JPH0125192B2 - - Google Patents

Info

Publication number
JPH0125192B2
JPH0125192B2 JP57029822A JP2982282A JPH0125192B2 JP H0125192 B2 JPH0125192 B2 JP H0125192B2 JP 57029822 A JP57029822 A JP 57029822A JP 2982282 A JP2982282 A JP 2982282A JP H0125192 B2 JPH0125192 B2 JP H0125192B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
chlorine
gas
hydrogen
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57029822A
Other languages
Japanese (ja)
Other versions
JPS58147573A (en
Inventor
Kyotsugu Ito
Akio Oodera
Kikuo Kuwayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP57029822A priority Critical patent/JPS58147573A/en
Publication of JPS58147573A publication Critical patent/JPS58147573A/en
Publication of JPH0125192B2 publication Critical patent/JPH0125192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は燃料電池を利用して直流電気を発生さ
せつゝ合成塩酸を製造する方法、更に詳しくは陰
イオン選択透過能を有する固体膜を電解質として
使用した燃料電池を利用して塩素と水素とを電気
化学的に反応させ、反応熱である化学エネルギー
の一部を直接電気エネルギーに変換し、有効に他
に利用しながら、生成した塩化水素より高純度の
製品合成塩酸を製造する方法に関する。 従来合成塩酸の工業的製造法は副生塩酸を除け
ば黒鉛製燃焼塔において、塩素と水素とを化学的
に反応させ生成した塩化水素を水又は希薄塩酸に
て吸収して製品とする方法が一般的で、反応生成
熱は冷却水により除去し、無駄に廃棄されている
のが現状である。 一方、燃料電池の燃料に水素、酸化剤に塩素を
使用し、発生する化学エネルギーを電気エネルギ
ーとして回収しながら塩酸を合成する考え方は、
既に古く公知である。又近年米国においてはエネ
ルギー貯蔵手段の一つとして水素燃料と塩素酸化
剤による燃料電池の研究開発が進められており、
その技術的概要は次の様である。即ち、この燃料
電池の目的とするところは発電であり、民間需要
を主体とする電気事業における電力負荷の時々
刻々或は昼夜間の変動と発電所の高効率安定運転
のための定負荷運転のギヤツプ調整のため、例え
ば昼間の民需電力が多い時は水素燃料と塩素酸化
剤を反応させ燃料電池で直流発電し、インバータ
ーで交流に変換し、一般発電所の供給不足分を補
い、夜間民需電力が減少し供給余剰となつた電力
は逆に交流を直流に変換した後、燃料電池に供給
し今度は昼間に生成した塩酸を電気分解して水素
と塩素として貯蔵し、昼間の発電に備える所謂再
生式燃料電池による方式である。 この場合、電解質として陽イオン選択透過性膜
を使用して塩化水素を酸化剤室に生成させ、これ
を未反応の塩素と共に電池外に抜出して塩素を分
離して塩酸を得、塩酸は貯蔵して夜間の電気分解
に備え、分離後の塩素は電池に返送循環して酸化
剤に使用するシステムを採用している。 この様な方式の燃料電池による塩酸合成法が知
られていたにも拘らずその実用化がなされていな
い理由は、燃料電池自体の技術的問題及び採算性
のほか、塩酸溶液を電解質として使用した場合の
致命的問題点として、生成塩化水素が塩素、水素
および電解質塩酸溶液のいずれにも混入し、しか
も電解質塩酸溶液には気体拡散電極中を拡散浸透
により塩素が溶解するので純度の高い製品塩酸は
実質的に水素ガス中の塩化水素から製造される塩
酸のみとなり実際問題として高純度塩酸は低い収
量でしか得られない点である。 又前述の米国に於ける技術開発例では陽イオン
選択透過膜を用いることにより水素が負極で酸化
され、水素イオンが選択的に膜を通過して正極側
に至り、そこで塩素が還元された塩素イオンと会
合して塩化水素が生成する。即ち塩化水素は酸化
剤室に生成し、塩化水素ガスを水で吸収した塩酸
中には大量の塩素を含み、純度のよい塩酸とは到
底なり得ないのである。 本発明者等は前述の反応生成熱の無駄な廃棄を
行うことなしに高収量をもつて高い純度の塩酸を
得んとして鋭意検討の結果、本発明を完成するに
至つたものでその骨子とするところは正極と陰イ
オン選択透過能を有する固体膜とを密着せしめ、
負極を該固体膜に直接密着するか、又は液体電解
質を介して陰イオン選択透過能を有する固体膜と
接触せしめて燃料電池を構成し、その燃料室には
水素ガスを、又酸化剤室には塩素ガス又は塩素含
有液を供給して、正・負両極間で電気発生を行わ
しめると共に燃料室で生成した塩化水素を水又は
希塩酸に接触させて塩酸を得ることを特徴とする
塩酸製造法である。 上記の本発明は陰イオン交換膜の如き陰イオン
選択透過能を有する固体膜を用いた燃料電池によ
り、発電と同時に燃料室に塩化水素を生成せし
め、この塩化水素を水(又は希塩酸)に吸収させ
て共存する他のガス(未反応水素)を分離して高
純度塩酸を得るものであるが、このように陰イオ
ン選択透過能を持つ固体膜を用いて燃料室に塩化
水素を生成させることは本来厄介な分離手段を要
する塩素の混入溶解が少く、且つ水又は希塩酸へ
の吸収で水素ガスを容易に分離して主たる目的製
品である高純度合成塩酸を高い収率で得ることが
出来るのみならず、燃料電池で発生する直流電力
は交流に変換することなく合成塩酸の原料でもあ
る塩素及び水素の発生源である塩化アルカリ電解
用電力として供給しうる利点をも併せ考えるなら
ば著しく有利なプロセスと云うことが出来るので
ある。 本発明方法の一態様を図面を引用して以下に説
明する。 第1図の工程図において、1は燃料電池本体で
あり、この燃料電池は、陰イオン交換膜2の一方
の面にガス拡散正極4を密着させてあり、負極3
の側を燃料室5とし、正極4の側を酸化剤室6と
して燃料室5には水素ガスを管7より送入し、一
方の酸化剤室6には塩素ガスを管8および塩素ガ
ス循環ブロワー9により送入する。 これにより酸化剤室6に送入された塩素ガスは
触媒能を有する正極において還元され塩素イオン
として水和した陰イオン交換膜2を経て燃料室5
に至り、そこで水素ガスが負極における触媒で酸
化された水素イオンと会合して塩化水素ガスを生
成すると共に、負極−正極間に発生する直流電気
は発生電気導出端子21,21′を通して導出さ
れる。 一方生成した塩化水素ガスは燃料室内の未反応
水素ガスと共に燃料電池1の外部に導出され排ガ
ス循環ブロワー13、冷却器14、を経て塩化水
素ガス吸収塔15に送られ、流下する希薄塩酸に
よつて塩化水素が吸収されて塩酸となり管16よ
り製品高純度濃厚塩酸として取出される。一方塔
内液の一部は受槽17に送入され、吸収用液とし
て循環ポンプ18、冷却器20を経て塔頂より流
下され、再び前記のサイクルにより循環される
が、途中、管19より補給水が送入される。 未反応水素ガスは吸収塔15の頂部より排出さ
れて管7の水素ガスと合流し燃料電池の燃料室5
に供給される。 この場合燃料電池1の水素極における分極を小
さくするためには燃料室中の塩化水素濃度を極力
低くする必要があるが、反対にその低濃度塩化水
素を希塩酸で吸収し、管16より高濃度の製品塩
酸を得るためには循環ブロワー13と圧力調節弁
22により吸収塔15の内部圧力を電池1の内部
圧力より高く維持することが望ましい。 酸化剤室6における未反応塩素ガスは燃料電池
より排出されて不純ガス除去装置11において循
環塩素ガス中に蓄積した微量の不純ガスを分離
し、反応用塩素ガスとして管8に合流せしめて再
使用する。分離した不純ガスは放出管12より放
出する。この場合、塩化水素ガス吸収塔15に流
下する吸収用液は希薄塩酸以外に水により直接吸
収を行わしめてもよい。 上記より明らかな通り、本発明の最も大きな特
徴とするところは、燃料電池の電解質の少くとも
一部として陰イオン選択透過能を有する固体膜を
使用することであり、これは正極において連続的
に生成する陰イオン、即ち塩素イオンのみを選択
的に透過し、負極において生成する水素イオンと
会合して塩化水素ガスを生成させる作用をもつ。 かくて生成した塩化水素を未反応水素と共に燃
料電池外に導出し、塩化水素ガス吸収塔において
水又は希薄塩酸で吸収せしめるのであるが、燃料
室5内において生成塩化水素ガス濃度が増加する
と水素ガス分圧は減少し、電気化学反応が低下す
る。反応を継続的に進行させるためには塩化水素
濃度が増加しないように生成分を系外に除去する
必要があり、水又は希薄塩酸による吸収により有
効な塩化水素の除去がなされ、同時に溶解塩素の
少ない塩酸が製品として産出される。この場合前
記第1図の通り、好ましくは電池からの高温排ガ
スを吸収塔15に導入する直前で冷却器14で冷
却するか、又は/および吸収液循環系路の吸収塔
直前で冷却器20によつて冷却することにより吸
収溶解熱の除去、および燃料電池内の発生熱の除
去が行なわれ、効率よく吸収することが出来る。 又、第1図には記載されていないが、循環水素
ガス中に塩化水素以外の水又は希薄塩酸に吸収さ
れない不純ガスが蓄積する場合は、吸収塔を出た
ガスの一部を放出し蓄積を防止する。 こゝで放出する不純ガス含有水素及び前述の不
純ガス含有放出塩素は、既設の塩酸合成燃焼塔が
ある場合には、これに供給する水素および塩素に
夫々混入することにより有効利用をはかることが
出来る。 本発明方法において、吸収塔15より製品塩酸
を抜出す場合、例えば抜出し管16に調節弁を設
けてこれを吸収塔15の出口液の塩酸濃度計と連
動させて塩酸の濃度管理を行い製品規格に適合す
る品質の塩酸を連続的に得るようにしてもよい。
この場合、吸収塔15に供給される被吸収ガス中
の塩化水素濃度、吸収液の温度、製品として取出
す塩酸濃度に応じて吸収塔15を所定の内部圧力
に維持するよう調節弁22の動作点を設定するこ
とがよい。 本発明において、燃料電池に使用する電解質と
しては陰イオン選択透過能を有する固体膜を含む
ことが必要であり、かゝる陰イオン選択透過能を
有する固体膜とは有機高分子物より形成された陰
イオン交換膜、無機の陰イオン交換体をテフロン
等のバインダーで結合してシート状としたものな
ど、陰イオン、就中塩素イオンの選択透過性に優
れた固体膜状物をいう。 又、陰イオン選択透過能を有する固体膜の2種
以上の併用により電解質を形成すること、或は上
記陰イオン選択透過能を有する固体膜に対して他
の液体電解質を併用した複合電解質であつてもよ
いが燃料電池の構造上からは上記固体膜のみの使
用が最も適当である。このような固体膜と液体電
解質の組合せは、正極を陰イオン選択透過性を有
する固体膜の片面に密着させ、同固体膜の他面に
は所定の間隔をおいて負極を存在させ、この膜と
負極間の間隙に塩酸を密封させるものである。こ
の場合液体電解質(塩酸)を系外に抜出すことな
く電池外に設けた熱交換器との間に循環させるこ
とにより電池温度の制御および始動時の昇温を効
率よく行うことが出来る。 この様な構造の電解質においては、酸化剤室に
おける塩素ガスが塩素イオンとして該固体膜を通
じて液体電解質に至り、該液体電解質において塩
化水素が生成し、該電解質中の塩化水素濃度が該
電池作動温度、圧力下の飽和に達するとガスとし
て気体拡散電極である負極を通じて燃料室に放散
され、以後同様の塩化水素ガス吸収工程を経て高
純度塩酸とすることが出来る。 本発明方法において酸化剤室に供給する塩素に
代えて塩素を含有する液、例えば塩素を溶解した
塩酸を使用してもよい。この場合、酸化剤室はこ
の塩素含有液により満たされて反応するが、酸化
剤室を出る未反応の塩素含有液は、これを所定の
供給条件(濃度、流量、温度等)に合わせて塩
素、塩酸を補給し、該酸化剤室に循環供給するこ
とが望ましい。 本発明方法の燃料電池に用いる電極は多孔質通
気性炭素板、耐食性金属多孔板、又はメツシユな
どでよいが、適当なバインダーで陰イオン交換膜
に炭素繊維を密着させ、或は更にその外部に電気
を取出す手段として耐食性金属メツシユを張合わ
せて膜との電気的接触をよくする構造とすること
が好ましい。 この場合、正極は多孔性炭素質、或は活性炭素
繊維等のみで特別な触媒を担持しなくとも電気化
学的活性があれば、還元反応が進行するが、負極
は、これが陰イオン交換膜と密着して使用される
ときには、電極基材の膜との接触面に白金族金
属、又はそれらの合金よりなる触媒を担持させる
ことがよい。 陰イオン交換膜と触媒電極のより好ましい結合
態様としては、該膜表面に陰イオン導電性を有す
る物質(無機、有機のいずれの化合物でもよい。
又バインダーを兼ねる意味で該イオン交換膜と同
一組成の物質が好ましい)を塗布後、その上に電
極触媒物質を担持した多孔質電極(例えば炭素繊
維布、又はタンタル、チタン等の微細メツシユ)
を重ねて加熱圧着する等の手段により電極と交換
膜を一体化させたものを使用すれば電解質である
陰イオン交換膜と触媒を担持した電極の接触間隙
を陰イオン電導性物質で満し陰イオン交換膜と電
極との接触面積を増し良好な電気的接触とイオン
移動を順調に行うことが出来る。 又陰イオン交換膜が電解質として陰イオン選択
透過性を維持するためには交換膜は湿潤状態とす
ることが必要であり、その方法として、酸化剤室
に飽和水蒸気又は塩酸を噴霧する方法、或は膜を
はさむ各電極について触媒電極と電解質保持体を
兼ねた炭素繊維を交換膜の表面に密着させ更にそ
の表面に集電体としての金属メツシユを押付けて
炭素繊維の毛細管作用を利用し、電池上部より
夫々水又は塩酸を供給して湿潤する方法、或は又
陰イオン電導性を有する物質を保水性を有する物
質と混練してペースト状となし、マトリツクスに
塗布する方法等が採用される。 但し、かゝる方法は酸化剤室への供給酸化剤が
塩素ガスの場合であり、前記酸化剤が例えば塩酸
に塩素を溶解した液体の場合には、これが膜に対
して湿潤状態を付与することになるので特に必要
はない。 又この場合、溶液循環系路の中に熱交換器を設
けることにより、電池作動中における電池内で発
生する熱の除去と電池温度の制御および電池始動
時における昇温を効率よく行うことが出来る。 燃料電池における酸化剤室、燃料室は共に腐蝕
性のガス或は液に接するため、耐食材料として塩
素、塩酸に耐え、且つ操作温度、例えば90℃に耐
えるプラスチツク或は気密性の樹脂含浸グラフア
イト、炭素繊維充填のプラスチツク等が使用出来
る。 以上の通り本発明は陰イオン選択透過能を有す
る固体膜を使用した水素−塩素型の燃料電池を使
用して発電し、生じた塩化水素ガスを電池外へ抜
出し、水又は希薄塩酸で吸収することにより、よ
り高純度の塩酸を収率よく得ることが出来るもの
で、上記燃料電池の構成およびそれに付随する高
純度塩酸収得のプロセスを巧妙に結合せしめた点
において優れており有用性ある発明である。 以下に実施例および比較例を掲げて本発明を説
明する。 実施例 1 日本カーボン社製炭素布(カーボロン クロス
GF−8# 509)4cm×6.5cmに白金を塩化白金酸
溶液の形で含浸担持させ、その片面に陰イオン導
電性を示す粘着剤(アロンフロツクC−303(東亞
合成化学工業(株)製)の高粘度水溶液を塗布したも
の2枚を、陰イオン交換膜(旭硝子(株)製セレミオ
ンAMV)の両面に、その粘着剤面を接触するよ
うにして密着させた。更に集電体を兼ねて8メツ
シユのチタン製ラス網を両面から押し当て正極お
よび負極が陰イオン交換膜のそれぞれの片面に密
着した構造の燃料電池を形成した。かゝる燃料電
池の酸化剤室に35%塩酸中に塩素4.8g/を溶
解させた液を、又燃料室には水素ガス0.3/H
を供給し、第1図に示す工程に準拠して発電およ
び塩酸製造を行つた。 27.5時間の放電により下記の成績を得た。 出力電圧:0.15〜0.2V(D、C) 出力電流:0.18〜0.24A(D、C) 塩化水素吸収液組成: Hcl=8.2wt% 溶解塩素<1mg/ 実施例 2 日本カーボン社製炭素布(カーボロン クロス
GF−8# 509)4cm×6.5cmの片面に実施例1で
使用した粘着剤を塗布し、この塗布面を陰イオン
交換膜(旭硝子(株)製フレミオンAMV)の片面に
密着させ、更に集電体を兼ねて8メツシユのチタ
ン製ラス網を上記炭素布の陰イオン交換膜密着の
反対面に重ね、正極と膜とが一体化したものを得
た。 一方上記陰イオン交換膜の他面に8メツシユの
ポリプロピレン網を重ね、パツキングにより陰イ
オン交換膜と約2mm間隔をおいて、平均細孔径
20μ、気孔率50%、厚さ6mm、電極面積4cm×6.5
cmの多孔質炭素板(日本カーボン社製p−170)
に塩化白金酸溶液を含浸し、450℃で焼成した後、
更にテフロンデイスパージヨンを含浸焼結させた
ものを負極として配置した。そしてこの負極と陰
イオン交換膜との間隙中に35%塩酸液を介在密封
した。 かくて形成した燃料電池の酸化剤室に塩素ガス
を0.3/H流し、一方の燃料室には水素ガスを
0.3/Hの割合で流し、前記第1図の工程に準
じて発電および塩酸製造を行つた。 その結果は次の通りであつた。 放電時間 27.5hv 出力電圧 0.08〜0.05V(D.C) 出力電流 0.1〜0.06A(D.C) 塩化水素吸収液組成(純水による) Hcl:3.2wt% 溶解塩素<1mg/ 比較例 1 電解質として35%塩酸溶液のみを使用し、塩素
極として多孔質炭素板(日本カーボン社製P−
170)を又水素極として上記多孔質炭素板に塩化
白金酸溶液を含浸し焼結後、テフロンデイスパー
ジヨンを含浸し焼結せしめたものを使用して燃料
電池を構成した。 この燃料電池の塩素極室に塩素ガスを流し水素
極に水素ガスを流して発電を行い、同時に電池よ
り出た水素および塩素を石英燃焼管中において反
応させて塩化水素となし、これを純水に吸収せし
めて塩酸を得た。 その結果は次の通りであつた。 放電時間 27.5hv 出力電圧 0.07〜0.06V(D.C) 出力電流 0.09〜0.07A(D.C) 電池排出水素組成 H2:84〜88vol% Hcl:16〜12vol% cl2:0vol% 電池排出塩素組成 Cl2:82〜86vol% HCl:18〜14vol% H2:0 塩化水素吸収液組成(純水による) HCl:3.5wt% H2O:96.5wt% 溶解塩素:85mg/ 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing synthetic hydrochloric acid while generating direct current electricity using a fuel cell, and more specifically, a method for producing synthetic hydrochloric acid using a fuel cell, and more specifically, a method for producing synthetic hydrochloric acid using a fuel cell that uses a solid membrane having an anion selective permeation ability as an electrolyte. By using this technology, chlorine and hydrogen are electrochemically reacted, and a part of the chemical energy, which is the heat of reaction, is directly converted into electrical energy, which can be effectively used for other purposes, while synthesizing a product with higher purity than the generated hydrogen chloride. This invention relates to a method for producing hydrochloric acid. The conventional industrial method for producing synthetic hydrochloric acid, except for by-product hydrochloric acid, is to make a product by chemically reacting chlorine and hydrogen in a graphite combustion tower and absorbing the generated hydrogen chloride with water or diluted hydrochloric acid. Generally, the heat produced by the reaction is removed by cooling water and is wasted. On the other hand, the idea of synthesizing hydrochloric acid by using hydrogen as the fuel in a fuel cell and chlorine as the oxidizing agent, and recovering the generated chemical energy as electrical energy, is as follows.
It has already been known for a long time. In recent years, research and development of fuel cells using hydrogen fuel and chlorine oxidizer has been progressing in the United States as a means of energy storage.
The technical outline is as follows. In other words, the purpose of this fuel cell is power generation, and it can be used to handle moment-to-moment or day-to-night fluctuations in the power load in the electric power industry, which is mainly driven by private demand, and constant load operation for highly efficient and stable operation of power plants. To adjust the gap, for example, when there is a lot of private electricity during the day, hydrogen fuel and chlorine oxidizer are reacted to generate DC power in a fuel cell, which is converted to AC using an inverter to make up for the shortfall in the supply from general power plants, and to generate electricity for private electricity demand at night. The electricity that is left in surplus due to the decrease in electricity is converted from alternating current to direct current, and then supplied to the fuel cell.The hydrochloric acid produced during the day is then electrolyzed and stored as hydrogen and chlorine, in preparation for daytime power generation. This method uses regenerative fuel cells. In this case, hydrogen chloride is generated in the oxidizer chamber using a cation permselective membrane as an electrolyte, and this is extracted to the outside of the battery together with unreacted chlorine to separate the chlorine and obtain hydrochloric acid, which is then stored. In preparation for electrolysis at night, a system is adopted in which the separated chlorine is recycled back to the battery and used as an oxidizing agent. Although this type of hydrochloric acid synthesis method using a fuel cell was known, it has not been put into practical use because of technical problems and profitability of the fuel cell itself, as well as the use of a hydrochloric acid solution as an electrolyte. A fatal problem in this case is that the produced hydrogen chloride mixes with both chlorine, hydrogen, and the electrolyte hydrochloric acid solution, and in addition, chlorine dissolves in the electrolyte hydrochloric acid solution by diffusion and osmosis through the gas diffusion electrode, so the product hydrochloric acid with high purity is Substantially, only hydrochloric acid is produced from hydrogen chloride in hydrogen gas, and as a practical matter, high-purity hydrochloric acid can only be obtained in a low yield. In addition, in the above-mentioned example of technological development in the United States, hydrogen is oxidized at the negative electrode by using a cation selectively permeable membrane, and the hydrogen ions selectively pass through the membrane and reach the positive electrode, where chlorine is reduced to chlorine. Hydrogen chloride is produced by association with ions. That is, hydrogen chloride is generated in the oxidizing agent chamber, and hydrochloric acid obtained by absorbing hydrogen chloride gas with water contains a large amount of chlorine, so it is impossible to obtain hydrochloric acid of high purity. The inventors of the present invention have completed the present invention as a result of intensive studies aimed at obtaining high yield and high purity hydrochloric acid without wastefully disposing of the heat produced by the reaction. The positive electrode is brought into close contact with a solid membrane that has the ability to selectively permeate anions.
A fuel cell is constructed by attaching the negative electrode directly to the solid membrane or by bringing it into contact with a solid membrane having an anion selective permeability through a liquid electrolyte, and hydrogen gas is supplied to the fuel chamber and hydrogen gas is supplied to the oxidizer chamber. A method for producing hydrochloric acid, which is characterized by supplying chlorine gas or a chlorine-containing liquid to generate electricity between positive and negative electrodes, and contacting hydrogen chloride produced in the fuel chamber with water or dilute hydrochloric acid to obtain hydrochloric acid. It is. The present invention described above generates hydrogen chloride in the fuel chamber at the same time as power generation using a fuel cell using a solid membrane having an anion selective permeation ability such as an anion exchange membrane, and this hydrogen chloride is absorbed into water (or dilute hydrochloric acid). In this method, hydrogen chloride is produced in the fuel chamber using a solid membrane with anion selective permeability. It is possible to easily separate hydrogen gas by absorption into water or diluted hydrochloric acid, and to obtain high-purity synthetic hydrochloric acid, which is the main target product, at a high yield. However, if we also consider the advantage that the DC power generated by the fuel cell can be supplied as power for alkali chloride electrolysis, which is the source of chlorine and hydrogen, which are the raw materials for synthetic hydrochloric acid, without converting it to AC, it is extremely advantageous. It can be called a process. One embodiment of the method of the present invention will be explained below with reference to the drawings. In the process diagram of FIG. 1, 1 is a fuel cell main body, and this fuel cell has a gas diffusion positive electrode 4 in close contact with one surface of an anion exchange membrane 2, and a negative electrode 3.
The side of the positive electrode 4 is a fuel chamber 5, and the side of the positive electrode 4 is an oxidizer chamber 6. Hydrogen gas is fed into the fuel chamber 5 through a pipe 7, and chlorine gas is fed into the oxidizer chamber 6 through a pipe 8 and a chlorine gas circulation It is fed by a blower 9. As a result, the chlorine gas sent to the oxidizer chamber 6 is reduced at the positive electrode having catalytic ability, and passes through the anion exchange membrane 2 where it is hydrated as chlorine ions, and then passes through the fuel chamber 5.
There, the hydrogen gas combines with the hydrogen ions oxidized by the catalyst at the negative electrode to generate hydrogen chloride gas, and the DC electricity generated between the negative electrode and the positive electrode is led out through the generated electricity lead-out terminals 21 and 21'. . On the other hand, the generated hydrogen chloride gas is led out of the fuel cell 1 together with the unreacted hydrogen gas in the fuel chamber, and is sent to the hydrogen chloride gas absorption tower 15 via an exhaust gas circulation blower 13 and a cooler 14, where it is absorbed by the dilute hydrochloric acid flowing down. The hydrogen chloride is then absorbed and converted into hydrochloric acid, which is taken out from the pipe 16 as a product of high purity concentrated hydrochloric acid. On the other hand, a part of the liquid in the tower is sent to the receiving tank 17 and flows down from the top of the tower as an absorption liquid through the circulation pump 18 and the cooler 20, and is again circulated through the above cycle, but is replenished through the pipe 19 along the way. Water is pumped in. Unreacted hydrogen gas is discharged from the top of the absorption tower 15, joins the hydrogen gas in the pipe 7, and enters the fuel chamber 5 of the fuel cell.
is supplied to In this case, in order to reduce the polarization at the hydrogen electrode of the fuel cell 1, it is necessary to reduce the hydrogen chloride concentration in the fuel chamber as much as possible, but on the other hand, the low concentration hydrogen chloride is absorbed with dilute hydrochloric acid, and the hydrogen chloride concentration in the pipe 16 is increased. In order to obtain the product hydrochloric acid, it is desirable to maintain the internal pressure of the absorption tower 15 higher than the internal pressure of the battery 1 using the circulation blower 13 and the pressure regulating valve 22. The unreacted chlorine gas in the oxidizer chamber 6 is discharged from the fuel cell, and the impurity gas removal device 11 separates the trace amount of impurity gas accumulated in the circulating chlorine gas, which is then merged into the pipe 8 as reaction chlorine gas and reused. do. The separated impure gas is discharged from the discharge pipe 12. In this case, the absorption liquid flowing down to the hydrogen chloride gas absorption tower 15 may be directly absorbed by water instead of diluted hydrochloric acid. As is clear from the above, the most significant feature of the present invention is that a solid membrane having an anion selective permeability is used as at least a part of the electrolyte of the fuel cell, and this is continuously carried out at the positive electrode. It has the effect of selectively passing only the generated anions, that is, chlorine ions, and combining with the hydrogen ions generated at the negative electrode to generate hydrogen chloride gas. The hydrogen chloride thus generated is led out of the fuel cell together with unreacted hydrogen and absorbed with water or dilute hydrochloric acid in a hydrogen chloride gas absorption tower. However, as the hydrogen chloride gas concentration increases in the fuel chamber 5, hydrogen gas The partial pressure decreases and the electrochemical reaction decreases. In order for the reaction to proceed continuously, it is necessary to remove the product from the system so that the hydrogen chloride concentration does not increase.Hydrogen chloride can be effectively removed by absorption with water or diluted hydrochloric acid, and at the same time dissolved chlorine can be removed. Less hydrochloric acid is produced as a product. In this case, as shown in FIG. 1, it is preferable to cool the high-temperature exhaust gas from the battery in the cooler 14 immediately before introducing it into the absorption tower 15, or/and to cool it in the cooler 20 immediately before introducing it into the absorption tower in the absorption liquid circulation path. Therefore, by cooling, the absorbed heat of dissolution and the heat generated within the fuel cell are removed, and can be absorbed efficiently. Although not shown in Figure 1, if impurity gas other than hydrogen chloride that is not absorbed by water or dilute hydrochloric acid accumulates in the circulating hydrogen gas, a portion of the gas that has left the absorption tower is released and accumulated. prevent. If there is an existing hydrochloric acid synthesis combustion tower, the impure gas-containing hydrogen released here and the impure gas-containing released chlorine can be effectively used by mixing it with the hydrogen and chlorine supplied to the existing hydrochloric acid synthesis combustion tower, respectively. I can do it. In the method of the present invention, when the product hydrochloric acid is extracted from the absorption tower 15, for example, a control valve is provided in the extraction pipe 16, and this is linked with a hydrochloric acid concentration meter of the outlet liquid of the absorption tower 15 to control the concentration of hydrochloric acid to meet product standards. It is also possible to continuously obtain hydrochloric acid of a quality that meets the requirements.
In this case, the operating point of the control valve 22 is such that the absorption tower 15 is maintained at a predetermined internal pressure depending on the concentration of hydrogen chloride in the absorbed gas supplied to the absorption tower 15, the temperature of the absorption liquid, and the concentration of hydrochloric acid taken out as a product. It is better to set In the present invention, the electrolyte used in the fuel cell must include a solid membrane having an anion selective permeability, and such a solid membrane having an anion selective permeability is formed of an organic polymer. It refers to solid membrane-like materials that have excellent permselectivity for anions, especially chlorine ions, such as anion exchange membranes and sheet-like sheets made by bonding inorganic anion exchangers with binders such as Teflon. In addition, an electrolyte may be formed by combining two or more types of solid membranes having anion selective permeability, or a composite electrolyte may be formed by combining the solid membrane having anion selective permeation ability with another liquid electrolyte. However, from the viewpoint of the structure of the fuel cell, it is most appropriate to use only the above-mentioned solid membrane. In such a combination of a solid membrane and a liquid electrolyte, a positive electrode is placed in close contact with one side of a solid membrane that has anion permselectivity, and a negative electrode is placed on the other side of the solid membrane at a predetermined interval. The gap between the negative electrode and the negative electrode is sealed with hydrochloric acid. In this case, by circulating the liquid electrolyte (hydrochloric acid) between the battery and a heat exchanger provided outside the battery without draining it out of the system, the battery temperature can be efficiently controlled and the temperature raised during startup. In an electrolyte with such a structure, chlorine gas in the oxidizer chamber reaches the liquid electrolyte as chlorine ions through the solid membrane, hydrogen chloride is generated in the liquid electrolyte, and the hydrogen chloride concentration in the electrolyte increases to the cell operating temperature. When saturation under pressure is reached, it is diffused as a gas into the fuel chamber through the negative electrode, which is a gas diffusion electrode, and thereafter can be converted into high-purity hydrochloric acid through a similar hydrogen chloride gas absorption process. In the method of the present invention, a chlorine-containing liquid, such as hydrochloric acid in which chlorine is dissolved, may be used instead of the chlorine supplied to the oxidizer chamber. In this case, the oxidizer chamber is filled with this chlorine-containing liquid and reacts, but the unreacted chlorine-containing liquid leaving the oxidizer chamber is chlorinated according to predetermined supply conditions (concentration, flow rate, temperature, etc.). It is desirable to replenish hydrochloric acid and circulate it to the oxidizer chamber. The electrodes used in the fuel cell of the method of the present invention may be porous breathable carbon plates, corrosion-resistant metal porous plates, mesh, etc., but the carbon fibers may be adhered to the anion exchange membrane with a suitable binder, or the carbon fibers may be further attached to the outside of the membrane. As a means for extracting electricity, it is preferable to have a structure in which a corrosion-resistant metal mesh is laminated to improve electrical contact with the membrane. In this case, the positive electrode is made of porous carbonaceous material or activated carbon fibers, etc., and if it has electrochemical activity without supporting a special catalyst, the reduction reaction will proceed, but the negative electrode is made of an anion exchange membrane and When used in close contact with the membrane, it is preferable to support a catalyst made of a platinum group metal or an alloy thereof on the contact surface of the electrode base material with the membrane. A more preferable bonding mode between the anion exchange membrane and the catalyst electrode is a substance having anion conductivity on the surface of the membrane (any inorganic or organic compound may be used).
In addition, after applying a material having the same composition as the ion exchange membrane (preferably a material having the same composition as the ion exchange membrane in the sense that it also serves as a binder), a porous electrode (for example, carbon fiber cloth or fine mesh of tantalum, titanium, etc.) carrying an electrode catalyst material thereon is applied.
If an electrode and an exchange membrane are integrated by stacking them and heating and pressing them together, the contact gap between the anion exchange membrane, which is an electrolyte, and the electrode carrying a catalyst can be filled with an anion conductive substance. By increasing the contact area between the ion exchange membrane and the electrode, good electrical contact and smooth ion movement can be achieved. In addition, in order for the anion exchange membrane to maintain anion permselectivity as an electrolyte, it is necessary to keep the exchange membrane in a moist state, which can be done by spraying saturated steam or hydrochloric acid into the oxidizer chamber, or For each electrode sandwiching the membrane, carbon fibers that serve as catalyst electrodes and electrolyte holders are closely attached to the surface of the exchange membrane, and a metal mesh as a current collector is pressed onto the surface, making use of the capillary action of the carbon fibers. A method of moistening by supplying water or hydrochloric acid from the upper part, respectively, or a method of kneading a substance having anionic conductivity with a substance having a water-retentive property to form a paste and applying it to the matrix, etc., are employed. However, this method applies when the oxidizing agent supplied to the oxidizing agent chamber is chlorine gas, and when the oxidizing agent is a liquid obtained by dissolving chlorine in hydrochloric acid, for example, this provides a wet state to the membrane. There is no need to do so. Furthermore, in this case, by providing a heat exchanger in the solution circulation system, it is possible to efficiently remove the heat generated within the battery during battery operation, control the battery temperature, and increase the temperature when starting the battery. . Since both the oxidizer chamber and the fuel chamber in a fuel cell are in contact with corrosive gases or liquids, plastic or airtight resin-impregnated graphite is used as a corrosion-resistant material that can withstand chlorine and hydrochloric acid and can withstand operating temperatures of, for example, 90°C. , carbon fiber-filled plastic, etc. can be used. As described above, the present invention generates electricity using a hydrogen-chlorine fuel cell using a solid membrane with anion selective permeability, extracts the generated hydrogen chloride gas from the cell, and absorbs it with water or diluted hydrochloric acid. By doing so, it is possible to obtain higher purity hydrochloric acid in a higher yield.This is an excellent and useful invention in that it skillfully combines the structure of the above-mentioned fuel cell and the accompanying process for obtaining high-purity hydrochloric acid. be. The present invention will be explained below with reference to Examples and Comparative Examples. Example 1 Carbon cloth manufactured by Nippon Carbon Co., Ltd. (Carboron Cloth)
GF-8# 509) 4 cm x 6.5 cm is impregnated with platinum in the form of chloroplatinic acid solution, and one side is coated with an anion conductive adhesive (Aronfloc C-303 (manufactured by Toagosei Chemical Industry Co., Ltd.)) Two sheets coated with a high viscosity aqueous solution of 1 were adhered to both sides of an anion exchange membrane (Celemion AMV manufactured by Asahi Glass Co., Ltd.) with their adhesive surfaces in contact.The membrane also served as a current collector. An 8-mesh titanium lath mesh was pressed from both sides to form a fuel cell in which the positive and negative electrodes were in close contact with one side of each anion exchange membrane.The oxidizer chamber of such a fuel cell was placed in 35% hydrochloric acid. A liquid containing 4.8 g of chlorine dissolved in it, and a hydrogen gas of 0.3 g/H in the fuel chamber.
was supplied, and power generation and hydrochloric acid production were performed according to the process shown in FIG. The following results were obtained after 27.5 hours of discharge. Output voltage: 0.15 to 0.2 V (D, C) Output current: 0.18 to 0.24 A (D, C) Hydrogen chloride absorption liquid composition: Hcl = 8.2 wt% Dissolved chlorine <1 mg/ Example 2 Carbon cloth manufactured by Nippon Carbon Co., Ltd. Carbon Cross
The adhesive used in Example 1 was applied to one side of GF-8#509) 4 cm x 6.5 cm, and this coated surface was brought into close contact with one side of an anion exchange membrane (Flemion AMV manufactured by Asahi Glass Co., Ltd.), and further concentrated. An 8-mesh titanium lath net, which also served as an electric body, was placed on the opposite side of the carbon cloth to which the anion exchange membrane was in close contact, to obtain an integrated cathode and membrane. On the other hand, on the other side of the anion exchange membrane, an 8-mesh polypropylene mesh was placed on the other side of the anion exchange membrane, and the average pore diameter was
20μ, porosity 50%, thickness 6mm, electrode area 4cm x 6.5
cm porous carbon plate (P-170 manufactured by Nippon Carbon Co., Ltd.)
After impregnating with chloroplatinic acid solution and baking at 450℃,
Furthermore, a Teflon dispersion impregnated and sintered was placed as a negative electrode. Then, a 35% hydrochloric acid solution was interposed in the gap between the negative electrode and the anion exchange membrane to seal it. Chlorine gas was flowed at 0.3/H into the oxidizer chamber of the fuel cell thus formed, and hydrogen gas was flowed into one fuel chamber.
Power generation and hydrochloric acid production were carried out in accordance with the process shown in FIG. 1 above by flowing at a ratio of 0.3/H. The results were as follows. Discharge time 27.5hv Output voltage 0.08~0.05V (DC) Output current 0.1~0.06A (DC) Hydrogen chloride absorption liquid composition (based on pure water) Hcl: 3.2wt% Dissolved chlorine <1mg/ Comparative example 1 35% hydrochloric acid as electrolyte Using only the solution, a porous carbon plate (Nippon Carbon Co., Ltd. P-
170) was used as a hydrogen electrode, and the porous carbon plate was impregnated with a chloroplatinic acid solution, sintered, and then impregnated with Teflon dispersion and sintered to construct a fuel cell. Power is generated by flowing chlorine gas into the chlorine electrode chamber of this fuel cell and hydrogen gas flowing into the hydrogen electrode.At the same time, the hydrogen and chlorine released from the cell are reacted in a quartz combustion tube to form hydrogen chloride, which is then converted into pure water. Hydrochloric acid was obtained. The results were as follows. Discharge time 27.5hv Output voltage 0.07~0.06V (DC) Output current 0.09~0.07A (DC) Battery exhaust hydrogen composition H2 : 84~88vol% Hcl: 16~12vol% Cl2 : 0vol% Battery exhaust chlorine composition Cl2 : 82 to 86 vol% HCl: 18 to 14 vol% H 2 : 0 Composition of hydrogen chloride absorption liquid (based on pure water) HCl: 3.5 wt% H 2 O: 96.5 wt% Dissolved chlorine: 85 mg/ [Table]

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一態様を示す工程図である。 1……燃料電池、2……陰イオン交換膜、3…
…ガス拡散負極、4……ガス拡散正極、5……燃
料室、6……酸化剤室、11……不純ガス除去装
置、14,20……冷却器、15……塩化水素ガ
ス吸収塔。
FIG. 1 is a process diagram showing one embodiment of the present invention. 1... fuel cell, 2... anion exchange membrane, 3...
... Gas diffusion negative electrode, 4 ... Gas diffusion positive electrode, 5 ... Fuel chamber, 6 ... Oxidizer chamber, 11 ... Impurity gas removal device, 14, 20 ... Cooler, 15 ... Hydrogen chloride gas absorption tower.

Claims (1)

【特許請求の範囲】[Claims] 1 正極と陰イオン選択透過能を有する固体膜と
を密着せしめ、負極を該固体膜に直接密着する
か、又は液体電解質を介して陰イオン選択透過能
を有する固体膜と接触せしめて燃料電池を構成
し、その燃料室には水素ガスを、又酸化剤室には
塩素ガス又は塩素含有液を供給して、正・負両極
間で電気発生を行わしめると共に燃料室で生成し
た塩化水素を水又は希塩酸に接触させて塩酸を得
ることを特徴とする塩酸製造法。
1. A fuel cell is produced by bringing a positive electrode and a solid membrane having an anion selective permeability into close contact with each other, and by directly contacting the negative electrode with the solid membrane or by contacting the solid membrane with an anion selective permeability through a liquid electrolyte. Hydrogen gas is supplied to the fuel chamber, and chlorine gas or chlorine-containing liquid is supplied to the oxidizer chamber to generate electricity between the positive and negative electrodes, and the hydrogen chloride generated in the fuel chamber is converted into water. Or a method for producing hydrochloric acid, which is characterized by contacting with dilute hydrochloric acid to obtain hydrochloric acid.
JP57029822A 1982-02-27 1982-02-27 Production of hydrochloric acid Granted JPS58147573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029822A JPS58147573A (en) 1982-02-27 1982-02-27 Production of hydrochloric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029822A JPS58147573A (en) 1982-02-27 1982-02-27 Production of hydrochloric acid

Publications (2)

Publication Number Publication Date
JPS58147573A JPS58147573A (en) 1983-09-02
JPH0125192B2 true JPH0125192B2 (en) 1989-05-16

Family

ID=12286712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029822A Granted JPS58147573A (en) 1982-02-27 1982-02-27 Production of hydrochloric acid

Country Status (1)

Country Link
JP (1) JPS58147573A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833468A (en) * 1987-10-14 1989-05-23 Unisys Corporation Layered network
CN104131311B (en) * 2014-07-07 2016-10-19 四川大学 Mineralising CO2preparing sodium bicarbonate or sodium carbonate externally export the method for electric energy

Also Published As

Publication number Publication date
JPS58147573A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
US9574276B2 (en) Production of low temperature electrolytic hydrogen
TWI414636B (en) Membrane reactor
CN107075700B (en) The manufacturing method of organic hydride material producing device and the organic hydride using it
US20090045073A1 (en) Electrolysis cell comprising sulfur dioxide-depolarized anode and method of using the same in hydrogen generation
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US3669751A (en) Electric battery comprising a fuel cell hydrogen generator and heat exchanger
TW201323074A (en) Method for electrochemically transforming carbon dioxide
US4455203A (en) Process for the electrolytic production of hydrogen peroxide
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US11904275B2 (en) Carbon dioxide treatment apparatus, carbon dioxide treatment method, and method of producing carbon compound
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
JPH0125192B2 (en)
CN111979558A (en) Method and equipment for preparing hydrogen selenide by electrolysis method
CN114402095B (en) Cross-flow water electrolysis
Fujita et al. An electrochemical oxygen separator using an ion-exchange membrane as the electrolyte
KR102610119B1 (en) Water management unit in hydrogen generating system using water electrolysis
CA1155487A (en) Method of concentrating alkali metal hydroxide in hybrid cells
JP3395416B2 (en) Method for producing hydrogen peroxide
JP2910096B2 (en) Water purifier
CN117210830A (en) Electrochemical synthesis method and electrochemical electrolysis system of high-concentration pure formic acid
CN116732549A (en) Electrolytic tank system and production method of hydrogen and oxygen
CN113802132A (en) System and method for artificial photosynthesis
JPH06215791A (en) Thermoelectrochemical apparatus and method
CN116555794A (en) Device for producing carbon dioxide by utilizing solid electrolyte
CN112813449A (en) Method for preparing hydrogen selenide by continuously electrolyzing selenious acid