrogen at 780°C? When heated and quenched in a gas, the hardness becomes HV35O, which means that a phase change occurs in the structure and distortion occurs. On the other hand, in the method of the present invention, when nitrogen is permeated at 780°C and then slowly cooled to 700°C, the internal hardness is H2
It is lO. In this case, the structural phase change can be improved by slow cooling and the generation of distortion can be suppressed. Figure 13 shows that steel type S45C was treated at 780°C for 2 hours in an atmosphere of 0.91/methanol: 72'C, 7OOOC, 68O°C, 6
The graph shows changes in the degree of hardness of the surface layer when the samples were slowly cooled to 60°C and 650°C, held for 30 minutes, and then cooled in oil.

徐冷後の保持温度は72『C,7OOOC,68O℃の
場合は表面かたさをH7OO以上を維持できるが、66
0℃ではHV67O,65O℃ではHV55Oとなり更
に650℃以下まで徐冷すると表面硬さを必要とする場
合には不適当である。第14図は鋼種S45Cの丸棒の
熱処理変形試験結果を示す、Aはこの発明によるアンモ
ニアガス15′ノi1メタノール101/mlめ雰囲気
中で780℃×1時間処理した後、同一雰囲気中で70
0℃まで徐冷し、次いでアンモニアの供給を断つた状態
で、30分保持し次いで油冷したものBはアンモニアガ
ス151?/籏n1メタノール10(1)/「nの雰囲
気中で750℃×1時間処理し、引続き750℃で1時
間の拡散処理を施した後油冷したもの、Cは吸熱性雰囲
気ガス中で930℃×60分間浸炭処理を施した後、8
50℃で30分加熱し油冷したものである。丸棒の形状
寸法は直径1571111t、長さ100顧である。図
中イは外径寸法変化を、口は長さ寸法変化を、ハは最大
曲りについて比較したもので、いずれの場合もこの発明
による処理のものが変形は最も少ない。鋼中に窒素を浸
透させた状態でオーステナイト化した場合、多量の窒素
がオーステナイト中に存在すると、急冷時にオーステナ
イトを多く残留させるが、その部分の窒素濃度を拡散処
理によつて調節するとオーステナイトはマルテンサイト
化され良好な焼入組織が得られる。
If the holding temperature after slow cooling is 72°C, 7OOOC, 68O°C, the surface hardness can be maintained at H7OO or higher, but 66
At 0°C, it becomes HV67O, and at 650°C, it becomes HV55O, and if it is further slowly cooled to 650°C or lower, it is inappropriate when surface hardness is required. Figure 14 shows the results of a heat treatment deformation test of a round bar made of steel type S45C.
B was slowly cooled to 0°C, then held for 30 minutes with the supply of ammonia cut off, and then cooled in oil. Ammonia gas 151? / 籏 n1 methanol 10 (1) / treated in an atmosphere of 750 °C for 1 hour, followed by diffusion treatment at 750 °C for 1 hour, and then cooled in oil, C is 930 °C in an endothermic atmospheric gas After carburizing for 60 minutes at ℃
It was heated at 50°C for 30 minutes and cooled in oil. The shape and dimensions of the round bar are 1571111t in diameter and 100mm in length. In the figure, A compares the change in outer diameter, the mouth changes in length, and C shows the maximum bending. In all cases, the one treated according to the present invention has the least deformation. When steel is austenitized with nitrogen infiltrated, if a large amount of nitrogen exists in the austenite, a large amount of austenite will remain during rapid cooling, but if the nitrogen concentration in that area is adjusted by diffusion treatment, the austenite will change to martenite. A good quenched structure is obtained.

また稀薄なアンモニアガス雰囲気中で例えばアンモニア
ガスの分圧が0.13気圧程度で供給した場合は拡散処
理を施さなくても急冷時にマルテンサイト化が可能であ
る。更にこの発明ではA1変態点以上850℃程度に温
度上昇させた状態で窒素を鋼中に深く浸透させ、その後
A1変態点以下650℃以内の任意の温度まで徐冷保持
することによつて内部組織をフエライトにもどすことが
できるので、窒素による変態硬化層を深くし、しかも、
変形は極めて少いことを特徴とする新しい表面硬化処理
方法である。
Furthermore, if ammonia gas is supplied in a dilute ammonia gas atmosphere at a partial pressure of about 0.13 atmospheres, martensite formation can be achieved during rapid cooling without performing a diffusion treatment. Furthermore, in this invention, nitrogen is deeply penetrated into the steel while the temperature is raised to about 850°C above the A1 transformation point, and then slowly cooled to a desired temperature within 650°C below the A1 transformation point to improve the internal structure. can be returned to ferrite, deepening the nitrogen-induced transformation hardening layer, and
This is a new surface hardening treatment method characterized by extremely little deformation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の焼入方法の熱サイクル
線図、第3図、第4図、第7図、第8図、第9図および
第10図はこの発明による被処理物の実施例の硬さ分布
図、第5図、第6図はこの発明による被処理物の焼入後
の表面部分の顕微鏡写真、第11図はこの発明による被
処理物の処理温度による硬化深さの変化図、第12図は
この発明による被処理吻の処理温度による内部硬さと通
常処理による内部硬さとの比較図、第13図はこの発明
による被処理物の徐冷保持温度と表面かたさの関係図、
第14図は丸棒の焼入処理による変形について本発明に
よるものと、徐冷保持処理を施さないもの、および浸炭
焼入によるものとの比較図で、イは外径寸法、口は長さ
寸法、ハは最大曲り寸法の変化をそれぞれ示すものであ
る。 A・・・・・・窒化化合物層、B・・・・・・残留オー
ステナイト層、C......マルテンサイト層、D・
・・・・・フエライト+パーライトの混合層。
FIGS. 1 and 2 are thermal cycle diagrams of the quenching method of the present invention, and FIGS. 3, 4, 7, 8, 9, and 10 show the workpiece Figures 5 and 6 are micrographs of the surface portion of the workpiece according to the present invention after hardening, and Figure 11 shows the hardness depth of the workpiece according to the present invention depending on the processing temperature. Fig. 12 is a comparison diagram of the internal hardness of the processed proboscis according to the present invention depending on the processing temperature and the internal hardness due to normal processing, and Fig. 13 is a graph showing the slow cooling retention temperature and surface hardness of the processed proboscis according to the present invention. relationship diagram,
Fig. 14 is a comparison diagram of the deformation of a round bar due to quenching treatment according to the present invention, one without slow cooling holding treatment, and one made by carburizing and quenching, where A is the outer diameter dimension and the opening is the length. Dimensions and C indicate the change in maximum bending dimension, respectively. A...Nitride compound layer, B...Retained austenite layer, C. .. .. .. .. .. Martensite layer, D.
...Mixed layer of ferrite + pearlite.

Claims (1)

【特許請求の範囲】 1 アンモニアガス単独からなる雰囲気中で、またはア
ンモニアガスに(a)プロパン、ブタン等の石油ガス (b)これを変成した吸熱ガス (c)アルコール類、エステル類、ケトン類等の有機液
体で浸炭性かつ還元性のガスもしくは液体(d)窒素、
アルゴン等の中性ガス上記(a)乃至(d)のうちから
選ばれた1種もしくは2種以上を添加した雰囲気中で、
アンモニアガスの供給量を制限しつつ鋼をA_1変態点
以上で850℃以内の温度範囲内で加熱して、表面に窒
素を浸透させた状態で表面部を完全にオーステナイト化
し、内部はオーステナイトまたはオーステナイトとフェ
ライトの混合組織の状態にし、その後A_1変態点以下
で650℃以内の温度範囲まで徐冷し、適当時間保持し
、表面は窒素の影響でオーステナイトのままであり、内
部地質はフェライト組織にもどし、その後急冷し表面の
オーステナイト層をマルテンサイト層となし、比較的深
い硬化層を有しながら、変形がきわめて少い鋼の焼入方
法。 2 アンモニアガスを継続的に供給する特許請求の範囲
第1項記載の鋼の焼入方法。 3 アンモニアガスを適当時間供給した後、アンモニア
ガスの供給を停止した状態で加熱を継続する特許請求の
範囲第1項記載の鋼の焼入方法。
[Scope of Claims] 1 In an atmosphere consisting of ammonia gas alone or with ammonia gas (a) Petroleum gas such as propane or butane (b) Endothermic gas modified from this (c) Alcohols, esters, ketones Carburizing and reducing gases or liquids such as organic liquids (d) nitrogen;
In an atmosphere containing one or more neutral gases selected from the above (a) to (d) such as argon,
While limiting the amount of ammonia gas supplied, the steel is heated above the A_1 transformation point within a temperature range of 850°C, and the surface is completely austenitized with nitrogen permeating the surface, and the inside is austenite or austenite. and ferrite, and then slowly cooled to a temperature range of 650℃ below the A_1 transformation point and held for an appropriate period of time, the surface remains austenite due to the influence of nitrogen, and the internal geology returns to ferrite structure. A method of quenching steel that is then rapidly cooled to transform the austenite layer on the surface into a martensite layer, resulting in a relatively deep hardened layer with very little deformation. 2. The method for quenching steel according to claim 1, in which ammonia gas is continuously supplied. 3. The method of quenching steel according to claim 1, wherein after supplying ammonia gas for an appropriate time, heating is continued with the supply of ammonia gas stopped.
JP7662780A 1980-06-09 1980-06-09 How to harden steel Expired JPS5917167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7662780A JPS5917167B2 (en) 1980-06-09 1980-06-09 How to harden steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7662780A JPS5917167B2 (en) 1980-06-09 1980-06-09 How to harden steel

Publications (2)

Publication Number Publication Date
JPS572826A JPS572826A (en) 1982-01-08
JPS5917167B2 true JPS5917167B2 (en) 1984-04-19

Family

ID=13610595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7662780A Expired JPS5917167B2 (en) 1980-06-09 1980-06-09 How to harden steel

Country Status (1)

Country Link
JP (1) JPS5917167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255303A1 (en) * 2019-06-19 2020-12-24 日本製鉄株式会社 Steel for nitriding quenching treatment, nitrided quenched component and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2173513B (en) * 1985-02-25 1989-06-14 Lucas Ind Plc Making of steel component
JP3931230B2 (en) * 2002-10-17 2007-06-13 独立行政法人物質・材料研究機構 Ultrafine grained steel with nitrided layer
EP1961831A1 (en) * 2003-01-17 2008-08-27 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255303A1 (en) * 2019-06-19 2020-12-24 日本製鉄株式会社 Steel for nitriding quenching treatment, nitrided quenched component and method for producing same

Also Published As

Publication number Publication date
JPS572826A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
EP2505684B1 (en) Gear and method for producing same
EP0013063A1 (en) Method of treating the surfaces of high carbon steel bodies
US6966954B2 (en) Spall propagation properties of case-hardened M50 and M50NiL bearings
US3748195A (en) Method for forming a soft nitride layer in a metal surface
CN112593183A (en) Heat treatment method for carburizing and quenching
US4366008A (en) Method for hardening steel
WO2015034446A1 (en) Process of and apparatus for hardening steel surface
US4406714A (en) Heat treatment of metals
US4738730A (en) Steam sealing for nitrogen treated ferrous part
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JPS5917167B2 (en) How to harden steel
US4236942A (en) Method for the gaseous nitriding of ferrous-based components
JP5798463B2 (en) Carburizing method and carburizing apparatus
JP3193320B2 (en) Heat treatment method for machine parts
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
Winter et al. Gas Nitriding and Gas Nitrocarburizing of Steels
JPS6224499B2 (en)
CN114891964B (en) Stainless steel quenching cooling process, heat treatment method, application and stainless steel workpiece
JPS613878A (en) Carburizing method and carburization hardening method of surface layer of member
Balamurugan Evaluation of heat treatment characteristics for case hardening steels in automobiles
Biró et al. Nitrocarburising of low alloyed case hardening steels applying three different temperatures
TWI360579B (en)
JPS55119119A (en) Hardening method for steel at low temperature
JP3429870B2 (en) Surface hardening method for sintered parts