JPS59170282A - Method and device for electrolyzing dilute aqueous caustic alkali solution - Google Patents

Method and device for electrolyzing dilute aqueous caustic alkali solution

Info

Publication number
JPS59170282A
JPS59170282A JP58044077A JP4407783A JPS59170282A JP S59170282 A JPS59170282 A JP S59170282A JP 58044077 A JP58044077 A JP 58044077A JP 4407783 A JP4407783 A JP 4407783A JP S59170282 A JPS59170282 A JP S59170282A
Authority
JP
Japan
Prior art keywords
electrolysis
time
electrode
electricity
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58044077A
Other languages
Japanese (ja)
Other versions
JPS6367556B2 (en
Inventor
Hiromu Asano
浅野 煕
Takayuki Shimamune
孝之 島宗
Kazuhiro Hirao
和宏 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP58044077A priority Critical patent/JPS59170282A/en
Priority to CA000448528A priority patent/CA1258820A/en
Priority to PH30343A priority patent/PH20299A/en
Priority to NL8400723A priority patent/NL8400723A/en
Priority to DE3409118A priority patent/DE3409118C2/en
Priority to GB08406884A priority patent/GB2137658B/en
Priority to FR848404143A priority patent/FR2542763B1/en
Priority to AU25683/84A priority patent/AU548708B2/en
Priority to KR1019840001406A priority patent/KR870000111B1/en
Priority to US06/590,668 priority patent/US4578160A/en
Publication of JPS59170282A publication Critical patent/JPS59170282A/en
Priority to MY672/86A priority patent/MY8600672A/en
Publication of JPS6367556B2 publication Critical patent/JPS6367556B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Abstract

PURPOSE:To perform stably electrolysis for a long period by performing the electrolysis in which polarities are inverted and electricity is conducted in a reverse direction at every conduction of electricity in a positive direction for a prescribed time, reversing the feeding and discharging directions of the electrolyte and performing the similar electrolysis. CONSTITUTION:A dilute caustic alkali soln. is fed into one of the electrode chambers of an electrolytic cell segmented by a cation exchange membrane and a thick aq. caustic alkali soln. is recovered from the other electrode chamber. Fe, Ni or an alloy thereof is used as the electrode material thereof. The electrolysis in which polarities are inverted and electricity is conducted in a reverse direction at every electrolysis by conducting the electricity for a prescribed time in a positive direction is performed for a specified period. Then the feeding and discharging directions of the electrolyte are reversed and the electrolysis in which polarities are inverted and electricity is conducted in a reverse direction at every electrolysis by conducting the electricity for a prescribed time in a negative direction is performed for a specified period.

Description

【発明の詳細な説明】 本発明は、陽イオン交換膜で区分された電解槽で鉄、ニ
ッケル又はそれらの合金を電極として用いて、希薄苛性
アルカリ水溶液を電解する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and an apparatus for electrolyzing a dilute caustic aqueous solution using iron, nickel, or an alloy thereof as an electrode in an electrolytic cell separated by a cation exchange membrane.

苛性アルカリを含む溶液は、工業上、頂々の製造プロセ
ス、処理プロセス或は加工プロセスから排出される。例
えば、翼々の化学反応プロセスからの反応廃液、金への
アルカリ処理廃液、イオン交換樹脂再生脆液、石油精製
プロセスにおけるアルカリ処理廃液等がある。これらの
廃液から苛性アルカリを回収することはプロセスの経済
性、或は公害対策の観点から工叢上重要である。
Solutions containing caustic alkali are discharged from industrial manufacturing, processing or processing processes. Examples include reaction waste liquid from a chemical reaction process for wings, alkali treatment waste liquid for gold, ion exchange resin recycled brittle liquid, alkali treatment waste liquid in an oil refining process, and the like. Recovery of caustic alkali from these waste liquids is important from the viewpoint of process economics or pollution control.

そのため、従来から、かかる脆液を処理して、苛性アル
カリを回収したシ、無害化する租々の手段が試みられて
いる。このような苛性アルカリ含有脆液の多くは、比較
的低0度の水溶液であシ、多くの他の無機、或いは有機
の共存物質を含むため、実際上、技術的或は経済的理由
から回収処理をせずに、中和等の無害化処理を17て崩
御する場合が多い。
Therefore, attempts have been made to treat such brittle liquids to recover caustic alkalis and to render them harmless. Most of these caustic-containing brittle liquids are relatively low-0 degree aqueous solutions and contain many other inorganic or organic coexisting substances, so they cannot be recovered for practical, technical, or economic reasons. In many cases, the insect dies without being treated, even after neutralization or other detoxification treatment.

このような底液から、苛性アルカリを効率良く回収する
有力な手段として陽イオン交換膜を用いての電解法が知
られ、例えば特開昭52−16859号には、カチオン
交換膜を用いた電解透析によシ、アルカリ性廃水からア
ルカリのみを分離回収し、廃水を中性として排出するア
ルカリ性房水の処理方法が記載されている。
An electrolytic method using a cation exchange membrane is known as an effective means of efficiently recovering caustic alkali from such a bottom liquid. A method for treating alkaline aqueous humor is described in which only alkali is separated and recovered from alkaline wastewater by dialysis, and the wastewater is discharged as neutral.

しかし、このような電解方法においては、電極、特に陽
極は、酸素発生反応に耐える高耐久性のものが要求され
、高価な貴金属や、消耗し易く製作上或は操與上稈々の
欠点のある黒鉛等を用いなければならず、1秦的に採用
し得る技術的、経済的に優れた電解技術の出現が望まれ
ていた。即ち、鉄、ニッケル、及びステンレス等のその
合金は安価で、加工性も良く、従来から水電解等におい
て苛性アルカリ水溶液の電解用TFj、極として用いら
れている。しかし、これらは比較的高温の、高濃度水溶
液において使用できるものであり、苛性アルカリ約10
9c以下の低濃度、特に55(以下では、電解電圧の上
昇によシ陽極が著しく酸化され表面に酸化物が形成され
て不活性化し、或いは更に陽極表面が溶出する等の問題
が起シ、そのまま低濃度の苛性アルカリ水溶液の電解妬
鉄、ニッケル等を電極どして適用できなかった。まだ、
各掠の有機物や重金属類等を含有する廃液を電解する場
合、これらの不■物がイオン交換j中冗極、或いは配管
等に付着析出して′I!!tmの進行を困難ならしめる
間開がちった。
However, in such electrolytic methods, the electrodes, especially the anode, are required to be highly durable to withstand the oxygen evolution reaction, and are not made of expensive precious metals or are prone to wear and tear and have drawbacks in manufacturing and operation. A certain type of graphite or the like had to be used, and it was hoped that a technologically and economically superior electrolytic technology that could be adopted during the first Qin period would emerge. That is, iron, nickel, and their alloys such as stainless steel are inexpensive and have good workability, and have been conventionally used as TFj and electrodes for electrolyzing caustic aqueous solutions in water electrolysis and the like. However, these can be used in relatively high temperature, highly concentrated aqueous solutions, and about 10% of caustic alkali
At low concentrations below 9C, especially below 55C, problems may occur such as the anode being significantly oxidized due to an increase in electrolytic voltage, oxides being formed on the surface and inactivation, or further elution of the anode surface. It was not possible to apply electrolytic iron, nickel, etc. in a low concentration caustic alkaline aqueous solution as an electrode.
When electrolyzing waste liquid containing organic substances and heavy metals, these impurities may deposit on the redundant electrodes or piping during ion exchange and cause 'I! ! It tended to open while making the progress of tm difficult.

本発明は、上記の諸問題を解決するためになされたもの
で、その目的は、安価な鉄、ニッケル等の電極を用いて
希薄苛性アルカリ水溶液を長期間安定して電解し、苛性
アルカリを効率良く回収することができる新規な′!r
l fy(方法及びその?置を提供することにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to stably electrolyze a dilute aqueous caustic alkali solution over a long period of time using inexpensive electrodes made of iron, nickel, etc., and efficiently remove caustic alkali. New′ that can be recovered well! r
To provide a method and its location.

本発明は陽イオン交換膜建より区分された電解桁の一方
のTi P室に希薄苛性アルカリ水溶液を供給して3名
了し、他方の電極室よ〕0厚苛性アルカリ水溶液を回収
する電解方法において、電極材として鉄、ニッケル又は
その合金を用い、正方向に所定時間通電して電解する毎
に、極性を反転して逆方向の通電を行う電解を一定期間
行い、次に’ry、解液の供給排出方向を逆転し、負方
向に所定時間通電して電解する毎に、極性を反転して逆
方向の通電を行う電解を一定期間行うことを特徴とする
希薄苛性アルカリ水溶液の電解方法及びその装置を特徴
とするものである。
The present invention is an electrolysis method in which a dilute caustic aqueous solution is supplied to one TiP chamber of an electrolytic girder divided from a cation exchange membrane building, a dilute aqueous caustic alkaline solution is recovered from the other electrode chamber, and a dilute aqueous caustic alkaline solution is recovered from the other electrode chamber. In this method, iron, nickel, or an alloy thereof is used as the electrode material, and each time electrolysis is performed by applying current in the positive direction for a predetermined time, the polarity is reversed and current is applied in the opposite direction for a certain period of time. A method for electrolyzing a dilute caustic alkaline aqueous solution, which is characterized in that the direction of supply and discharge of the liquid is reversed, and each time electrolysis is performed by energizing in the negative direction for a predetermined period of time, the polarity is reversed and energizing is performed in the opposite direction for a certain period of time. and its apparatus.

本発明は、上記の通電、所定の通電量で周期的に電極の
極性を反転し、かつ、一定期間の電解毎に、電解液の供
給排出方向及び通電方向を運転して同様の電解を行うと
とKより、前記の目的を達成し、以下に詳述するように
、鉄、ニッケル等の安価な電極を用いて希薄アルカリ水
溶液の電解を長期間安定して行うことを可能にした優れ
た効果を奏するものである。
The present invention performs the same electrolysis by periodically reversing the polarity of the electrode with the above-mentioned energization and a predetermined amount of energization, and by operating the electrolyte supply/discharge direction and energization direction for each electrolysis period of a certain period. Toto K has achieved the above objectives and, as detailed below, has developed an excellent product that enables stable electrolysis of dilute alkaline aqueous solutions over long periods of time using inexpensive electrodes made of iron, nickel, etc. It is effective.

本発明において用いられる電解槽は、電極室が門イオン
交換膜によって区分されたもので、単極式或は複極式等
いずれの型式のものにも適用できる。
The electrolytic cell used in the present invention has an electrode chamber divided by a gate ion exchange membrane, and can be applied to any type such as a monopolar type or a bipolar type.

第1図に示す・電解装置は、本発明による単極式電解槽
の基本型を示すもので、陽イオン交換鷹1を侠んで電極
室2及び3を杷成し、電極4及び5により通電して電解
を行う。
The electrolyzer shown in FIG. 1 shows the basic type of a monopolar electrolytic cell according to the present invention, in which a cation exchanger 1 is installed to form electrode chambers 2 and 3, and electricity is supplied through electrodes 4 and 5. and perform electrolysis.

第2図に示すものは、本発明にょる複極式電解槽の例を
示すもので、端部電極4′及び5′の間VCl’!イオ
ン交換膜1及び複f@6を順次設けたものである。7は
中間電極室を示し、7を複数設けて多室複極式電解槽f
槽とすることは勿論可能である。本発明においては、陽
極、陰極とも同じ電極材を用いることができるので、特
に複極式電解槽を構成する場合、異刺Trt朽材を複合
する必要がなく好都合である。
FIG. 2 shows an example of a bipolar electrolytic cell according to the present invention, in which VCl'! between end electrodes 4' and 5'! An ion exchange membrane 1 and a multiple f@6 are sequentially provided. 7 indicates an intermediate electrode chamber, and by providing a plurality of 7, a multi-chamber bipolar electrolytic cell f
Of course, it is possible to use it as a tank. In the present invention, the same electrode material can be used for both the anode and the cathode, which is advantageous since there is no need to combine the bipolar Trt decay material, especially when constructing a bipolar electrolytic cell.

陽イオン交換膜1は、電解環境下に耐える公知のいずれ
の陽イオン交換膜を使用できるが、111に耐アルカリ
性の良いパーフルオロイオン交換膜等の弗素樹脂系のも
のが一姓適である。
As the cation exchange membrane 1, any known cation exchange membrane that can withstand an electrolytic environment can be used, but a fluororesin membrane such as a perfluoro ion exchange membrane with good alkali resistance is particularly suitable for the cation exchange membrane 111.

電極4,5又け6は、鉄、ニッケル又はその合金を材料
として用いる。合金材としては、例えば炭素fl、Fe
’−Ni合金、ステンレス鋼、Co、Cr又はMo と
の合金等が使用できる。個個の電極は、これらの電極材
の同じ材料で構成して良いが、同じでないものを組み合
わせても良い。電解槽は通常、電解液や生成物の供給排
出方向が付属されておシ、これらを含′めて、本発明に
おいては陽イオン交i?!膜1又は、電極6を中心に左
右対称の形状に電解装置を青成し、通電方向及び液の流
通方向−を随時逆転できるようKされている。第2図に
示すような多室複極式電解槽においては、奇数の陽イオ
ン交換膜を用いる場合、中間の陽イオン交換膜が対称中
心となり、偶数の場合は、中間の複極電極が中心と永る
The electrodes 4 and 5 are made of iron, nickel, or an alloy thereof. Examples of alloy materials include carbon fl, Fe
'--Ni alloy, stainless steel, alloy with Co, Cr or Mo, etc. can be used. The individual electrodes may be made of the same electrode material, or may be made of different electrode materials in combination. An electrolytic cell is usually equipped with a direction for supplying and discharging electrolyte and products. ! The electrolytic device is constructed in a symmetrical shape around the membrane 1 or the electrode 6, and the direction of current flow and the direction of liquid flow can be reversed at any time. In a multi-chamber bipolar electrolytic cell as shown in Figure 2, if an odd number of cation exchange membranes are used, the middle cation exchange membrane will be the center of symmetry, and if an even number is used, the middle bipolar electrode will be the center of symmetry. It lasts forever.

例えば、第1図において、左方と右方のm極室2,3に
、電解液の供給又は排出を行うととのできる同形状のタ
ンク8,8′配管9 、9’ポンプ10.10’を設け
、別途必要に応じて液供給管11 、11’及び排気管
12.12’等を設けて、陽イオン交換膜1を中心に対
称に電解装置を構成する。
For example, in FIG. 1, tanks 8, 8' piping 9, 9' pumps 10, 10 with the same shape can supply or discharge electrolyte to the left and right m-electrode chambers 2, 3. ', and additionally provide liquid supply pipes 11, 11', exhaust pipes 12, 12', etc. as necessary, thereby constructing an electrolyzer symmetrically with the cation exchange membrane 1 at the center.

鉄、ニッケル等を電極材として用いた電極は、導電性が
良く、棒、板、網、多孔板等、何れの形状にも容易に成
形することができ、安価である。しかし、従来の電解方
法では、特に苛性アルカリを含む希薄水溶液或は廃液等
の電解に用いると、I5電極面が酸化されて酸化物等が
形成して、電解の継続が困難となる。
Electrodes using iron, nickel, or the like as an electrode material have good conductivity, can be easily formed into any shape such as a rod, plate, net, perforated plate, etc., and are inexpensive. However, when conventional electrolysis methods are used to electrolyze dilute aqueous solutions or waste liquids containing caustic alkali, the I5 electrode surface is oxidized to form oxides, making it difficult to continue electrolysis.

本発明は、このような電極を用いても、正方向に所定時
間通電する毎に極性を反転して逆方向の通電を行う電解
を一定期間行い、次に電解液の供給排出方向を逆転して
同様の電解を行えば、上記した従来の諸問題が解消され
、長期間安定して希薄苛性アルカリ含有水溶液の電解を
行うことができるという新たな知見に基いてなされたも
のである。
Even if such an electrode is used, the present invention performs electrolysis for a certain period of time, in which the polarity is reversed every time the current is passed in the forward direction for a predetermined period of time, and the current is passed in the reverse direction, and then the direction of supply and discharge of the electrolyte is reversed. This work was made based on the new knowledge that if similar electrolysis was performed using a similar method, the above-mentioned conventional problems would be resolved, and a dilute caustic alkali-containing aqueous solution could be electrolyzed stably for a long period of time.

本発明の通電方法を第3図を参照して具体的に説明する
The energization method of the present invention will be specifically explained with reference to FIG.

先ず一方の電極室を陽極室とし、所定電流値Aで正方向
に所定時間T通電して電解する毎に、椅性を反転して、
所定の電流値aで、所定時間を逆方向の通電を行い、こ
れを一定期間り行う。
First, one of the electrode chambers is used as an anode chamber, and each time electricity is applied in the positive direction for a predetermined time T at a predetermined current value A to perform electrolysis, the chairness is reversed.
Current is applied in the opposite direction at a predetermined current value a for a predetermined time, and this is continued for a predetermined period of time.

その後、該電極室を陰極室とし、電解液の供給排出方向
を逆転して、負方向に同様に所定時間T′通電して電解
する毎に極性を反転して所定の電流値a′で所定時間t
′逆方向の通電を行い、これを一定期間L′行う。以後
同様にして電解を継続する。
Thereafter, the electrode chamber is used as a cathode chamber, and the direction of supply and discharge of the electrolyte is reversed, and electricity is similarly applied in the negative direction for a predetermined time T', and each time electrolysis is performed, the polarity is reversed and a predetermined current value a' is applied. time t
'Electricity is applied in the opposite direction for a certain period of time L'. Thereafter, electrolysis is continued in the same manner.

かくするととによシ、何故前記の如き本発明の効果が奏
されるのか必ずしも明らかではないが、定期的に逆方向
の通電を行うことによシ、電極の不活性化の進行が防止
され、更に活性が復活されるためと考えられる。また、
逆方向の通電は陰極表面上に還元析出する不純物金属や
、陽イオン交換膜に析出付着する障害物の除去、清浄化
にも効果がある。
Although it is not necessarily clear why the above-mentioned effects of the present invention are achieved, progress of deactivation of the electrode can be prevented by periodically applying current in the reverse direction. This is thought to be because the activity is further restored. Also,
Current flow in the opposite direction is also effective in removing and cleaning impurity metals that are reduced and precipitated on the cathode surface and obstacles that are precipitated and adhered to the cation exchange membrane.

一方、一定期間の電解毎に、定期的に通電方向と共に電
解装置全体の液の流通方向を逆転するので、上記した電
気化学的作用がよシ効果をあげると同時に、液の逆流に
よる物理的作用で、成膜や配管等に堆績したスケール物
質の除去、清浄化が効果的に行われるためと考えられる
On the other hand, since the direction of current flow and the flow direction of the liquid throughout the electrolyzer are periodically reversed every time electrolysis is performed for a certain period of time, the electrochemical effect described above is improved, and at the same time, the physical effect due to backflow of the liquid is reversed. This is thought to be because the removal and cleaning of scale materials deposited on film formation, piping, etc. is performed effectively.

上記正方向又は負方向の所定電流値A 、 A’での通
電時間T 、 T’は電解遂行の目的から長いことが望
ましいが、長過ぎると電極が不活性化し、更には逆方向
の通電によっても活性の復活が困難になるので、一定の
時間に限る必要がある。
It is desirable that the energization time T, T' at the predetermined current value A, A' in the positive or negative direction is long for the purpose of performing electrolysis, but if it is too long, the electrode will become inactive, and furthermore, by energization in the reverse direction. However, it is difficult to revive the activity, so it is necessary to limit it to a certain period of time.

通常該時間を約15分以下に設定すれば安全であシ、か
つ容易に電極活性を復活できる。
Generally, if the time is set to about 15 minutes or less, the electrode activity can be restored safely and easily.

一方、逆方向の電流値a 、 a’及び通電時間tt′
での通電は、目的とする電解の効率を低下させるので、
電極活性の復活が十分可能な限り、少い通電量とするこ
とが好ましい。通常、逆方向の通’P1% a X t
 、 a’X t’は正方向又は負方向の通電量AXT
、A’XT’の約3〜30%とすれば、本発明の目的が
効果的に達成されることが確認された。例えばa = 
−Aとし、Tを10分とすればtは本発明により18秒
〜3分程度となる。
On the other hand, the current values a and a' in the opposite direction and the current conduction time tt'
Since energization at
It is preferable to use a small amount of current as long as it is possible to sufficiently restore the electrode activity. Normally, the reverse direction 'P1% a X t
, a'X t' is the energization amount AXT in the positive direction or negative direction
, A'XT' is about 3 to 30%, it has been confirmed that the object of the present invention can be effectively achieved. For example, a =
-A and T is 10 minutes, t is about 18 seconds to 3 minutes according to the present invention.

とのような周期的に逆方向の通電をしながらの電解を一
定期間り行い、′rg、解液の供給排出方向及び通電方
向を逆転して、同様に電解を一定期間し′行い、以後、
これを繰り返して長期間の電解が継続される。該一定方
向の電解を継続する期間り又はL′は、適宜定め得るが
、通常100〜1000時間程度が本発明の効果を達成
する上で好ましい。
Electrolysis is carried out for a certain period of time while periodically energizing in the opposite direction, as in ,
This is repeated to continue electrolysis for a long period of time. The period of time during which the electrolysis is continued in a certain direction, or L', can be determined as appropriate, but is generally preferably about 100 to 1000 hours in order to achieve the effects of the present invention.

第3図に示した通電パターンにおいて、正方向、逆方向
とも電流値を同じにしくA=A’=−a==−a/ )
、各通電時間を一定(T=T′、t=t′。
In the energization pattern shown in Figure 3, the current value should be the same in both the forward and reverse directions: A=A'=-a==-a/)
, each energization time is constant (T=T', t=t'.

L=L’ )にした場合は、極性を転換する時間を制御
するだけでよく最も操作が簡単である。しかし、本発明
の目的を逸脱しない限ヤ、各電流値A HA’l a 
y h’s通電時間T、T′、t、t′、電解期間り、
L’を適宜変更することは差支えない。
When L=L'), the operation is the simplest, as it is only necessary to control the time for switching the polarity. However, each current value A HA'l a
y h's energization time T, T', t, t', electrolysis period,
There is no problem in changing L' as appropriate.

実施例1゜ 陽イオン交換膜(商品名ナフィオン315、デュポン社
製)で区分された電解槽を第1図のようKW成し、両電
極4,5とも、大きさ1゜cm X 10 csn、厚
さ2.5WIIノステンレス板(SUS316)を電極
材として用いた。先ず左方の電極室2を陽極室とし、N
aOH水溶液を電解液として供給し、第6図に示すよう
な通電パターンによ多周期的に逆方向の通電を行いなが
ら電解を行った。
Example 1 An electrolytic cell divided by a cation exchange membrane (trade name Nafion 315, manufactured by DuPont) was constructed as shown in Fig. 1, and both electrodes 4 and 5 had a size of 1 cm x 10 csn. A stainless steel plate (SUS316) with a thickness of 2.5W was used as an electrode material. First, the left electrode chamber 2 is set as the anode chamber, and N
An aOH aqueous solution was supplied as an electrolytic solution, and electrolysis was carried out by periodically applying electricity in the opposite direction according to the electricity supply pattern shown in FIG.

次に、パルプ操作によシミ解液を右方の電極室3に供給
し、該電極室3を陽極室として液の流通方向及び通電方
向を逆転して同様に電解を継続した。それらの条件は次
の通りである。
Next, the stain-dissolving solution was supplied to the right electrode chamber 3 by pulp operation, and electrolysis was continued in the same manner by using the electrode chamber 3 as the anode chamber and reversing the direction of flow of the solution and the direction of current supply. Those conditions are as follows.

供給電解液 = 2%NaOH水溶液 ii室排出液 :  0.5 ’jt; N a OH
水溶液陰極室排出液 ; 12%NaOH水溶液電解温
度   = 55 ℃ 電流密度A=a  :  30  A/dm”通電時間
T=T:60  秒 逆方向t=t:6 秒 電解期間L=L:300時間 その結果、総電流効率約71%で3000時間電解処理
を支障なく継続することができた。
Supply electrolyte = 2% NaOH aqueous solution Chamber ii discharge liquid: 0.5'jt; Na OH
Aqueous cathode chamber discharge liquid; 12% NaOH aqueous solution electrolysis temperature = 55 °C Current density A = a: 30 A/dm Current application time T = T: 60 seconds Reverse direction t = t: 6 seconds Electrolysis period L = L: 300 hours As a result, the electrolytic treatment could be continued for 3000 hours without any trouble at a total current efficiency of about 71%.

とれに対して周期的に逆方向の通電を行わなかった電解
の場合は、電流効率は約86%であったが、約100時
間の電解で電解電圧が5v以上上昇し、それ以上電解を
続行することかできなかった。
In the case of electrolysis in which electricity was not periodically applied in the reverse direction to the crack, the current efficiency was approximately 86%, but after approximately 100 hours of electrolysis, the electrolysis voltage increased by more than 5V, and electrolysis was continued beyond that point. There was nothing I could do.

実施例2゜ 陽イオン交換膜(商品名すフイオン324゜デュポン社
製)で区分された電解槽を第1図のように措成し、両電
極4,5とも大きさ10副×10m、厚さ3瓢の純ニツ
ケル板を用いて、LPGm製時のマーロックスプロセス
からのアルカリ廃水よ、!11、NaOH水溶液の回収
を行につだ。
Example 2 An electrolytic cell divided by a cation exchange membrane (trade name: Fion 324, manufactured by DuPont) was constructed as shown in Fig. 1, and both electrodes 4 and 5 had a size of 10 mm x 10 m and a thickness. Alkaline wastewater from the Maalox process when producing LPGm using pure nickel plates of 300ml. 11. Continue to collect the NaOH aqueous solution.

アルカリ廃水の分析値は以下であった。The analytical values of the alkaline wastewater were as follows.

NaQH6,0% TOC’20g/l Ca”    20 mg/A Mg”5mg/1 M n++5 mg/L S o−−20mg/1 このアルカリ廃水を電解液とし、まず左方の電極室2に
供給し、該電極室を陽極室とし、第6図に示す通電パタ
ーンによシ、周期的に逆方向の通rLctを行々いなが
ら電解を行なった。次にバルブ操作によ!ll電解液を
右方の電極室3に供給し、該電極室6を陽(べ室として
液の流通方向及び通電方向を逆転して同様に電解を継続
した。
NaQH6.0% TOC'20g/l Ca" 20 mg/A Mg"5mg/1 M n++5 mg/L So--20mg/1 This alkaline wastewater is used as an electrolyte and is first supplied to the left electrode chamber 2. The electrode chamber was used as an anode chamber, and electrolysis was carried out according to the energization pattern shown in FIG. 6, while periodically conducting reverse direction rLct. Next, let's operate the valve! 11 electrolytic solution was supplied to the right electrode chamber 3, and electrolysis was continued in the same manner with the electrode chamber 6 set as the positive chamber and the direction of flow of the solution and the direction of current supply reversed.

電極室の陰/陽を逆転して、電解開始した後、15分間
は陰極室にて得られたF m N a OH水溶液は、
原廃液に戻し、純粋なN a OH水溶液のみを回収す
るようにした。
After reversing the yin/yang of the electrode chamber and starting electrolysis, the F m Na OH aqueous solution obtained in the cathode chamber for 15 minutes was
It was returned to the original waste liquid and only the pure NaOH aqueous solution was recovered.

電だの条件は以下である。The conditions for the electric lamp are as follows.

供給電解液Na0HP度 :6,0% 7411室排出液Na0Hffi3度 :  G、69
(。
Supply electrolyte Na0HP degree: 6,0% 7411 room discharge liquid Na0Hffi3 degree: G, 69
(.

陰極室排出液      : 12%N a OH71
#i’i&電解温度    :55℃ 電流密度A”a   : 30A/dm”通電時間T=
T:60秒 逆  方  向 t=t:6秒 電 解 期間 L=L    :  168時間(1週
間)との結果、総電流効率約73%で、4500時間の
電解処理を支障なく継続することが出来た。なお、陽イ
オン交換膜への沈澱物の耐着はほとんど認められなかっ
た。
Cathode chamber discharge liquid: 12% Na OH71
#i'i & Electrolysis temperature: 55℃ Current density A"a: 30A/dm" Current application time T=
T: 60 seconds reverse direction t=t: 6 seconds electrolysis period L=L: 168 hours (1 week) As a result, the total current efficiency was approximately 73%, and it was possible to continue the electrolytic treatment for 4500 hours without any problems. done. In addition, almost no adhesion of the precipitate to the cation exchange membrane was observed.

これに対して、周期的に逆方向の通電を行なわなかった
電解の場合は、電流効率は約8896であったが約10
0時間の電解で電解電圧が5V以上上昇し、それ以上電
解を続行することができなかった。
On the other hand, in the case of electrolysis without periodic energization in the reverse direction, the current efficiency was about 8896, but about 10
After 0 hours of electrolysis, the electrolytic voltage increased by 5 V or more, and electrolysis could not be continued any further.

また、周期的に逆方向の通電を行々うが、定期的な電極
室の陰/陽逆転を行なわなかった場合は、総電流効率約
739(で、当初約1500時間は支障なく運転出来た
が、徐々に電解電圧が上昇した。槽を解体したところ、
陽極板面上に小量の非導電性酸化物の生成が認められ、
また、陽イオン交換膜面に供給アルカリ廃液中の不純物
と思われる沈澱が耐着しており、イオン交換膜の電気抵
抗が2倍程度に上昇していることが認められた。
In addition, if the current is periodically applied in the opposite direction, but the electrode chamber is not periodically reversed, the total current efficiency is approximately 739 (and the initial operation was possible for about 1,500 hours without any problems). However, the electrolytic voltage gradually increased.When the tank was dismantled,
A small amount of non-conductive oxide was observed on the surface of the anode plate.
In addition, it was observed that precipitates, which were thought to be impurities in the supplied alkaline waste liquid, had adhered to the surface of the cation exchange membrane, and the electrical resistance of the ion exchange membrane had increased approximately twice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による電解装置の例を示す説明図、第
2図は、本発明による電解装置の他の例を示す説明図、
第3図は、本発明による電解の通電パターンの例を示す
説明図である。 1    : F1イオン交換膜 2.3.7 :  電極室 4.5  : 電 イF 6    : 復′@電極 8.8  : タンク 9.9   :  配  管 10.10 :  ポンプ 11.11’:  液供給管 12.12 :  排気管
FIG. 1 is an explanatory diagram showing an example of an electrolytic device according to the present invention, FIG. 2 is an explanatory diagram showing another example of an electrolytic device according to the present invention,
FIG. 3 is an explanatory diagram showing an example of an energization pattern for electrolysis according to the present invention. 1: F1 ion exchange membrane 2.3.7: Electrode chamber 4.5: Electrode 8.8: Tank 9.9: Piping 10.10: Pump 11.11': Liquid supply Pipe 12.12: Exhaust pipe

Claims (7)

【特許請求の範囲】[Claims] (1)  陽イオン交換膜によシ区分された電解槽の一
方の電極室に希薄苛性アルカリ水溶液を供給して電解し
、他方の電極室よシ濃厚苛性アルカリ水溶液を回収する
電解方法において、電極材として鉄、ニッケル又はその
合金を用い、正方向に所定時間通電して電解する毎に、
極性を反転して逆方向の通電を行う電解を一定期間行い
、次に電解液の供給排出方向を逆転し、負方向に所定時
間通電して電解する毎に、極性を反転して逆方向の通電
を行う電解を一定期間行うことを特徴とする希薄苛性ア
ルカリ水溶液の電解方法。
(1) In an electrolysis method in which a dilute aqueous caustic alkaline solution is supplied to one electrode chamber of an electrolytic cell divided by a cation exchange membrane for electrolysis, and a concentrated aqueous caustic alkaline solution is recovered from the other electrode chamber, the electrode Using iron, nickel or their alloy as the material, each time electrolysis is carried out by applying current in the positive direction for a predetermined period of time,
Electrolysis is performed for a certain period of time by reversing the polarity and energizing in the opposite direction. Next, the supply and discharge direction of the electrolyte is reversed, and each time electrolysis is performed by energizing in the negative direction for a predetermined period of time, the polarity is reversed and energization is performed in the opposite direction. A method for electrolyzing a dilute caustic alkaline aqueous solution, which is characterized by carrying out electrolysis with electricity for a certain period of time.
(2)供給する水溶液の苛性アルカリ濃度が109イ以
下である請求の範囲第(1)項の方法。
(2) The method according to claim (1), wherein the aqueous solution supplied has a caustic alkali concentration of 109 or less.
(3)石油精製プロセスにおける苛性アルカリ処理廃液
を供給する請求の範囲第(1)項の方法。
(3) The method according to claim (1) for supplying a caustic alkali treatment waste liquid in a petroleum refining process.
(4)正方向又は負方向の通電時間が15分以下である
請求の範囲第(1)項の方法。
(4) The method according to claim (1), wherein the energization time in the positive direction or the negative direction is 15 minutes or less.
(5)逆方向の通電量が正方向又は負方向の通電量の3
〜30%である請求の範囲第(1)項の方法。
(5) The amount of energization in the opposite direction is the amount of energization in the positive or negative direction 3
30%.
(6)一定期間の電解が100〜1000時間である請
求の範囲第(1)項の方法。
(6) The method according to claim (1), wherein the electrolysis for a certain period is 100 to 1000 hours.
(7)  陽イオン交換膜で区分された電解槽を用いる
電解装置において、両電極とも鉄、ニッケル又はその合
金を電極材とし、かつ両電極室及びその電解液供給排出
機構とも同じ形状とし・て陽イオン交換膜又は電極を中
心とした左右対称の電解槽を構成し、電極極性の反転及
び電解液の供給排出方向の逆転が随時可能にされている
ことを特徴とする希薄アルカリ水溶液電解装置。
(7) In an electrolytic device using an electrolytic cell separated by a cation exchange membrane, both electrodes are made of iron, nickel, or an alloy thereof, and both electrode chambers and their electrolyte supply and discharge mechanisms have the same shape. A dilute alkaline aqueous electrolysis device comprising a symmetrical electrolytic cell centered on a cation exchange membrane or electrode, and capable of reversing the polarity of the electrodes and reversing the direction of supply and discharge of electrolyte at any time.
JP58044077A 1983-03-18 1983-03-18 Method and device for electrolyzing dilute aqueous caustic alkali solution Granted JPS59170282A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP58044077A JPS59170282A (en) 1983-03-18 1983-03-18 Method and device for electrolyzing dilute aqueous caustic alkali solution
CA000448528A CA1258820A (en) 1983-03-18 1984-02-29 Electrolyzing dilute caustic soda solution with sequential polarity inversion
PH30343A PH20299A (en) 1983-03-18 1984-03-05 Method for electrolyzing dilute caustic alkali aqueous solution and apparatus thereof
NL8400723A NL8400723A (en) 1983-03-18 1984-03-06 METHOD AND APPARATUS FOR ELECTROLYZING DILUTY AQUEOUS ALKALI HYDROXIDE SOLUTIONS.
DE3409118A DE3409118C2 (en) 1983-03-18 1984-03-13 Process for the concentration of a dilute, aqueous alkali metal hydroxide solution by electrolysis
GB08406884A GB2137658B (en) 1983-03-18 1984-03-16 Electrolyzing dilute caustic alkali aqueous solution and apparatus therefor
FR848404143A FR2542763B1 (en) 1983-03-18 1984-03-16 METHOD AND APPARATUS FOR THE ELECTROLYSIS OF A DILUTED AQUEOUS SOLUTION OF CAUSTIC ALKALI
AU25683/84A AU548708B2 (en) 1983-03-18 1984-03-16 Method for electrolysing dilute caustic alkali aqueous solution
KR1019840001406A KR870000111B1 (en) 1983-03-18 1984-03-17 Method for electrolyzing dilute caustic alkali aqueous solution and apparatus thereof
US06/590,668 US4578160A (en) 1983-03-18 1984-03-19 Method for electrolyzing dilute caustic alkali aqueous solution by periodically reversing electrode polarities
MY672/86A MY8600672A (en) 1983-03-18 1986-12-30 Method of electrolyzing dilute caustic alkali aqueous solution and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044077A JPS59170282A (en) 1983-03-18 1983-03-18 Method and device for electrolyzing dilute aqueous caustic alkali solution

Publications (2)

Publication Number Publication Date
JPS59170282A true JPS59170282A (en) 1984-09-26
JPS6367556B2 JPS6367556B2 (en) 1988-12-26

Family

ID=12681557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044077A Granted JPS59170282A (en) 1983-03-18 1983-03-18 Method and device for electrolyzing dilute aqueous caustic alkali solution

Country Status (1)

Country Link
JP (1) JPS59170282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523821A (en) * 2007-04-03 2010-07-15 セラマテック・インク Electrochemical process for recycling aqueous alkaline chemicals using ion conducting solid ceramic membranes
JP2011522123A (en) * 2008-05-28 2011-07-28 ミオックス コーポレーション Electrolytic cell cleaning method including electrode and electrolytic product generator
JP2016014179A (en) * 2014-07-02 2016-01-28 デノラ・ペルメレック株式会社 Method and apparatus for electrolytic treatment for continuous electrolysis of electrolytic solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028260U (en) * 1988-06-28 1990-01-19

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146271A (en) * 1977-05-25 1978-12-20 Diamond Shamrock Corp Recovery of efficiency of sea water eledtrolytic cell by periodical removal of anode deposit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146271A (en) * 1977-05-25 1978-12-20 Diamond Shamrock Corp Recovery of efficiency of sea water eledtrolytic cell by periodical removal of anode deposit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523821A (en) * 2007-04-03 2010-07-15 セラマテック・インク Electrochemical process for recycling aqueous alkaline chemicals using ion conducting solid ceramic membranes
JP2011522123A (en) * 2008-05-28 2011-07-28 ミオックス コーポレーション Electrolytic cell cleaning method including electrode and electrolytic product generator
JP2016014179A (en) * 2014-07-02 2016-01-28 デノラ・ペルメレック株式会社 Method and apparatus for electrolytic treatment for continuous electrolysis of electrolytic solution

Also Published As

Publication number Publication date
JPS6367556B2 (en) 1988-12-26

Similar Documents

Publication Publication Date Title
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
CN107129011B (en) Device and method for treating high-chloride organic wastewater through electrolysis-ionic membrane coupling
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
CN107298490B (en) Electrochemical reactor, method for removing chloride ions in wastewater through electric flocculation, precipitated product and application
Chiao et al. Bipolar membranes for purification of acids and bases
CN111252963A (en) Treatment method of high-concentration COD wastewater
JP2000510529A (en) Pickling process of steel in which oxidation of generated ferrous ions is performed electrolytically
KR870000111B1 (en) Method for electrolyzing dilute caustic alkali aqueous solution and apparatus thereof
JPS59170282A (en) Method and device for electrolyzing dilute aqueous caustic alkali solution
CN104651880B (en) The method that a kind of decopper(ing) point cyanogen simultaneous PROCESS FOR TREATMENT silver smelts the lean solution containing cyanogen
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
US5225054A (en) Method for the recovery of cyanide from solutions
JP2003293180A (en) Electrolytic cell and electrolytic method
JPS5919994B2 (en) Method for producing metal powder from dilute solution of metal
JPS59170281A (en) Method for electrolyzing diluted aqueous solution of alkali hydroxide
JPH1110160A (en) Method for treating water by electrolytic oxidation
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH032959B2 (en)
CN104370425B (en) A kind of method for handling heterocyclic compound waste water
GB2032959A (en) Method and apparatus for continuous electrolytic descaling of steel wire by non-contact current flow
CN213865747U (en) Device for recycling nickel-containing wastewater resources
CN114920398B (en) High-salt ammonia nitrogen wastewater treatment device and treatment method
Jin et al. Electrochemical precipitation for water and wastewater treatment
KR101048790B1 (en) Separation of Platinum Group Metals Using a Flow Electrolyzer
JPH01123606A (en) Method for recovering hydrofluoric acid