JPS59169370A - Inverter device - Google Patents

Inverter device

Info

Publication number
JPS59169370A
JPS59169370A JP58044000A JP4400083A JPS59169370A JP S59169370 A JPS59169370 A JP S59169370A JP 58044000 A JP58044000 A JP 58044000A JP 4400083 A JP4400083 A JP 4400083A JP S59169370 A JPS59169370 A JP S59169370A
Authority
JP
Japan
Prior art keywords
inverter
output
voltage
rectifier
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58044000A
Other languages
Japanese (ja)
Other versions
JPH0334305B2 (en
Inventor
Yoshiyasu Sakaguchi
阪口 善保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58044000A priority Critical patent/JPS59169370A/en
Publication of JPS59169370A publication Critical patent/JPS59169370A/en
Publication of JPH0334305B2 publication Critical patent/JPH0334305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To enhance the input power factor of an inverter device and to reduce the waveform distortion by connecting the first inverter through a choke and a rectifier, and the second inverter through a capacitor and a rectifier and connecting the both outputs in series. CONSTITUTION:The first rectifier 2 is connected through a choke 6 across an AC power source 1 to connect the output to the first inverter 5a, the second rectifier 2b is connected through a capacitor 7 to connect the output to the second inverter 5b, the both inverters 5a, 5b are operated synchronously, and the secondary sides of the output insulating transformers 9a, 9b are connected in series to fire a fluorescent lamp 4. Accordingly, the high freguency output of an envelope having less low frequency ripple can be obtaind, the input current is combined in both delayed phase and advanced phase to increase the input power factor, and the waveform distortion is reduced to improve the input characteristics.

Description

【発明の詳細な説明】 (技術分野) 本発明は、商用周波数の電源電圧を数十KHzの高周波
電圧に変換するインバータ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an inverter device that converts a commercial frequency power supply voltage to a high frequency voltage of several tens of KHz.

(背景技術) 省電カニーズの定着化により、螢光灯の如き、放電灯を
数十KHzの高周波電力で附勢し点灯させるインバータ
式点灯装置は、今や、周知の技術であり、これは、ラン
プの発光効率が、商用周波と比べ向上することからこの
方法がとられている。
(Background technology) With the establishment of energy-saving technology, inverter lighting devices that energize and light discharge lamps, such as fluorescent lamps, with high-frequency power of several tens of kilohertz are now well-known technologies. This method is used because the luminous efficiency of the lamp is improved compared to commercial frequency.

しかし、単に商用入力電源を高周波に変換し放電灯を附
勢するだけでは、ランプの力率が商用周波の時のランプ
力率に比べ向上せず、従って、インバータ点灯装置での
電力ロスがまだ多い為、第1図に示すように、商用交流
電源1に接続した全波整流器2を介して得た入力整流電
圧を、平滑回路6を介して平滑することにより、ランプ
4を低周波リプルの少ない高周波電力で附勢する方法が
とられ、ている。なお、図中5はインバータである。
However, simply converting the commercial input power to a high frequency and energizing the discharge lamp does not improve the lamp power factor compared to the lamp power factor when using the commercial frequency, and therefore the power loss in the inverter lighting device still remains. As shown in FIG. A method of energizing with a small amount of high frequency power has been adopted. Note that 5 in the figure is an inverter.

この入力整流電圧の平滑化には、大容量コンデンサによ
る平滑、又はインバータ出力の一部帰還による平滑が用
いられている。しかし、この様に、インバータへの入力
整流電圧を完全に平滑すると、ランプの力率がほぼ1に
なり、インバータでのロスが減少し、効率のよい点灯装
置が実現できる反面、入力力率が低下する欠点が生じる
。これは、入力商用電源は5 Q Hz 又は6 Q 
Hz のリプルある電力を供給す°るのに対し、入力平
滑部で平滑した電力(電圧)に変換する為、当然力率が
低下することになる。
To smooth this input rectified voltage, smoothing using a large capacitance capacitor or smoothing using partial feedback of the inverter output is used. However, if the input rectified voltage to the inverter is completely smoothed in this way, the power factor of the lamp becomes almost 1, reducing loss in the inverter and realizing a highly efficient lighting device, but on the other hand, the input power factor decreases. A deteriorating disadvantage occurs. This means that the input commercial power is 5 Q Hz or 6 Q
While power with ripples of Hz is supplied, the input smoothing section converts it into smoothed power (voltage), which naturally results in a decrease in power factor.

かかる入力力率の低下を防ぐ為、次の様な方法か考えら
れている。第2図にこの具体例を示す。
In order to prevent such a decrease in the input power factor, the following methods have been considered. A concrete example of this is shown in FIG.

第2図においては、交流側チョーク6による遅相電流i
L と、交流側コンデンサ7による進相電流1(の合成
により、入力力率の向上を図っている。
In FIG. 2, the delayed phase current i caused by the AC side choke 6
The input power factor is improved by combining L and the advanced phase current 1 (by the AC side capacitor 7).

しかし、この方法においても、力率は確かに向上するが
、入力電流量の高周波成分か多いという欠点がある。こ
れは、ろ相用全波整流器2の電圧弁馴        
     (b) 1用によるものである。第3図編にその入力電流iの状
態を示し説明する。理解しやすくする為、第2図の平滑
回路2をなくした状態で第3図を作図している。インバ
ータ5及び放電灯4は、動作状態ではほぼ力率が千とし
てみてもよく、従って、抵抗負荷と考えれば考えやすい
。この時、全波整流器2の出力電圧VDは姶会≠第3図
(atにおいて実線で示す波形となる事は明らかである
。これは、チョーク乙の遅相電流IL  とコンデンサ
7の進相電流1(が同図(alの如く、整流電圧■L、
■cを形成しようとする(破線も含む)が、整流器2の
電圧弁別作用で、実線で示す電圧vDとして発生し、こ
の時の遅相電流IL と進相電流1(は同図(cl、 
(dlの如く形成され、結局入力電流iは同図+blに
示される如く形成されることになり、当然入力力率がよ
(なることが分る。しかし、同図(blからも明らかな
ように、入力電流iは矩形波状となり、第3高調波を含
む奇数次高調渡分も多くなることが理解できよう。なお
、同図(al、 fblにおける波形VB は電源電圧
波形である。
However, although this method certainly improves the power factor, it has the disadvantage that there are many high-frequency components in the amount of input current. This is the voltage valve adjustment of the full wave rectifier 2 for the filter phase.
(b) This is due to 1. The state of the input current i is shown and explained in Figure 3. For ease of understanding, FIG. 3 is drawn without the smoothing circuit 2 in FIG. 2. The inverter 5 and the discharge lamp 4 can be considered to have a power factor of approximately 1,000 in the operating state, and therefore can be easily thought of as resistive loads. At this time, it is clear that the output voltage VD of the full-wave rectifier 2 has the waveform shown by the solid line in Figure 3 (at). 1 (as shown in the same figure (al), the rectified voltage ■L,
■c (including the broken line) is generated as a voltage vD shown by the solid line due to the voltage discrimination action of the rectifier 2, and the lagging current IL and leading phase current 1 at this time are shown in the same figure (cl,
In the end, the input current i will be formed as shown in +bl in the same figure, which naturally results in a high input power factor. However, as is clear from the figure (bl) It can be seen that the input current i has a rectangular waveform, and the odd harmonics including the third harmonic also increase.The waveform VB in the same figures (al and fbl) is the power supply voltage waveform.

以上述べた様に従来例においては、入力力率を向上させ
、かつ、放電灯を附勢する高周波電圧の低周波リプルを
少なくすると、入力電流の高調波成分が多くなる欠点を
有していた。又、入力整流電圧を平滑する為には、相当
大きい容量の平滑用コンデンサも必要とし、点灯装置の
形状、コストも大きくなる欠点も有していた。更には、
点灯装置の負荷を、高容量のものとした時、例えは、放
電灯を複数個多灯点灯するとき、あるいは、HIDラン
プの様に、数百Wの放電灯を負荷とするときには、イン
バータ装置が1つである為、インツイータを構成する素
子の電流、電圧耐量を相当大きくする必要から、形状が
非常に太き(なり、又、コストも高くなり、高容量負荷
に対しては、実用化に相当の困難を有する欠点もあった
As mentioned above, in the conventional example, if the input power factor is improved and the low frequency ripple of the high frequency voltage that energizes the discharge lamp is reduced, the harmonic component of the input current increases. . Furthermore, in order to smooth the input rectified voltage, a smoothing capacitor of considerably large capacity is also required, which also has the drawback of increasing the shape and cost of the lighting device. Furthermore,
When the load of the lighting device is high capacity, for example, when lighting multiple discharge lamps, or when the load is several hundred W discharge lamps such as HID lamps, an inverter device is required. Since there is only one in-tweeter, it is necessary to considerably increase the current and voltage withstand capacity of the elements that make up the in-tweeter, resulting in a very thick shape (and high cost), making it impractical for high-capacity loads. It also had the disadvantage of being quite difficult to convert.

(発明の目的) 本発明は上記欠点に鑑゛みなされたもので、その目的と
するところは、商用周波数の電源電圧を高周波電圧に変
換するインバータ装置において、高周波出力電圧の包絡
線の低周波リプルを小さくすると共に、入力力率の向上
を図り、更には入力電流の高調波成分を小さくして入力
特性の向上を図るにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide an inverter device that converts a commercial frequency power supply voltage to a high frequency voltage. The purpose is to reduce ripple, improve input power factor, and further reduce harmonic components of input current to improve input characteristics.

(発明の開示) 第4図は本発明の一実施例を示す回路ヌ1で、単相商用
電源1の一線にチョーク6を介して第1の上 余波整流器2aの交流入力側一端粕接続し、商用電源1
の他線を全波整流器2aの交流入力側の他端に接続する
。余波整流器2aの直流側出力端子の陽極側を定電流チ
ョーク8aを介して、トランス9aの1次側巻線の中間
タップに接続し、トランス9aの1次巻線の両端子に1
対のトランジスタ11a、11bの各コレクタを接続す
ると共に、各エミッタの共通接続端子を、前記余波整流
器2aの直流出力端子の負極側に接続する。前記トラン
ス9aの1次巻線の両端にコンデンサー0aを並列接続
し、両トランジスタ11a、Ilbのベース端子間に抵
抗isa、15bを接続し、該抵抗13a、13bの共
通接続端子に直流電源15aの陽極端子を接続すると共
に、負極端子を全波整流器2aの負極側端子に接続する
(Disclosure of the Invention) FIG. 4 shows a circuit 1 showing an embodiment of the present invention, in which one end of the AC input side of the first upper aftereffect rectifier 2a is connected to one line of the single-phase commercial power supply 1 via a choke 6. , commercial power supply 1
The other wire is connected to the other end of the AC input side of the full-wave rectifier 2a. The anode side of the DC side output terminal of the aftereffect rectifier 2a is connected to the intermediate tap of the primary winding of the transformer 9a via the constant current choke 8a, and the
The collectors of the pair of transistors 11a and 11b are connected, and the common connection terminal of each emitter is connected to the negative side of the DC output terminal of the aftereffect rectifier 2a. A capacitor 0a is connected in parallel to both ends of the primary winding of the transformer 9a, resistors isa and 15b are connected between the base terminals of both transistors 11a and Ilb, and a DC power source 15a is connected to the common connection terminal of the resistors 13a and 13b. The anode terminal is connected, and the negative terminal is connected to the negative terminal of the full-wave rectifier 2a.

一方、チョーク6を接続した商用電源1と同一線にコン
デンサ7を介して、第2の全波整流器2bの交流入力側
一端f接続し商用電源1の他線を全波整流器2bの交流
入力側他端に接続する。全波整流器2bの直流側出力端
は、前記定電流プッシュプルインバータ5aと同一仕様
、同一構成の第2の定電流プッシュプルインバータ5b
に、第1の余波整流器2aの出力端の第1のインバータ
5aとの接続と同様に接続する。又、両インバータ5a
On the other hand, one end f of the AC input side of the second full-wave rectifier 2b is connected to the same line as the commercial power supply 1 to which the choke 6 is connected via the capacitor 7, and the other line of the commercial power supply 1 is connected to the AC input side of the full-wave rectifier 2b. Connect to the other end. The DC side output end of the full-wave rectifier 2b is connected to a second constant current push-pull inverter 5b having the same specifications and configuration as the constant current push-pull inverter 5a.
The output terminal of the first aftereffect rectifier 2a is connected to the first inverter 5a in the same manner as the connection to the first inverter 5a. Also, both inverters 5a
.

ら −ibのトランス9a、9bの出力巻線17a、17b
の各一端を接続すると共に、他端の間に放電灯4を接続
する。両トランス9a、9bの出力巻線17a。
output windings 17a, 17b of transformers 9a, 9b of
and the discharge lamp 4 is connected between the other ends. Output windings 17a of both transformers 9a, 9b.

17bの非共通接続端にコンデンサ18、トランス19
を直列接続し、トランス19の2つの2次巻線16a、
16bの両端子をそれぞれ両インバータ5a’、5bの
)ランジスタ11a、12aのベース端子間及びトラン
ジスタ11b、12bのベース端子間に接続する。
A capacitor 18 and a transformer 19 are connected to the non-common connection end of 17b.
are connected in series, and the two secondary windings 16a of the transformer 19,
Both terminals of transistor 16b are connected between the base terminals of transistors 11a and 12a (of both inverters 5a' and 5b) and between the base terminals of transistors 11b and 12b, respectively.

次にかかるインバータ装置の動作を、第5図に示す動作
波形図を参照して説明する。商用交流電源1より電源電
圧Vl か発生すると、電源電圧VSの全波整流電圧V
L、VCか第1.第2の全波整流器2a、  2bの出
力端に表れる。次に、第1のインバータ5aの動作につ
いて述べる。第1の余波整流器2aに表れた全波整流電
圧vLは、チョーク8a、トランス9 a (7) i
次巻線を介して、トランジスタ11a、12Hのコレク
タ、エミッタ間に印加されるが、直流電源15aにより
、トランジスタ11a、12aが導通している為、トラ
ンジスタ11a、12aにはコレクタ電流が流れ、トラ
ンス9aの1次巻線の中間タップ点より両トランジスタ
11a、12aに至る夫々の1次巻線のいずれかが先に
飽和し、この時より、出力巻線17aに電圧V■ が発
生する。今、第4図図示の方向に電圧Vlが発生すると
、トランス19の2次巻線16aの接続方向によりトラ
ンジスタ11a。
Next, the operation of the inverter device will be explained with reference to the operation waveform diagram shown in FIG. When the power supply voltage Vl is generated from the commercial AC power supply 1, the full-wave rectified voltage V of the power supply voltage VS
L, VC or 1st. It appears at the output end of the second full-wave rectifier 2a, 2b. Next, the operation of the first inverter 5a will be described. The full-wave rectified voltage vL appearing in the first aftermath rectifier 2a is the choke 8a, transformer 9a (7) i
A voltage is applied between the collectors and emitters of the transistors 11a and 12H via the next winding, but since the transistors 11a and 12a are conductive due to the DC power supply 15a, collector current flows through the transistors 11a and 12a, and the transformer One of the primary windings extending from the intermediate tap point of the primary winding 9a to both transistors 11a and 12a becomes saturated first, and from this point on, a voltage V.sub.2 is generated in the output winding 17a. Now, when voltage Vl is generated in the direction shown in FIG. 4, transistor 11a is generated due to the connection direction of secondary winding 16a of transformer 19.

12aのベース端間に図示方向に電圧■、が発生し、ト
ランジスタ12aをオフし、トランジスタ11aをオン
せしめる様に動作する。一方、コンデンサ10aの存在
により、電圧V■  は振動電圧を呈し、電圧Vl  
の極性が反転すると、今度は、電圧VNの極性も反転し
、今度はトランジスタ11aがオフし、トランジスタ1
2aがオンすることとなる。この反転時、トランジスタ
11aのコレクタ電流が流れていたトランジスタila
側のトランス?aの1次巻線には電磁エネルギーが蓄え
られており、トランジスタ11aがオフ時、コンデンサ
10aに充電電流として放出され、電圧V1の振動を維
持させる様に働き、以降、電圧Vl  には正弦波状振
動電圧が1次巻線と絶縁されて発生する。又、第2のイ
ンバータ5bのトランス9bの2次巻線17bにも同様
に正弦波状振動電圧が発生する。この時、トランジスタ
11aとトランジスタiib及びトランジスタ12aと
トランジスタ12bは同一の信号を含むトランス19の
2次巻線16a、16bで反転動作が制御される為、同
一の状態となり、従って、両出力巻線17a。
A voltage 2 is generated between the base terminals of the transistor 12a in the direction shown in the figure, and operates to turn off the transistor 12a and turn on the transistor 11a. On the other hand, due to the presence of the capacitor 10a, the voltage V■ exhibits an oscillating voltage, and the voltage Vl
When the polarity of VN is reversed, the polarity of voltage VN is also reversed, transistor 11a is turned off, and transistor 1
2a is turned on. At the time of this inversion, the transistor ila through which the collector current of the transistor 11a was flowing
Trance on the side? Electromagnetic energy is stored in the primary winding of a, and when the transistor 11a is off, it is released as a charging current to the capacitor 10a, which works to maintain the oscillation of the voltage V1, and thereafter the voltage Vl has a sinusoidal shape. Oscillating voltage is generated isolated from the primary winding. Similarly, a sinusoidal oscillating voltage is generated in the secondary winding 17b of the transformer 9b of the second inverter 5b. At this time, the transistors 11a and iib and the transistors 12a and 12b are in the same state because their inverting operations are controlled by the secondary windings 16a and 16b of the transformer 19, which contain the same signal, and therefore both output windings 17a.

17bの各端子間に発生する電圧は、同期した振動電圧
を得ることができる。
A synchronized oscillating voltage can be obtained from the voltage generated between each terminal of the terminal 17b.

さて、この様に放電灯4の両端に発生する電圧は、低周
波リプルの少ない高周波電圧となる。これは次の理由に
よる。本発明では、出力の高周波電圧は、構成する2個
のインバータ出力を直列に合成している為、2個のイン
バータ5a、5bの入力直流電圧の各瞬時値を加算した
と同様になる。
Now, in this way, the voltage generated across the discharge lamp 4 becomes a high frequency voltage with less low frequency ripple. This is due to the following reason. In the present invention, since the output high-frequency voltage is a series combination of the outputs of the two constituent inverters, it becomes the same as adding the instantaneous values of the input DC voltages of the two inverters 5a and 5b.

一方、各インバータ5a、5bには交流電源と直列にチ
ョーク6及びコンデンサ7を介して接続されている為、
第1の余波整流器2aは、電源電圧V5  に対して遅
相電流iLが、又第2の全波整流器2bには進相電流i
cが流れる。又、両整流器2a、  2bより両インバ
ータ5a、5b側をみた負荷力率は低周波的にほぼ(で
ある為、はぼ抵抗とみなされ、両整流器2a、  2b
の交流側入力端電圧は、夫々電源電圧に対して遅相電圧
vL x進相電圧vcが発生する。この様子を第5図f
atに示している。従って、入力電流iは、遅相電流i
L及び進相電流1(の合成である為、高力率となる事も
明らかである。
On the other hand, since each inverter 5a, 5b is connected in series with an AC power source via a choke 6 and a capacitor 7,
The first aftermath rectifier 2a has a lagging current iL with respect to the power supply voltage V5, and the second full-wave rectifier 2b has a leading phase current i.
c flows. In addition, the load power factor seen from both rectifiers 2a, 2b to both inverters 5a, 5b is approximately (at low frequencies), so it is considered to be a low resistance, and both rectifiers 2a, 2b
The AC-side input terminal voltages of , respectively, generate a lagging phase voltage vL x a leading phase voltage vc with respect to the power supply voltage. This situation is shown in Figure 5 f.
It is shown at. Therefore, the input current i is the slow phase current i
Since it is a combination of L and phase advance current 1, it is clear that the power factor will be high.

又、遅相電流iL  と進相電流j(は、従来例の如く
、余波整流器での電圧弁別作用による矩形波状となるこ
とは明らかである。以上の事から、本発明によれば、放
電灯のインバータ式点灯装置の入力力率を高力率とし、
又、インバータへの六方整流電圧を平滑することなく、
低周波リプルの少ない高周波電圧を発生し、放電灯の発
光効率を最大にして、高効率な点灯装置が実現できる。
Further, it is clear that the slow phase current iL and the fast phase current j (like the conventional example) have a rectangular waveform due to the voltage discrimination effect in the aftereffect rectifier.From the above, according to the present invention, the discharge lamp The input power factor of the inverter type lighting device is set to a high power factor,
Also, without smoothing the hexagonal rectified voltage to the inverter,
A highly efficient lighting device can be realized by generating a high frequency voltage with little low frequency ripple and maximizing the luminous efficiency of the discharge lamp.

本発明では前記低周波リプルは、前記遅相電流iL  
と進相電流1(との位相角θで決定されるこ最大にする
ことができることも明らかである。それは、次の理由に
よる。今、遅相電流iL  と進相電流icを i(、= I sin (ut) iL=Isin(ωt−θ) とすれば、第4図に示す両全波整流器2a、  2bへ
の入力電圧vL s  vCは次式で表わされる。
In the present invention, the low frequency ripple is the slow phase current iL
It is also clear that the value determined by the phase angle θ between the leading phase current 1 (and If I sin (ut) iL=I sin (ωt-θ), then the input voltage vL s vC to both full-wave rectifiers 2a and 2b shown in FIG. 4 is expressed by the following equation.

VC=R−15in(ut ) VL =R111sin (ωt−θ)ここで、kは全
波整流器2a、2bよりみた出力側等価インピーダンス
である。
VC=R-15in (ut) VL=R111sin (ωt-θ) where k is the equivalent impedance on the output side seen from the full-wave rectifiers 2a and 2b.

そζで、本発明での出力電圧V。utは、各インバータ
5a、5bの出力電圧の加算で求まるゆえ、出力電圧V
。ut  の低周波包路線は、次式で求まることになる
Then ζ is the output voltage V in the present invention. Since ut is determined by adding the output voltages of each inverter 5a and 5b, the output voltage V
. The low frequency envelope of ut can be found using the following equation.

出力電圧v。u、ノ低周波包絡線= kx(1vcl+
lvt、l)= k−R−I (l sin ut l
 +jsin(ωを一θ) l ) −−−−−−・<
1+ここでkは、インバータ5a、5bの入力電圧の瞬
時値に対する出力高周波電圧の最大瞬時値の比である。
Output voltage v. u, low frequency envelope = kx (1vcl+
lvt, l) = k-R-I (l sin ut l
+jsin (ω to -θ) l ) −−−−−・<
1+k here is the ratio of the maximum instantaneous value of the output high frequency voltage to the instantaneous value of the input voltage of the inverters 5a, 5b.

上記(1)式より位相角θと低周波リプル比(出力電圧
V。utの低周波包絡線の最大値十出力電圧V。ut 
 の低周波包絡線の最小値)との関係を求めると第6図
の如く得られ、位相角θがンノ時すプル比が最小となる
ことがわかる。従って、位相角θカ倭では最もリプル比
が小さく、放電灯の最点孤電力も必要でなくなり、発光
効率が最大となることが分る。しかし、位相角θを2に
調節するときは放電灯の種類、同一種類でのバラツキ、
あるいは回路定数のバラツキ、負荷容量の変動(放電灯
灯数のバラツキ)からみて、実際上は位相角θが−より
’ltcまでバラツキをもつ。
From the above equation (1), the phase angle θ and the low frequency ripple ratio (maximum value of the low frequency envelope of the output voltage V.ut + output voltage V.ut
When the relationship with the minimum value of the low frequency envelope of Therefore, it can be seen that at a phase angle of θ, the ripple ratio is the smallest, the maximum lighting power of the discharge lamp is not required, and the luminous efficiency is maximized. However, when adjusting the phase angle θ to 2, the type of discharge lamp, the variation within the same type,
Alternatively, in view of variations in circuit constants and variations in load capacity (variations in the number of discharge lamps), the phase angle θ actually varies from - to 'ltc.

3    ろ なお、本発明は上記実施例に限定されるものではなく、
特許請求の範囲に記載された範囲内で変更できるのは勿
論である。
3 It should be noted that the present invention is not limited to the above embodiments,
Of course, changes can be made within the scope of the claims.

(発明の効果) 本発明は上記のように、交流電源の両端に電源周波数に
対して誘導性インピーダンスを呈する素子を介して第1
の余波整流器の交流入力端を接続し、該整流器の直流出
力端を出力絶縁トランスを有する第1の高周波変換回路
の直流入力端に接続すると共に、上記交流電源の両端に
電源周波数に対して容量性インピーダンスを呈する素子
を介して第2の全波整流器の交流入力端を接続し、該整
流器の直流出力端を出力絶縁トランスを有する、第1の
高周波変換回路と略同−仕様の第2の高周波変換回路の
直流入力端に接続して成り、上記第1及び第2の高周波
変換回路を同期運転すると共に、測高周波変換回路の絶
縁された各出力を直列合成し、該合成出力端に負荷を接
続して成るので、低周波リプルの少ない包絡線の高周波
出力が得られ、また、入力力率を高力率とすることがで
きると共に、入力電流の波形歪みが小さく、奇数次高調
波成分も少なくなり、送配電上の効率も高めることがで
きるインバータ装置を提供できた。
(Effects of the Invention) As described above, the present invention provides a first
The AC input end of the aftereffect rectifier is connected, and the DC output end of the rectifier is connected to the DC input end of a first high frequency conversion circuit having an output isolation transformer. A second high-frequency conversion circuit having approximately the same specifications as the first high-frequency conversion circuit, which has an isolation transformer that connects the AC input end of a second full-wave rectifier through an element exhibiting a natural impedance and outputs the DC output end of the rectifier. It is connected to the DC input terminal of the high frequency conversion circuit, operates the first and second high frequency conversion circuits in synchronization, and combines the isolated outputs of the high frequency conversion circuit in series, and loads the combined output terminal. Because it is connected, a high-frequency output with an envelope with little low-frequency ripple can be obtained, and the input power factor can be made high, and the waveform distortion of the input current is small, and odd-order harmonic components can be obtained. We were able to provide an inverter device that can reduce the amount of electricity and increase efficiency in power transmission and distribution.

なお、かかるインバータ装置を用いて放電灯を点灯すれ
ば、発光効率が高く効率の良い点灯装置を提供でき、ま
た、HIDランプや螢光灯の多灯点灯の如き高容量の負
荷を接続しても、高周波変換部が2分割されているため
、耐量の小さい素子を用いても十分な機能を果すことが
でき、コスト、形状ともに小さくすることが可能となる
Note that if such an inverter device is used to light a discharge lamp, a highly efficient lighting device with high luminous efficiency can be provided, and it is also possible to connect a high capacity load such as a multi-lamp lighting device such as an HID lamp or a fluorescent lamp. Also, since the high frequency conversion section is divided into two parts, a sufficient function can be achieved even with the use of elements with low resistance, and both cost and size can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

@1図及び第2図は従来例の簡略回路図、第3図は上記
従来例に係る動作波形図、第4図は本発明の一実施例を
示す回路図、第5図は上記実施例に係る動作波形図、第
6図は位相角に対するリプル比を示す特性図である。 特許出願人 松下電工株式会社 代理人弁理士  竹 元 敏 丸 (ほか2名) 第1図 第2図 第3図 (a) (b)
@ Figures 1 and 2 are simplified circuit diagrams of the conventional example, Figure 3 is an operation waveform diagram of the above conventional example, Figure 4 is a circuit diagram showing an embodiment of the present invention, and Figure 5 is the above embodiment. FIG. 6 is a characteristic diagram showing the ripple ratio with respect to the phase angle. Patent applicant Matsushita Electric Works Co., Ltd. Patent attorney Toshimaru Takemoto (and 2 others) Figure 1 Figure 2 Figure 3 (a) (b)

Claims (3)

【特許請求の範囲】[Claims] (1)交流電源の両端に電源周波数に対して誘導性イン
ピーダンスを呈する素子を介して第1の全波整流器の交
流入力端を接続し、該整流器の直流出力端を出力絶縁ト
ランスを有する第1の高周波変換回路の直流入力端に接
続すると共に、上記交流電源の両端に電源周波数に対し
て容量性インピーダンスを呈する素子を介して第2の全
波整流器の交流入力端を接続し、該整流器の直流出力端
を出力絶縁トランスを有する、第1の高周波変換回路と
略同−仕様の第2の高周波変換回路の直流入力端に接続
して成り、上記第1及び第2の高周波変換回路を同期運
転すると共に、両高周波変換回路の絶縁された各出力を
直列合成し、該合成出力端に負荷を接続して成るインバ
ータ装置。
(1) The AC input end of a first full-wave rectifier is connected to both ends of an AC power supply via an element exhibiting inductive impedance with respect to the power supply frequency, and the DC output end of the rectifier is connected to a first full-wave rectifier having an output isolation transformer. is connected to the DC input end of the high frequency conversion circuit of the second full-wave rectifier, and the AC input end of the second full-wave rectifier is connected to both ends of the AC power supply via an element exhibiting capacitive impedance with respect to the power supply frequency. The DC output terminal is connected to the DC input terminal of a second high frequency conversion circuit having substantially the same specifications as the first high frequency conversion circuit and having an output isolation transformer, and the first and second high frequency conversion circuits are synchronized. An inverter device which combines insulated outputs of both high frequency conversion circuits in series while operating, and connects a load to the combined output terminal.
(2)前記誘導性インピーダンス及び容量性イン定数を
有することを特徴とする特許請求の範囲第1項記載のイ
ンバータ装置。
(2) The inverter device according to claim 1, characterized in that it has the inductive impedance and the capacitive in constant.
(3)  前記第1及び第2の高周波変換回路は、定電
流プッシュプルインバータ回路であることを特徴とする
特許請求の範囲第1項または$2項記載のインバータ装
置。
(3) The inverter device according to claim 1 or $2, wherein the first and second high frequency conversion circuits are constant current push-pull inverter circuits.
JP58044000A 1983-03-15 1983-03-15 Inverter device Granted JPS59169370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044000A JPS59169370A (en) 1983-03-15 1983-03-15 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044000A JPS59169370A (en) 1983-03-15 1983-03-15 Inverter device

Publications (2)

Publication Number Publication Date
JPS59169370A true JPS59169370A (en) 1984-09-25
JPH0334305B2 JPH0334305B2 (en) 1991-05-22

Family

ID=12679436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044000A Granted JPS59169370A (en) 1983-03-15 1983-03-15 Inverter device

Country Status (1)

Country Link
JP (1) JPS59169370A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157261A (en) * 1980-05-07 1981-12-04 Ricoh Co Ltd Power source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157261A (en) * 1980-05-07 1981-12-04 Ricoh Co Ltd Power source

Also Published As

Publication number Publication date
JPH0334305B2 (en) 1991-05-22

Similar Documents

Publication Publication Date Title
US4560908A (en) High-frequency oscillator-inverter ballast circuit for discharge lamps
TWI410037B (en) Power conversion device and control method thereof
JPS6367435B2 (en)
US5399943A (en) Power supply circuit for a discharge lamp
JPH11500861A (en) Ballast system
US4220896A (en) High frequency lighting inverter with constant power ballast
JPS62290917A (en) Power factor improved circuit network
JPH0372198B2 (en)
JPH11507176A (en) Single switch ballast with power factor correction
TW386331B (en) Electronic ballast for gas discharge lamp having primary and auxiliary resonant circuits
US4701671A (en) High-frequency oscillator-inverter ballast circuit for discharge lamps
US4045708A (en) Discharge lamp ballast circuit
JPS59169370A (en) Inverter device
JPH11500860A (en) Ballast system
JPH10106786A (en) Power supply device
JPS6361878B2 (en)
JPS62207174A (en) High frequency generator
JPH0574588A (en) Discharge lamp lighting device
JP2619423B2 (en) Power supply
JPH0335795B2 (en)
JP2593274B2 (en) Rectifier
JPS60167683A (en) Power source
JPS5921520Y2 (en) discharge lamp lighting device
JPH063757B2 (en) Discharge lamp lighting device
JPH06275391A (en) Lighting method for metal halide lamp and device thereof