JPS59169904A - Concentration of oxygen - Google Patents

Concentration of oxygen

Info

Publication number
JPS59169904A
JPS59169904A JP4507783A JP4507783A JPS59169904A JP S59169904 A JPS59169904 A JP S59169904A JP 4507783 A JP4507783 A JP 4507783A JP 4507783 A JP4507783 A JP 4507783A JP S59169904 A JPS59169904 A JP S59169904A
Authority
JP
Japan
Prior art keywords
oxygen
concentrator
air
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4507783A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP4507783A priority Critical patent/JPS59169904A/en
Publication of JPS59169904A publication Critical patent/JPS59169904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:Air is passed through a membrane selective to oxygen to enrich oxygen, then the oxygen-enriched air is fed to the cathode which is a gas diffusion electrode in the electrolytic oxygen concentrator, whereby substantially pure oxygen is liberated from the anode side in high efficiency. CONSTITUTION:Air is sent through a filter 4 into the oxygen concentrator 1 where oxygen is concentrated by the membrane cell selective to oxygen 5, which is composed of poly(4-methylpentene-1), to a level of 30-40% oxygen concentration. The resultant air is pumped to the electrolytic oxygen concentrator 3 where only oxygen is transferred from the cathode of gas diffusion electrode 7 through the sulfuric acid electrolyte solution 9 to the anode where oxygen is liberated, thus enabling collection of substantially 100% pure oxygen from the outlet 10.

Description

【発明の詳細な説明】 本発明は、空気からの酸素濃縮方法に関するものであり
、酸素の選択的透過性がすぐれtコ膜を利用する酸素濃
縮方法と電気化学的酸素濃縮方法とを組合わすことによ
り、それぞれの利点を生かし、欠点を補ない合って、よ
り効率的な酸素1裂縮方法を提供せんとするものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for concentrating oxygen from air, which combines an oxygen concentrating method using a tco membrane with excellent oxygen permeability and an electrochemical oxygen concentrating method. By doing so, we aim to provide a more efficient oxygen 1-cleavage method by taking advantage of the advantages of each and compensating for the disadvantages of each.

近年、酸素の選択的透過性がすぐれtコ膜(以下酸累選
択候と称する)を利用し1こ空気からの酸累破縮装置の
研究梢発が盛んになされ、一部実用化に至つtこものも
ある。
In recent years, research has been actively conducted on acid cumulative condensation equipment from air using T-layer membranes with excellent oxygen selective permeability (hereinafter referred to as acid selective membranes), and some of them have even been put into practical use. There are also some things.

この酸素選択膜法の場合には、一般に、かなり多量の空
気を処理することができるし、また#累濃度を21%か
ら80〜40%に濃縮することは容易であるが、それ以
上の濃度にしようとする°と多波式にしなければならず
、酸素の濃縮効率も低下するし、殊に100%に近い濃
度にまで濃縮することは困難である。
In the case of this oxygen-selective membrane method, it is generally possible to treat a fairly large amount of air, and it is easy to concentrate the cumulative concentration from 21% to 80-40%; If the oxygen concentration is to be increased, a multi-wave method must be used, and the oxygen concentration efficiency is also lowered, and it is especially difficult to concentrate to a concentration close to 100%.

一方、特公昭4B−25001号に記載されているよう
に、ガス拡散N、極からなる陰極と酸素発生電極からな
る陽極とt解質と、で構成されるa電化学セルを利用す
る電気化学的酸素濃縮装は空気からはs 100%に近
い濃度の酸素が容易に得らnる点に長所をもっている。
On the other hand, as described in Japanese Patent Publication No. 4B-25001, electrochemistry using an electrochemical cell consisting of a cathode consisting of a gas diffusion N, electrode, an anode consisting of an oxygen generating electrode, and a solute. The advantage of commercial oxygen concentrators is that oxygen at a concentration close to 100% can be easily obtained from air.

この方法の場合には、酸素の発生量は通atZ量に比例
し、iAh あfコリ、0”C11気圧に換算して、2
10CCの酸素が得られる。したがって、この電気化学
的酸素濃縮装;aをより効率のに作動させようとするな
らば、電極の作動電流g!度をできろjごけ大きくする
必要がある。
In the case of this method, the amount of oxygen generated is proportional to the amount of atZ, and when converted to iAh, 0"C11 atm,
10 CC of oxygen is obtained. Therefore, if we want to operate this electrochemical oxygen concentrator; a more efficiently, then the electrode operating current g! It is necessary to increase the degree as much as possible.

しかし、陰極としてのガス拡散電極を空気で作動させt
コ場合、寿命を考慮すると一般に最大電流密度を100
 mA/C−程度に抑えざるを得ない。この点が電気化
学的酸素濃縮装置の難点である。
However, when the gas diffusion electrode as a cathode is operated with air,
In this case, considering the lifetime, the maximum current density is generally set to 100
There is no choice but to keep it to around mA/C-. This point is a drawback of electrochemical oxygen concentrators.

本発明は、電気化学FFJ酸素濃縮装置の陰極としての
ガス拡散を極に供給すべきガス中の酸素濃度を少し上げ
るだけで、その作動電流密度を大幅に上げ得ることに着
目してなされたものであり、酸素選択膜法および電気化
学的酸素濃縮法の双方の長所を生かし、短所を補ないあ
ってより効率旧な1酸素濃縮法を提供せんとするもので
ある。
The present invention was made based on the fact that the operating current density of an electrochemical FFJ oxygen concentrator can be significantly increased by slightly increasing the oxygen concentration in the gas to be supplied to the gas diffusion electrode as the cathode of an electrochemical FFJ oxygen concentrator. The purpose is to take advantage of the advantages of both the oxygen selective membrane method and the electrochemical oxygen concentration method, compensate for their shortcomings, and provide a more efficient oxygen concentration method.

すなわち本発明方法によれば、酸素選択膜によろat素
濃縮装置で一旦、−空気から酸素&:1反が25〜40
%にまで濃縮され、しかるのちに電気化学的酸素濃縮装
置では″>100%の酸素#度まで濃縮されろ。か5ろ
方法を採用するとa!累選択嘆法では困雉であったは一
100%の酸素が得られると同時に、電気化学的酸素濃
縮装@単独では1001nA/d程度の[流W!度でし
か作動できfJかったのが、20g +nA/ dとい
つ192倍近くの電流密度での作動が可能となり、しf
こがってまrこ、同一のI匡f航]゛法で、酸素生成能
力が2倍近く薔こなるつ以下、本発明の一実施例番こつ
L)で詳述するう第1図は、本発明の一実施例ζζ力)
力)る酸素濃縮系統図を示す。空気は酸素選択膜(こよ
る酸y:ai省装置中に送られ、まず酸素濃度が30%
〜40%マチ濃縮され、しかるのちに吸引ボ゛ノブへ2
)を経て、′成気化学的酸累濃縮装置空に送られ、(ま
s 100%の酸素が生成される。
That is, according to the method of the present invention, once in the atom concentrator using an oxygen selective membrane, 25 to 40
%, and then in an electrochemical oxygen concentrator it is concentrated to >100% oxygen.If the 5-filter method is used, a! At the same time, 100% oxygen can be obtained, and at the same time, electrochemical oxygen concentrator @ alone could only operate at a flow rate of about 1001 nA/d [fJ], but at 20 g + nA/d, the current is nearly 192 times higher. It is possible to operate at high density, and
However, with the same method, the oxygen production capacity is nearly doubled.An embodiment of the present invention will be described in detail in Figure 1 below. is one embodiment of the present invention)
Figure 2 shows an oxygen concentrator system diagram. The air is sent to an oxygen selective membrane (acid y:ai saving device), and the oxygen concentration is first reduced to 30%.
Concentrated by ~40%, then transferred to the suction tube 2
) and then sent to a vapor chemical acid concentrator, producing 100% oxygen.

酸素選択膜による酸素濃縮装置t (1+ +ま、フィ
ルり(4)。
Oxygen concentrator using oxygen selective membrane (1+ + Fill (4).

酸素選択膜セル(5)および残金空気出口(6)力〉ら
構成される。酸素選択膜セル(5)には、酸素選択膜り
料としてポリ(4−メチルペンテン−1)力;便…さオ
tている。
It consists of an oxygen selective membrane cell (5) and a residual air outlet (6). The oxygen selective membrane cell (5) contains poly(4-methylpentene-1) as an oxygen selective membrane material.

電気化学的酸素濃縮装置は、ガス拡散電極力)らなる陰
極(7]、酸素発生it極からなる陽極(B+、r−E
酸電解[t91.酸素導出口(10)および排気ガス出
口(11)から構成され、陰極(7)と1@極(やとの
間ζこ直流電流を直すと酸素tごけが陰極(7)側から
陽概偉1側(こ移行する。排気カス出口(田から出てく
るガスは再σn環して用いて6町い。
The electrochemical oxygen concentrator consists of a cathode (7) consisting of a gas diffusion electrode (7), an anode (B+, r-E
Acid electrolysis [t91. It consists of an oxygen outlet (10) and an exhaust gas outlet (11), and when the DC current is changed between the cathode (7) and the 1@ pole, oxygen sludge flows from the cathode (7) side to the positive direction. The gas coming out from the exhaust gas outlet (gas is recirculated and used for 6 days).

次に本発明の効壜について述べる。Next, the effective bottle of the present invention will be described.

第1図の陰FIA+71のイ乍中 面積をLOOOcn
 とし、゛覗気化学的酸累濃縮装置(3)に通電する電
流を200Aとし、酸素選択線による酸素濃縮装置(1
)から得られるガスの酸素1111度を30%とし1こ
ときを四とし、電気化学的酸素濃縮装置単極で空気から
の酸素濃縮をおこない、そのときの電流を20OAおよ
び100 AとしtこときをそれぞれΦ)および((J
とし、(A)。
The area in Figure 1 is LOOOcn of the shadow FIA+71.
The current applied to the peep chemical acid concentrator (3) was set to 200 A, and the oxygen concentrator (1) using the oxygen selection line was
) Oxygen 1111 degrees of the gas obtained from ) is set to 30%, 1 time is set to 4, and oxygen is concentrated from air using a single electrode of an electrochemical oxygen concentrator, and the current at that time is set to 20 OA and 100 A. Φ) and ((J
And (A).

(均および((3+の各ケースでの″α気化学的酸素濃
縮装置の電圧の経時変化を第2肉に示す。
The second figure shows the voltage change over time of the α vapor chemical oxygen concentrator in each case of (average and (3+).

一方、(Δ1.(13+および10+の各ケースでの酸
素発生量はそnぞれ、7QOcc/+nin 、 7Q
Qcc/+ninおよ35g cc/ minであつt
こ。また酸素濃度は、すべて99.9第であつtこ。
On the other hand, the amount of oxygen generated in each case of (Δ1.(13+ and 10+) is 7QOcc/+nin, 7Q
Qcc/+nin and 35g cc/min
child. Also, all oxygen concentrations were 99.9.

これらの結果から、同一寸法のf両をそなえる電気化学
的酸素濃縮装置でも、本発明のように、#素選択膜によ
る酸素濃縮装置によって一旦、酸素濃度をある程度まで
高めることによって、f11素発生毒がより多く、かつ
寿命が長くなることが瞭然と(、ている。
From these results, even in an electrochemical oxygen concentrator equipped with both F and F of the same size, as in the present invention, once the oxygen concentration is increased to a certain level using an oxygen concentrator using an # element selective membrane, F11 generation toxins can be reduced. It is clear that there are more people and the lifespan is longer.

以上詳述せる如く本発明は極めて効率旧な酸素濃縮を提
供するものであり、その工業的1+Ili値極めて大で
ある。
As detailed above, the present invention provides extremely efficient oxygen concentration, and its industrial 1+Ili value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1囚は本発明の一実施例にか\る酸素濃縮系統図で、
第2図は電気化学的酸素濃縮装置の電圧の経時変化を示
すっ l・・・・・ 酸素選択膜による酸素濃縮装置・2・・
・・・・吸引ポ゛/ブ、 且・・・・・・電気化学的酸
素濃縮装置、  4・・・・・・フィルタ、 5・・・
・・・酸素選択膜セル。 6・・・・・残余空気出口、  7・・・・・・陰 極
。 8・・・・・・ls  極、   9・・・・・・硫酸
電解膜。 lO・・・・・酸素導出口、ll・・・・・・排気ガス
出口。 A・・・・・・本発明例、   B、O・・・・・・従
来例。
The first figure is an oxygen enrichment system diagram according to an embodiment of the present invention.
Figure 2 shows the voltage change over time in an electrochemical oxygen concentrator... Oxygen concentrator using an oxygen selective membrane 2...
...Suction port/brush, and... Electrochemical oxygen concentrator, 4... Filter, 5...
...Oxygen selective membrane cell. 6...Residual air outlet, 7...Cathode. 8...ls pole, 9...sulfuric acid electrolyte membrane. lO...Oxygen outlet, ll...Exhaust gas outlet. A... Example of the present invention, B, O... Conventional example.

Claims (1)

【特許請求の範囲】[Claims] @累を選択的に透過しやすい膜をそなえる酸素#線装置
に空気を供給することにより、一旦・空気よりも酸素濃
度の高い気体を得、次に、該気体を、酸素を選択的に電
解還元し得るガス拡散電極からなろ陰甑と酸素発生電極
からなる陽極と電解質とから構成される電気化学的酸素
濃縮装置の陰極に供給し、陽極からはソ純粋な酸素を発
生せし)めろことを特徴とする酸素の濃縮方法・
By supplying air to an oxygen ray device equipped with a membrane that selectively permeates oxygen, a gas with a higher oxygen concentration than air is obtained, and then the gas is selectively electrolyzed to remove oxygen. A reducible gas is supplied from the diffusion electrode to the cathode of an electrochemical oxygen concentrator consisting of an anode and an electrolyte consisting of an anode and an oxygen generating electrode, and pure oxygen is generated from the anode. A method for concentrating oxygen characterized by
JP4507783A 1983-03-16 1983-03-16 Concentration of oxygen Pending JPS59169904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4507783A JPS59169904A (en) 1983-03-16 1983-03-16 Concentration of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4507783A JPS59169904A (en) 1983-03-16 1983-03-16 Concentration of oxygen

Publications (1)

Publication Number Publication Date
JPS59169904A true JPS59169904A (en) 1984-09-26

Family

ID=12709268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4507783A Pending JPS59169904A (en) 1983-03-16 1983-03-16 Concentration of oxygen

Country Status (1)

Country Link
JP (1) JPS59169904A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472778A (en) * 1977-11-02 1979-06-11 Monsanto Co Method of separating gas mixture
JPS58151305A (en) * 1982-03-03 1983-09-08 Nippon Sanso Kk Production of oxygen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472778A (en) * 1977-11-02 1979-06-11 Monsanto Co Method of separating gas mixture
JPS58151305A (en) * 1982-03-03 1983-09-08 Nippon Sanso Kk Production of oxygen

Similar Documents

Publication Publication Date Title
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
WO2005117137A1 (en) Photoelectrochemical cell
BG60243B1 (en) METHOD FOR PURIFICATION OF ELECTROLYT FROM ZINC SULPHATE
CN115198300A (en) Photoelectrochemical device for capturing, concentrating and collecting atmospheric carbon dioxide
US4305793A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective membranes
CN109790632A (en) The method and apparatus for utilizing carbon dioxide for electrochemistry
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
US3519488A (en) Carbon dioxide absorber means and fuel cell to regenerate absorbent
US4415413A (en) Method of concentrating alkali metal hydroxide in a cascade of hybrid cells
JPS59169904A (en) Concentration of oxygen
US3441488A (en) Electrolytic desalination of saline water by a differential redox method
US4299673A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective diffusion barriers
CN116145165A (en) Electrolytic high-salt water hydrogen production system, power plant energy storage system and method
CN114405231B (en) Electrically-driven chemical carbon pump combined circulation device and method for thin gas source
CN205741223U (en) A kind of can produce oxygen, ultrapure activated water and the multi-function device of hydrogen rich water simultaneously
CA1155487A (en) Method of concentrating alkali metal hydroxide in hybrid cells
JP2007059196A (en) Power generating system
JPH04101358A (en) Double fluid cell
JPS6124172A (en) Secondary battery
WO1996030297A1 (en) Process for the electrolytic separation of oxygen from its mixtures and equipment for implementing such process
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JPH0125192B2 (en)
JPH11171504A (en) Electrolytic ozonizer and device for treating hydrogen
JPS63250480A (en) Improvement of method for generating ozone by electrolysis
US20170175278A1 (en) Oxygen Gas Supply Device and Method