JPS59169191A - Single axis mode semiconductor laser - Google Patents

Single axis mode semiconductor laser

Info

Publication number
JPS59169191A
JPS59169191A JP4347783A JP4347783A JPS59169191A JP S59169191 A JPS59169191 A JP S59169191A JP 4347783 A JP4347783 A JP 4347783A JP 4347783 A JP4347783 A JP 4347783A JP S59169191 A JPS59169191 A JP S59169191A
Authority
JP
Japan
Prior art keywords
layer
region
terrace
light guide
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4347783A
Other languages
Japanese (ja)
Inventor
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4347783A priority Critical patent/JPS59169191A/en
Priority to EP83110135A priority patent/EP0106305B1/en
Priority to DE8383110135T priority patent/DE3379442D1/en
Priority to CA000438801A priority patent/CA1197308A/en
Priority to US06/541,211 priority patent/US4618959A/en
Publication of JPS59169191A publication Critical patent/JPS59169191A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance the productivity by isolating a light guide layer, a buffer layer and an active layer between above the terrace-shaped region and the other region, and butting and connecting one end face of the light guide layer above the terrace-shaped region and the one end face of the active layer except the part above the terrace-shaped region, thereby reducing the number of steps of epitaxially growing. CONSTITUTION:A diffraction grating 20 is formed on a (001) plane azimuth N type InP substrate 1 so that the pitch direction becomes (110) direction. It is etched in parallel with the direction of T10 direction perpendicular thereto, and formed in shape as shown in (b). Then, an epitaxial growth is executed. An N type InGaAsP light guide layer 5, an N type InP buffer layer 2, a non-doped InGaAsP active layer 3 are grown in the laminated shape cut in the course at both sides of the stepwise difference part 10. Subsequently, electrodes are formed, cleaved in parallel with (110), a resonator surface is formed as a chip, thereby obtaining a single axial mode semiconductor laser. As described above, since it can be formed by one epitaxial growing step, the productivity is advantageously excellent.

Description

【発明の詳細な説明】 本発明は光フアイバ通信システム用光源に適した卑−軸
モード牛導体ンーザに1′)1する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a base-axis mode conductor sensor suitable for a light source for a fiber optic communication system.

光ファイバの伝送損失が波長1,3μm及び1.5μ?
n帝で0.3〜θ、5dB/km 以下と超低損失化さ
れたことにより、中継間隔が1100k以上という超長
距龍の云送実験が各所で行われ始めている。この様な超
長距光ファイバ通覧信システムは中継間隔な長くするこ
とが有利な海底通信システム等への適用が期待される。
Is the transmission loss of optical fiber at wavelengths of 1.3 μm and 1.5 μm?
Due to the ultra-low loss of 0.3 to θ and 5 dB/km or less, ultra-long distance transmission experiments with relay intervals of 1,100 km or more have begun to be carried out in various places. Such an ultra-long distance optical fiber communication system is expected to be applied to submarine communication systems, etc., where it is advantageous to lengthen the relay interval.

超長距錐伝迭r(おいては九ファイバの伝送損失のほか
に、波長分散も間ねとなってくる。光フアイバ通信用光
源として開発されて米だファプリー・ベロー(F’ab
ry−Perot )共据器形半導体レーザは通常複鮒
本の発振軸モードを有するため、中継器間隔あるいは伝
送容量は伝送損失よりもむしろ波長分散による制限を受
けるようになってくる。従って長距離かつ高速の光フア
イバ伝送通信システムを実現するには単一軸モード発振
が可能な半導体レーザが要求される。この様な半導体レ
ーザとしてはファブリ・ベロー共蛋器によらず内部に周
期構造を有する回折格子を作り付げた分布反射形半導体
レーザあるいは分布帰還形半導体レーザがある。筆者は
第1図に示す、構造の分布反射形半導体レーザを%M昭
57−178824で発明した。この分布反射形半導体
レーザの特徴はエピタキシャル成長の結晶方位依存性を
有効に利用して、回折格子20が形成された光力イト層
5と活性piI3とが突き合せの形で結合される形状を
しており、活性層3と光ガイド層5との間の伝搬光の縮
合効率が90%程度と高いこと、また埋め込みへテロ構
造が採用されていることにより、発揚閾値が室温で20
〜30mAと低い、微分部子効率が30〜50ヂと高い
等の高性能が得られる。しかしながらこの分布反射半導
体レーザの作製工程が、埋め込みへテ巨惜造を採用する
と全部で3回の長−・エピタキシャル成長層fl!を必
砂とすることが、生産性の面で欠点となっていた。
In addition to the transmission loss of nine fibers, chromatic dispersion also becomes a problem in ultra-long distance conical transmission.
Since co-located semiconductor lasers usually have multiple oscillation axis modes, repeater spacing or transmission capacity is limited by chromatic dispersion rather than transmission loss. Therefore, in order to realize a long-distance, high-speed optical fiber transmission communication system, a semiconductor laser capable of single-axis mode oscillation is required. Examples of such a semiconductor laser include a distributed reflection type semiconductor laser or a distributed feedback type semiconductor laser in which a diffraction grating having a periodic structure is built inside without using a Fabry-Bérot reciprocator. The author invented a distributed reflection type semiconductor laser having the structure shown in FIG. 1 in 178824/1982. The feature of this distributed reflection type semiconductor laser is that it has a shape in which the optical power layer 5 on which the diffraction grating 20 is formed and the active piI 3 are coupled in a butt-like manner by effectively utilizing the crystal orientation dependence of epitaxial growth. The condensation efficiency of the propagating light between the active layer 3 and the light guide layer 5 is as high as about 90%, and the buried heterostructure is used, so that the firing threshold is 20% at room temperature.
High performance can be obtained, such as a low differential efficiency of ~30 mA and a high differential efficiency of 30 to 50 degrees. However, if the manufacturing process of this distributed reflection semiconductor laser employs a buried heat treatment, a total of three long epitaxial growth layers fl! Requiring sand was a drawback in terms of productivity.

本発明は、上記分布反射形半導体レーザのh+ Lを改
俸することにより、エピタキシャル成長工程数を少なく
して作製可能なノドー転モード牛尋体レーザな提供する
ものである。
The present invention provides a rotary-rotation mode laser beam that can be manufactured by reducing the number of epitaxial growth steps by modifying the h+L value of the distributed reflection semiconductor laser.

本発明の単一軸モード半導体レーザは、上面に凹凸の周
期構造を有する回折格子が池底されたテラスVこの領域
を有する半導体基板に第1導電形の光ガイド層、第14
bhのバッファ層、活性も、第2導電形のクラッド層の
少なくとも4層が形成され、前記光ガイド忠、バッファ
層および活性層は前記テラス状領域の上方と他の領域と
で分離して形成され、かつ前記テラス状の領域上方の前
記光ガイド層の片端面と前記テラス状の領域上方以外の
前記活性層の片端面とが突き合わされて接続されている
ことを特徴としている。
The single-axis mode semiconductor laser of the present invention has a semiconductor substrate having a terrace V region at the bottom of which is a diffraction grating having a periodic structure of irregularities on the upper surface, an optical guide layer of the first conductivity type, a light guide layer of the first conductivity type;
At least four layers of a second conductivity type cladding layer are formed for the buffer layer and the active layer of the bh, and the light guide layer, the buffer layer, and the active layer are formed separately above the terraced region and other regions. and one end surface of the light guide layer above the terrace-like region and one end surface of the active layer other than above the terrace-like region are butted and connected.

本発明のもう1つの単一軸モード半導体レーザは、上記
構造に加えて、2本の溝に挟まれ、光ガイド層、バッフ
ァ層、活性層を少なくとも備えたストライプ状の活性領
域と、この活性領域を取り囲むようにして形成された埋
め込み層とを備えた構成となっている。
Another single-axis mode semiconductor laser of the present invention has, in addition to the above structure, a striped active region sandwiched between two grooves and comprising at least a light guide layer, a buffer layer, and an active layer; The structure includes a buried layer formed to surround the.

次に図面を用いて本発明の実施例を詳細に説明する。Next, embodiments of the present invention will be described in detail using the drawings.

第2図は本発明の第1の実施例の製造工程を示す図であ
る。まず第2図(a)に示す様K(001)面方位n形
InP基板1の上に周期約2200X、深さ約0.1μ
mの回折格子20をHe −Cdレーザを用いた干渉露
光法とフォトリングラフィの手法により、ピッチ方向が
<110>方向となるように形成する。
FIG. 2 is a diagram showing the manufacturing process of the first embodiment of the present invention. First, as shown in FIG. 2(a), a substrate is placed on an n-type InP substrate 1 with a K(001) plane orientation at a period of about 2200X and a depth of about 0.1μ.
The diffraction grating 20 of m is formed by an interference exposure method using a He-Cd laser and a photophosphorography method so that the pitch direction is the <110> direction.

次にこれと垂直なくTIO>方向と平行に(3HC1+
グHa PO4)溶液を用いてエツチングを行い第2図
(blに示す形状にする。段差部1oを境として約12
μmの深さでエツチングされた面11は、回折格子20
の深さが微/J’lであるため、その痕跡が全く見られ
ず完全な鏡面となる。次にエピタキシャル成長を行う。
Next, not perpendicular to this but parallel to the TIO> direction (3HC1+
Etching is carried out using a solution of 100 ml (HaPO4) to form the shape shown in Figure 2 (bl).
The surface 11 etched to a depth of μm is the diffraction grating 20.
Since the depth of the surface is micro/J'l, no traces of it can be seen, resulting in a perfect mirror surface. Next, epitaxial growth is performed.

tS長はカーボンスライドボートを用いた通常の液相エ
ピタキシャル成長方法に依る。
The tS length depends on the usual liquid phase epitaxial growth method using a carbon slide boat.

第3図(c)に成長後の多層構造を示す。まずn形In
GaAgP光ガイド層5(キャリア濃度5×10″′α
 、厚さ05μm、発光波長にして13μm組成)およ
びn形InPバッファ層2(キャリア濃度s x 16
’−−1、厚さ1μ、n)、ノンドープInGaAsP
活性W13(厚さ01μm、発振波長にして1.55μ
m組成)を、段差部10の両側で途切れてfXMする形
状で成長する。この様な成長形状が得られる理由は特願
昭57−178824 にもその原理を示しであるが、
成長溶液の過飽和度が数度と低い場合には、<O’l’
l>方向に平行な段差部10の上への積層速度が(00
1)面上への積層速度に対し極めて遅いためである。し
かしながら、成長溶液の過飽和度が10度以上と大きい
場合には成長層は表面をはぼ均一に覆いつくして成長さ
れる。P形InPクラッド層4(キャリア濃度lXl0
”備−1、厚さ2μm)およびP形InGaAsPキャ
ップ層6(キャリア濃度、5X10”w−”、厚さ0.
7Bm、発光波長にして1.2μm組成)をこの様な大
きな過飽和度の溶液から、全面を覆って成長させる。こ
こで、光ガイド層5、バッファ層3および活性層3は、
段差部1゜の両側で位置する高さが異なる。エツチング
された面11を基準として考えると、回折格子2oの上
に積層された光ガイド層5は12μmから17μmの高
さに位置する。これに対しエツチングされた面11の上
方の活性層3は1,5μmから16μmの高さに位置す
る。従って、両者は突き合わせの形で接続されることに
なる。エピタキシャル成長の成長膜厚のばらつきが各層
で10%程度はらついても、光ガイドIa5の膜厚が0
.5μmと厚いため、活性層3と光ガイド層5との端面
の位置が完全にずれてしまうことはなく、両者の接続の
再現性は良好であった。
FIG. 3(c) shows the multilayer structure after growth. First, n-type In
GaAgP optical guide layer 5 (carrier concentration 5×10″′α
, thickness 05 μm, composition 13 μm in terms of emission wavelength) and n-type InP buffer layer 2 (carrier concentration s x 16
'--1, thickness 1μ, n), non-doped InGaAsP
Active W13 (thickness 01μm, oscillation wavelength 1.55μm)
m composition) is grown in a fXM shape with interruptions on both sides of the stepped portion 10. The reason why such a growth shape can be obtained is also shown in the patent application No. 178824/1985, but
When the supersaturation degree of the growth solution is as low as a few degrees, <O'l'
The stacking speed on the stepped portion 10 parallel to the l> direction is (00
1) This is because the speed of stacking on the surface is extremely slow. However, if the degree of supersaturation of the growth solution is as high as 10 degrees or more, the growth layer will grow to almost uniformly cover the surface. P-type InP cladding layer 4 (carrier concentration lXl0
P-type InGaAsP cap layer 6 (carrier concentration, 5X10"w-", thickness 0.
7Bm (composition of 1.2 μm in terms of emission wavelength) is grown from such a highly supersaturated solution to cover the entire surface. Here, the light guide layer 5, buffer layer 3 and active layer 3 are
The heights on both sides of the 1° step are different. Considering the etched surface 11 as a reference, the light guide layer 5 laminated on the diffraction grating 2o is located at a height of 12 μm to 17 μm. In contrast, the active layer 3 above the etched surface 11 is located at a height of 1.5 μm to 16 μm. Therefore, the two are connected in a butt-to-edge manner. Even if the growth film thickness during epitaxial growth fluctuates by about 10% for each layer, the film thickness of the light guide Ia5 is 0.
.. Since it was as thick as 5 μm, the positions of the end faces of the active layer 3 and the optical guide layer 5 were not completely misaligned, and the reproducibility of the connection between the two was good.

以上で半導体ウェハの作製を終え、その後電極を形成し
、<110)に平行に弁開し、共振器面を形成しチップ
とし、第3図に示す構造の単一軸モード半導体レーザを
得る。840.の絶縁膜30の一部を除去し片側電極3
2としてTi/Pt/Auを蒸着し、ストライブ状の電
流注入領域31を形成してL−る。n側電極33にはA
 u /G e /N iを用いて六・る。回折格子2
0の上の光ガイド層5は、注入電流により活性層3で発
光した光のうち、光ガイド層5に入射した光を回折格子
20の周期によ7゛ って決定されるダラッグ(Bragg)波長1.55μ
mで回折し反射させて活性層3に戻すため分布反射領域
となり、片側の弁開によって形成されたミラー面ととも
に活性層3に対するレーザー共振器を形成する。回折格
子20上の光ガイド層5の長さを500μm以上とすれ
ば、レーザ発振光に対し、この領域では30%以上の亮
い反射率が得られる。
After completing the fabrication of the semiconductor wafer, electrodes are formed, the valve is opened parallel to <110), a resonator surface is formed, and a chip is obtained, thereby obtaining a single-axis mode semiconductor laser having the structure shown in FIG. 840. A part of the insulating film 30 is removed and one side electrode 3 is removed.
2, Ti/Pt/Au is vapor-deposited to form a striped current injection region 31. The n-side electrode 33 has A
6.ru using u /G e /N i. Diffraction grating 2
The light guide layer 5 on top of the diffraction grating 20 converts the light incident on the light guide layer 5 out of the light emitted by the active layer 3 due to the injected current into a Bragg beam determined by the period of the diffraction grating 20. Wavelength 1.55μ
Since the light is diffracted and reflected at m and returned to the active layer 3, it becomes a distributed reflection region, and forms a laser resonator for the active layer 3 together with the mirror surface formed by opening the valve on one side. If the length of the optical guide layer 5 on the diffraction grating 20 is 500 μm or more, a bright reflectance of 30% or more can be obtained in this region for laser oscillation light.

また活性層3と光ガイド層5とは突き合せの形で接続さ
れており、両者間での光の結合効率は90チ以上で接続
部での光の損失は小さい。従って、活性層3の長さを2
00am程度とした時発振閾値は室温で200mA程度
、微分量子効率は片側20チ程度と良好であった。発振
波長は155μmで単一軸モードであった。
In addition, the active layer 3 and the light guide layer 5 are connected in a butt-to-edge manner, and the light coupling efficiency between them is 90 inches or more, and the loss of light at the connection portion is small. Therefore, the length of the active layer 3 is 2
When the voltage was set at about 00 am, the oscillation threshold was about 200 mA at room temperature, and the differential quantum efficiency was good at about 20 cm on one side. The oscillation wavelength was 155 μm and a single axis mode.

以上の様に第3図に示す本発明の第1の実施例の単一軸
モード半導体レーザは、−回のエピタキシャル成長工程
で形成できるため、生産性に優れる利点を有することが
わかる。
As described above, it can be seen that the single-axis mode semiconductor laser of the first embodiment of the present invention shown in FIG. 3 can be formed in -times of epitaxial growth process, and therefore has an advantage of excellent productivity.

第1の実施例の単一軸モード半導体レーザは、埋め込み
形構造を採用することにより特性を更に改善できる。第
4図(a)〜(elは、本発明の第2の実施例の埋め込
み形の単一軸モード半導体レーザの製造工程を示す図で
ある。まず第1の実施例の場合と同様の製造工程により
、第4図(a)に示す多層膜基板を作製する。これは第
2図(C)に示した基板とほぼ同様の構造をしており異
なる点はキャップ層6がないことと、7形InP  ク
ラッド層4の膜厚が約1μmと薄くなっていることであ
る。この基板に、第4図(blに示す様に幅約7μm、
深さ約3μmの平行な2本のi!l#13と14を形成
し、この2本の溝が挟む形状で幅約2μmの活性層3を
含むメサストライプ12を形成する−0この状態の基板
の上に埋め込み成長を行う。埋め込み成長後の状態を第
5図(c)に示す。矛形InP電流ブロック層7(キャ
リア濃度lXl0”crn−”、平坦部での厚さ0.5
μm)、n形InP電流晶じ込め層8(キャリア”成長
させメサストライプ12の上には成長させな℃・。/形
InNめ込み層9(キャリア濃度1y1d”(m”、平
坦部での厚さ1.5μm)および/形I nGaAsP
キャップ)N6C’rヤリア濃度5X10”crnl、
平坦部での膜厚0.7μm)は全体を覆って積層させる
The characteristics of the single-axis mode semiconductor laser of the first embodiment can be further improved by adopting a buried structure. FIGS. 4(a) to (el) are diagrams showing the manufacturing process of a buried type single-axis mode semiconductor laser according to the second embodiment of the present invention. First, the manufacturing process is similar to that of the first embodiment. A multilayer film substrate shown in FIG. 4(a) is manufactured by this method.This has almost the same structure as the substrate shown in FIG. 2(C), except that there is no cap layer 6 and 7. The film thickness of the InP type cladding layer 4 is as thin as about 1 μm.As shown in FIG.
Two parallel i!s with a depth of about 3 μm! 1 #13 and 14 are formed, and a mesa stripe 12 including the active layer 3 with a width of about 2 μm is formed between these two grooves.-0 Filling growth is performed on the substrate in this state. The state after the buried growth is shown in FIG. 5(c). Square-shaped InP current blocking layer 7 (carrier concentration lXl0"crn-", thickness at flat part 0.5
μm), n-type InP current confinement layer 8 (carriers are allowed to grow and do not grow on the mesa stripe 12). thickness 1.5 μm) and/type I nGaAsP
cap) N6C'r Yaria concentration 5X10" crnl,
The film thickness at the flat portion is 0.7 μm) and is laminated to cover the entire surface.

以上で半導体ウェハの作製を終え、Ntfaを形成し第
6図に示す構造のチップとする。回折格子20の上方の
活性層3には電流を注入する必要がな(・ので、S +
 Ox絶縁膜30を設け、電流注入領域を制限している
。2匝電極32とn側電極33は第3図に示す第1の実
施例の場合と同じ材料を用〜・ている。共振器長は第1
の実施例とほぼ同じ長さに設定しである。7側電極32
を正、n側電極33を負とするバイアス電圧を印加する
と、メサストライプ12内の活性層3では戸n接合の順
方向電流が流れ発光再結合が生じるが、メサストライプ
12の外側の領域はi n7 n接合となっているため
電流が流れI工い。従って注入電流は効率良く、メサス
トライプ12内の活性層3に集中する。またこの活性層
3に接続する下面に回折格子を有する光ガイド層5もメ
サストライプ12内にあるため矩形の導波路となる。従
りて光のrrlじ込めが良好であるため、活性層3から
光ガイド層5に入射した光のほとんどが回折格子2′0
によって分布反射されて活性層3′へ戻されろ。従って
電流の活性層3への集中効果、および光の光ガイドF4
5および活性層3への閉じ込め効果の寄与により第1の
実施例に比べ発振特性は大幅に改善される。発振閾値は
20mA程度、微分量子効率が高く両側で約50襲の値
が得られた。注入電流−光出力の直線性も良好で、室温
で20rr+W以上の光出力が得られた。
The fabrication of the semiconductor wafer is thus completed, and Ntfa is formed to form a chip having the structure shown in FIG. There is no need to inject current into the active layer 3 above the diffraction grating 20 (because S +
An Ox insulating film 30 is provided to limit the current injection region. The two electrodes 32 and the n-side electrode 33 are made of the same materials as in the first embodiment shown in FIG. The resonator length is the first
The length is set to be approximately the same as that of the embodiment. 7 side electrode 32
When a bias voltage is applied with positive on the n-side electrode 33 and negative on the n-side electrode 33, a forward current of the n-junction flows in the active layer 3 in the mesa stripe 12, causing luminescent recombination, but the area outside the mesa stripe 12 Since it is an in7 n junction, current flows and it is difficult to operate. Therefore, the injected current is efficiently concentrated in the active layer 3 within the mesa stripe 12. Further, since the optical guide layer 5 having a diffraction grating on the lower surface connected to the active layer 3 is also located within the mesa stripe 12, it becomes a rectangular waveguide. Therefore, since the light rrl confinement is good, most of the light incident on the light guide layer 5 from the active layer 3 passes through the diffraction grating 2'0.
It is reflected back to the active layer 3' through distributed reflection. Therefore, the concentration effect of the current in the active layer 3 and the light guide F4 of the light
5 and the confinement effect of the active layer 3, the oscillation characteristics are significantly improved compared to the first embodiment. The oscillation threshold was about 20mA, and the differential quantum efficiency was high, with values of about 50% on both sides. The linearity between the injection current and the optical output was also good, and an optical output of 20 rr+W or more was obtained at room temperature.

発振波長は第1の実施例の場合と同様、波長155μm
nで単一軸モードであった。
The oscillation wavelength is 155 μm as in the first embodiment.
It was in single axis mode at n.

以上の様に本発明の第2の実施例の単一軸モード半導体
レーザば、第1図に示す従来例の構造とほぼ同様の機能
を備え、また発振粘性もほぼ同様の結果が得られるが工
2ビタキシャル成長工程が従来の3回に対し、2回で済
むという利点を有し、生産性に優って〜・ることかわか
る。
As described above, the single-axis mode semiconductor laser according to the second embodiment of the present invention has almost the same function as the conventional example shown in FIG. It can be seen that the 2-bitaxial growth process has the advantage of requiring only 2 steps compared to the conventional 3 steps, and is superior in productivity.

本発明は上記2つの実施例に限定されることはない。半
導体材料として、GaAs基板上のA1色駄またはIn
GaAsP等を用いることも可能である。
The present invention is not limited to the above two embodiments. As a semiconductor material, A1 or In on a GaAs substrate is used.
It is also possible to use GaAsP or the like.

最後に本発明のt¥f徴をまとめると、従来に比ベエビ
タキシャル成長工程数を減少でき生産性を高めることが
できることである。
Finally, to summarize the t\f characteristics of the present invention, it is possible to reduce the number of vitaxial growth steps and increase productivity compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来形の単一軸モード半導体レーザの斜視図、
第2合の実施例の製造工程を示す断面図、第3図榊=綽
は第1の実施例の斜視図、第4図(al〜(e)は第2
の実施例の製造工程を示す斜視図、第5図は第2の実施
例を示す斜視図である。 図中、1はn形InP半導体基板、2はn形InPバッ
ファ層、3ばInGaAsP活性層、4はl形丁nPク
ラッド層、5はn形InGaAIIP光ガイド層、6は
7形InGaAsPキャップ層、7は7形InP電流ブ
ロック層、8はn形1nP電流閉じ込め層、9は?形I
nP埋め込み層、10はエツチングで形成される段差部
、11はエツチング面、12はメサストライプ、13お
よび14は平行な2本の溝、20は回折格子、30はS
tow絶縁膜、31は電流注入領域、32は戸側金属雷
椅、33はn側合M電椿を示す。 第 17 (C) 2θ
Figure 1 is a perspective view of a conventional single-axis mode semiconductor laser.
A cross-sectional view showing the manufacturing process of the second embodiment, FIG. 3 Sakaki is a perspective view of the first embodiment, and FIGS.
FIG. 5 is a perspective view showing the manufacturing process of the second embodiment. In the figure, 1 is an n-type InP semiconductor substrate, 2 is an n-type InP buffer layer, 3 is an InGaAsP active layer, 4 is an l-type nP cladding layer, 5 is an n-type InGaAIIP optical guide layer, 6 is a 7-type InGaAsP cap layer , 7 is a 7-type InP current blocking layer, 8 is an n-type 1nP current confinement layer, and 9 is a ? Form I
nP buried layer, 10 is a stepped portion formed by etching, 11 is an etched surface, 12 is a mesa stripe, 13 and 14 are two parallel grooves, 20 is a diffraction grating, 30 is S
A tow insulating film, 31 a current injection region, 32 a metal lightning chair on the door side, and 33 a metal electric camellia on the n side. 17th (C) 2θ

Claims (1)

【特許請求の範囲】 1 上面に凹凸の周期構造を有する回折格子が形成され
たテラス状の領鰺を有する半導体基板に、第1導ル′形
の光がイド層、第1導電形のバッファ層、活性層、第2
導電形のクラッド層の少なくとも4r92が形成され、
前記光ガイド層、バッファ層および活性層は前記テラス
状の領域の上方と他の領域とで分離して形成され、かつ
前記テラス状の領域上方の前記光ガイド層の片端面と前
記テラス状の領域上方以外の前記活性層の片端面とが突
き合わされて接続されていることを特徴とする単一軸モ
ード半導体レーザ。 2、上面に凹凸の周期構造を有する回折格子が形成され
たテラス状の領域を有する牛纒体基板上に、第1導電形
の光ガイド層、第1導電形のバッファ層、活性層二鎖2
導電形のクラッド層の少なくとも4層を備え、前記4に
のうち光ガイド層とバッファ層と活性層とは前記テラス
状の領域の上方に形成された部分と他の領域上に形成さ
れた部分とが分離し、がっ、テラス状の領域の上方のう
Yニガイド層の片端面とテラス状の領域上方以外の領域
の活性層の片端面とが接している構造を有し、さら((
,2本の鉢で挾まれ、前記光ガイド層、バッファ層、活
性層を少くとも具備した7、ドライブ状の活性領域と、
この活性領域な堆りI!11む埋め込み層とを備えてい
ることを特徴とする単一軸モード伴々r体レーザ。
[Scope of Claims] 1. A semiconductor substrate having a terrace-shaped region on which a diffraction grating having a periodic structure of irregularities is formed, a first conductive type light guide layer, a first conductivity type buffer layer, active layer, second
at least 4r92 of a conductive type cladding layer is formed;
The light guide layer, the buffer layer, and the active layer are formed separately above the terrace-like region and in another region, and one end surface of the light guide layer above the terrace-like region and the terrace-like region are formed separately from each other. A single-axis mode semiconductor laser characterized in that one end surface of the active layer other than the upper region is butted and connected. 2. A light guide layer of a first conductivity type, a buffer layer of a first conductivity type, and an active layer double-stranded are formed on a columnar substrate having a terrace-like region in which a diffraction grating having a periodic structure of irregularities is formed on the upper surface. 2
It comprises at least four conductive cladding layers, of which the optical guide layer, the buffer layer and the active layer are formed above the terraced area and formed above the other areas. It has a structure in which one end surface of the Y guide layer above the terrace-like region is in contact with one end surface of the active layer in the region other than above the terrace-like region.
7. A drive-shaped active region sandwiched between two pots and comprising at least the light guide layer, the buffer layer, and the active layer;
This active area is a pile! What is claimed is: 1. A single-axis mode r-body laser, comprising:
JP4347783A 1982-10-12 1983-03-16 Single axis mode semiconductor laser Pending JPS59169191A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4347783A JPS59169191A (en) 1983-03-16 1983-03-16 Single axis mode semiconductor laser
EP83110135A EP0106305B1 (en) 1982-10-12 1983-10-11 Double heterostructure semiconductor laser with periodic structure formed in guide layer
DE8383110135T DE3379442D1 (en) 1982-10-12 1983-10-11 Double heterostructure semiconductor laser with periodic structure formed in guide layer
CA000438801A CA1197308A (en) 1982-10-12 1983-10-12 Double heterostructure semiconductor laser with periodic structure formed in guide layer
US06/541,211 US4618959A (en) 1982-10-12 1983-10-12 Double heterostructure semiconductor laser with periodic structure formed in guide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4347783A JPS59169191A (en) 1983-03-16 1983-03-16 Single axis mode semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59169191A true JPS59169191A (en) 1984-09-25

Family

ID=12664796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4347783A Pending JPS59169191A (en) 1982-10-12 1983-03-16 Single axis mode semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59169191A (en)

Similar Documents

Publication Publication Date Title
WO2003067724A1 (en) Semiconductor light-emitting device and its manufacturing method
US5042049A (en) Semiconductor optical device
CN101316027A (en) Production method of quantum well edge-emission semiconductor laser
JPS59205787A (en) Single axial mode semiconductor laser
US4792962A (en) A ring-shaped resonator type semiconductor laser device
CN113507040A (en) Semiconductor laser and preparation method thereof
JP2004253811A (en) Semiconductor light emitting device and its manufacturing method
US5239600A (en) Optical device with an optical coupler for effecting light branching/combining by splitting a wavefront of light
JP2003198057A (en) Semiconductor laser element and method of manufacturing the same
JPH0461514B2 (en)
JPH01164077A (en) Light-emitting diode and its manufacture
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
US6552358B2 (en) High power single mode laser and method of fabrication
JPS6328520B2 (en)
JPH09275240A (en) Waveguide optical device and forming method thereof
JPH055391B2 (en)
JPS59169191A (en) Single axis mode semiconductor laser
JPS61113293A (en) Semiconductor laser array device
CN115280609A (en) Optical device
JPH03227086A (en) Semiconductor laser element and manufacture thereof
JPS59184585A (en) Semiconductor laser of single axial mode
US4393504A (en) High power semiconductor laser
JPH02180085A (en) Semiconductor laser element and manufacture thereof
JPS5967681A (en) Semiconductor laser of single axial mode
JPS5871677A (en) 2-wavelength buried hetero structure semiconductor laser