JPS59168683A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JPS59168683A
JPS59168683A JP58042566A JP4256683A JPS59168683A JP S59168683 A JPS59168683 A JP S59168683A JP 58042566 A JP58042566 A JP 58042566A JP 4256683 A JP4256683 A JP 4256683A JP S59168683 A JPS59168683 A JP S59168683A
Authority
JP
Japan
Prior art keywords
type ingaasp
optical
semiconductor layer
ingaasp layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58042566A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58042566A priority Critical patent/JPS59168683A/en
Publication of JPS59168683A publication Critical patent/JPS59168683A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable an optical output level to be directly controlled by a single element corresponding to an optical input regardless of laser oscillated beams or naturally emitted light by a method wherein semiconductor layers with specific band gap energy Eg comprising semiconductor layers with Eg=Eg3 as main light emitting layers and other semiconductor layers with Eg=Eg4 as main light absorbing layers are formed. CONSTITUTION:When this optical semiconductor element is supplied with current in normal direction, firstly electron - hole are recoupled in the fifth P type InGaAsP layer 26. Due to lower P concentration in the second, third and fourth P type InGaAsP layers 23, 24 and 25, the barrier against the fifth P type InGaAsP layer 26 is lowered. Therefore leak current is increased corresponding to increased current resultantly increasing the electrons running into the first P type InGaAsP layer 22 to increase optical output with wave length of 1.3mum very rapidly. At this time, if optical output with wave length of 1.06mum is entered through a window, it is absorbed into the third P type InGaAsP layer 24 to form hole - electron. Corresponding to increased intensity of the entered light, the hole concentration in the third P type InGaAsP layer 24 is increased making hole Fermi level approach to valence band raising barrier against the electron of the fifth P type InGaAsP layer 26.

Description

【発明の詳細な説明】 本発明は、光入力に応じて異なる光出力レベルをもつ光
半導体素子に関する。光信号によ多情報を伝達するシス
テムにおいて光変調、光演算といった機能を果すために
光入力に応じて光出力を制御する素子が、今後槽々重要
となる。従来、光入力に応じて光出力を制御するために
、光検出素子。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical semiconductor device having different optical output levels depending on optical input. Elements that control optical output according to optical input will become increasingly important in the future in order to perform functions such as optical modulation and optical calculation in systems that transmit multiple information through optical signals. Conventionally, a photodetector element is used to control the light output depending on the light input.

電気回路及び発光素子といった個別の素子を組合せ、光
信号を電気信号に変換した鎌再び光信号に変えるという
手段が一般に用いられていた。又、光−電気変換を行な
わないものとしては、不均一な電流分布を設けた光双安
定半導体レーザ等が研究段階にある。しかしながら個別
の素子を組合せるもので、簡便な発光ダイオード(LE
Dと呼ぶ)の発光に対しては必ずしも有効ではない。
Generally, a method was used in which individual elements such as an electric circuit and a light emitting element were combined to convert an optical signal into an electric signal, and then the sickle was converted back into an optical signal. Furthermore, as devices that do not perform optical-electrical conversion, optical bistable semiconductor lasers with non-uniform current distribution are currently under research. However, it is a combination of individual elements, and a simple light emitting diode (LE
It is not necessarily effective for light emission (referred to as D).

本発明は、光入力に応じてレーザ光、自然発光Kかかわ
らず光出力を制御する機能を1つの光半導体素子で実現
することを可能にするものである。
The present invention makes it possible to realize, with a single optical semiconductor element, the function of controlling the light output regardless of whether it is a laser light or natural light emission K depending on the light input.

即ち、化合物半導体からなる光半導体素子において、少
なくとも、第1の導ぼ型でバンドギャップエネルギー(
以下Egと呼ぶ)が、Eg=Egtの半導体層と、第1
又は第2の導電型でEg””ggs(Egs<Egt 
)の半導体層と、第2の導電型でEg””EgIl(E
gs >Ego )かつ低キャリヤ濃度の半導体層と、
′第2の導電型でEg=Eg4(Egt>EgJかつ低
キャリヤ濃度の半導体層と、第2の導電型でEg=Eg
s(Egs >Egs )かつ低キャリヤ濃度の半導体
層と、第2の導電型でEg=Ega(Ege<Egs)
の半導体層と、第2の導電型でEg=Egy(Egy 
>Ego)の半導体層が順に形成され、上記Eg”Eg
aの半導体層を主発光層とし、上記Eg””Egtの半
導体層を主光吸収層とした構造を備えていることを特徴
とする光半導体素子である。
That is, in an optical semiconductor element made of a compound semiconductor, at least the first conductive type has a band gap energy (
(hereinafter referred to as Eg) is a semiconductor layer with Eg=Egt and a first
Or, in the second conductivity type, Eg""ggs (Egs<Egt
) and a semiconductor layer of the second conductivity type, Eg””EgIl (E
gs > Ego ) and a semiconductor layer with low carrier concentration;
'In the second conductivity type, Eg=Eg4 (Egt>EgJ and a semiconductor layer with low carrier concentration, and in the second conductivity type, Eg=Eg
s (Egs > Egs ) and a semiconductor layer with low carrier concentration, and the second conductivity type, Eg = Ega (Ege < Egs).
Eg=Egy(Egy
>Ego) semiconductor layers are formed in order, and the above Eg"Eg
This is an optical semiconductor element characterized in that it has a structure in which the semiconductor layer a is a main light emitting layer and the semiconductor layer Eg""Egt is a main light absorbing layer.

以下に図面を用いて本発明について詳細に説明する。The present invention will be explained in detail below using the drawings.

第1図は、本発明の光半導体素子の動作原理を説明する
だめのエネルギーバンドダイヤグラムを示している。バ
ンドギャップエネルギーEg””Egtのn型半導体層
11、Eg”Egi(Egs<Egt )のP型半導体
層12、Eg””Egs(Egs>Egs )の低濃度
P型半導体層13、Eg=Eg4(Eg4>Egs )
の低濃度P型半導体/Q14、Eg=Egs(Egr、
 >Egg)の低濃度P型半導体層15、Eg=Ega
(Egs<Egt )のP型半導体層16、及びEg=
Egt (Eg7>Egg )のP型半導体層17が順
に形成されている。ここで半導体層16のバンドギャッ
プエネルギーEg8は、出力すべき光の波長λoutに
合わせておく。又、半導体層14のバンドギャップエネ
ルギーE g 4は、入力される光の波長λinに合わ
せておく。第1図(a)及び(b)は共に素子に順方向
電流を流した状態で、(a)は光入力のない場合、(b
)は光入力のある場合をそれぞれ示している。
FIG. 1 shows a preliminary energy band diagram for explaining the operating principle of the optical semiconductor device of the present invention. N-type semiconductor layer 11 with band gap energy Eg""Egt, P-type semiconductor layer 12 with Eg"Egi (Egs<Egt), low concentration P-type semiconductor layer 13 with Eg""Egs (Egs>Egs), Eg=Eg4 (Eg4>Egs)
low concentration P-type semiconductor/Q14, Eg=Egs(Egr,
>Egg) low concentration P-type semiconductor layer 15, Eg=Ega
(Egs<Egt) P-type semiconductor layer 16, and Eg=
P-type semiconductor layers 17 of Egt (Eg7>Egg) are formed in this order. Here, the bandgap energy Eg8 of the semiconductor layer 16 is adjusted to the wavelength λout of the light to be output. Further, the bandgap energy E g 4 of the semiconductor layer 14 is adjusted to the wavelength λin of the input light. Figures 1 (a) and (b) are both with a forward current flowing through the device, (a) is when there is no optical input, and (b) is when there is no optical input.
) indicates the case with optical input.

まず、光入力のない場合について述べる。素子に順方向
に電流を流すと、電子と正孔はまず半導体層12で再結
合する。電流をさらに増すと半導体層12の電子フェル
ミレベルが上昇し、次第に半導体層13とのへテロバリ
ヤーを越えて流れる電子リーク電流が増大する。このヘ
テロバリヤーを越えた電子は、一部は半導体層13,1
4.15で正孔と再結合するが残シは半導体層16に達
し、そこで正孔と再結合し、エネルギーEgg(i長λ
out )  の光を放出する。この光の強度は第2図
の破線で示した様に′電流の増加とともに急激に増大す
る。
First, the case where there is no optical input will be described. When a current is passed through the device in the forward direction, electrons and holes first recombine in the semiconductor layer 12. When the current is further increased, the electron Fermi level of the semiconductor layer 12 increases, and the electron leakage current flowing across the heterobarrier with the semiconductor layer 13 gradually increases. Some of the electrons that have crossed this heterobarrier are in the semiconductor layers 13 and 1.
4.15, the remaining particles reach the semiconductor layer 16, where they recombine with the holes and increase the energy Egg (i length λ
out ) light is emitted. The intensity of this light increases rapidly as the current increases, as shown by the broken line in FIG.

次に、光入力のある場合について述べる。波長λ(λ〈
λin )の光を入射させると、この光は半導体R41
4で吸収され、正孔−電子を生成する。半導体層14の
P#度は低くしであるので、光入力のない場合半導体層
14の正孔フェルミレベルは、価電子帯から200〜3
00meV 禁制帯内に入ったところにある。ところが
、光を入射することにより半導体層14の正孔濃度が増
すと、正孔フェルミレベルが価電子帯に近づき、その結
果第1図(b)に示した様に半導体層14の伝導帯が上
昇する。
Next, the case where there is optical input will be described. Wavelength λ (λ〈
When light of
4 and generates holes-electrons. Since the P# degree of the semiconductor layer 14 is low, the hole Fermi level of the semiconductor layer 14 is 200 to 3 from the valence band when there is no optical input.
00meV It is within the forbidden band. However, when the hole concentration in the semiconductor layer 14 increases due to the incidence of light, the hole Fermi level approaches the valence band, and as a result, the conduction band of the semiconductor layer 14 increases as shown in FIG. 1(b). Rise.

そのために半導体層12の電子に対するバリヤが高くな
る。入射する光の強度によシ、バリヤの高さは100〜
200 m e V変化する。バリヤの高さが100〜
200meV 高くなると、リーク′醒流が1./i。
Therefore, the barrier of the semiconductor layer 12 to electrons becomes high. Depending on the intensity of the incident light, the height of the barrier is 100~
200 m e V change. Barrier height is 100~
When the temperature rises to 200 meV, the leakage current increases to 1. /i.

〜V100に減る。従って、入射光強度が大きい場合素
子に流す電流を増してもヘテロバリヤーを越えて流れる
リーク電流は著しく抑えられるため電流に対し、波長λ
out  の光出力は、第2図の実線に示したようにほ
とんど増加しない。このように光入力の有無で素子の電
流−光出力特性は大きく異なる。従って、電流値を一定
にして、光入力レベルを変えると光出力は第3図に示し
た様に変化し、低光入力では高光出力、高光入力で低光
出力となる。以上が本発明の動作原理の概略である。
-Decreased to V100. Therefore, when the incident light intensity is high, even if the current flowing through the element is increased, the leakage current flowing across the heterobarrier is significantly suppressed.
The optical output of out hardly increases as shown by the solid line in FIG. In this way, the current-light output characteristics of the device vary greatly depending on the presence or absence of light input. Therefore, when the current value is held constant and the optical input level is changed, the optical output changes as shown in FIG. 3, with a low optical input resulting in a high optical output and a high optical input resulting in a low optical output. The above is an outline of the operating principle of the present invention.

尚、低キャリヤ濃度半導体層のキャリヤ濃度が18 t
s  以上だと上述の作用・効果は期待できない。l 
Q ”Cm−’台で効果が現われ、1017α−3以下
になるとそれは顕著になる。
Note that the carrier concentration of the low carrier concentration semiconductor layer is 18 t.
s or more, the above-mentioned actions and effects cannot be expected. l
The effect appears at Q ``Cm-'' range, and becomes noticeable when the temperature is below 1017α-3.

次に、実施例に沿って本発明をさらに詳しく述べる。Next, the present invention will be described in more detail with reference to Examples.

第4図(alは、本発明の一実施例の光半導体素子の断
面構造を第4図(blは、エネルギーバンドダイヤグラ
ムを示している。第4図の実施例は自然発光(LED出
力)を制御する例である。
Fig. 4 (al indicates the cross-sectional structure of an optical semiconductor device according to an embodiment of the present invention. Fig. 4 indicates an energy band diagram. The embodiment of Fig. 4 shows spontaneous luminescence (LED output). This is an example of controlling.

P型■」基板21の上に第1のP型InGaAsP層2
2 (Eg:=0.95eV、P 〜5X1017cM
−3.厚さ1 pm) +第2のP q InGaAs
 P JCn 23 (Eg=1.15eV、PH1X
 10 ”α’ 、厚さ1μm)、第3のP壓InGa
AsP層24 (Eg=1.10eV、P〜lXl0”
z−’ 、厚さ0.5ttyn) 、第4のP型InG
aAsP層25 (Eg=1.15eV 、Pi6X1
0 ”as−’ 、厚さo、2pm) *第5のP型I
nGaAsP Mj 26 (Eg=1.0OeV、P
〜5X1017α−3,厚さo2pm  )、n型In
P層27 (Eg=1.34e V 、 n〜2X 1
018cm−’ 、厚さ2μyn  )を液相エピタキ
シャル法によシ連続して形成する。n型InP層270
衣面にCVDによ[S+0.膜28を形成した後、フォ
トレジストによシバターン形成し、直径20〜40μm
nの円状にS10.を除去する。続いてS lO,膜2
8及びn型InP27上にA uG e N iを蒸層
しH,又はN2  雰囲気中で熱処理しn型オーミック
電極29を形成する。次に、P型InP基板21を研磨
し約100μmの厚さにする。P型InP基板21にA
uZnを蒸着した後、フォトレジストによpn型InP
27表面の5in2膜28の)くリークに合わせて、A
uZn膜、トモに直径約120μmの円形パターンを形
成し、A u Z n膜−afを円状に除去し窓31を
形成する。最後にN9又はN、中で熱処理することによ
シP型オーミック電極30を形成する。
A first P-type InGaAsP layer 2 is formed on a P-type "■" substrate 21.
2 (Eg:=0.95eV, P ~5X1017cM
-3. thickness 1 pm) + second P q InGaAs
P JCn 23 (Eg=1.15eV, PH1X
10 "α', thickness 1 μm), third P glass InGa
AsP layer 24 (Eg=1.10eV, P~lXl0"
z-', thickness 0.5ttyn), fourth P-type InG
aAsP layer 25 (Eg=1.15eV, Pi6X1
0 "as-', thickness o, 2 pm) *Fifth P type I
nGaAsP Mj 26 (Eg=1.0OeV, P
~5X1017α-3, thickness o2pm), n-type In
P layer 27 (Eg=1.34eV, n~2X1
018 cm-' and a thickness of 2 μyn) are continuously formed by liquid phase epitaxial method. n-type InP layer 270
CVD [S+0. After forming the film 28, a pattern of 20 to 40 μm in diameter is formed using photoresist.
S10. remove. Next, SIO, film 2
8 and n-type InP 27 and heat-treated in an H or N2 atmosphere to form an n-type ohmic electrode 29. Next, the P-type InP substrate 21 is polished to a thickness of about 100 μm. A on the P-type InP substrate 21
After depositing uZn, pn-type InP is formed using photoresist.
According to the leakage of the 5in2 film 28 on the surface of 27,
A circular pattern with a diameter of about 120 μm is formed on the uZn film, and the window 31 is formed by removing the AuZn film-af in a circular shape. Finally, a P-type ohmic electrode 30 is formed by heat treatment in N9 or N.

この光半導体素子に順方向に電流を流すと、まず第5の
P型InGaAsP層26で電子−正孔再結合が起こる
。第2.第3及び第4のP型InGaAsP層23 、
24 、25のP濃度が10161−3オーダーと低い
ため、第5のP−InGaAsP7M26の電子に対す
るバリヤーは100meV程度で低く、そのだめに電流
を増すとリーク電流が増大し、その結果第1のP型I 
IIG aA s P層22に流れ込む電子が増大し波
長13μ2nの光出力は急激に増す。ここで、波長1.
06μ〃Jの光を窓よシ入射すると、第3のP型I n
G aA s P層24で吸収され正孔−電子を生成す
る。入射光強度を増すとともに第3のP型InGaAs
P層24の正孔濃度が増大し正孔フェルミレベルが価を
子帝に近づき、第5のP型InGaAgP#26の電子
に対するバリヤが100〜200meV 程度高くなる
。その結果リーク電流が次第に減少し、第5図に示した
様に波長13μmの光出力が減少する。このように本実
施例によ多入力光のレベルに応じてLED出力光を直接
制御することができた。尚、n−InP層27の例から
光を入出力する構造でも同様の光制御機能を有するが、
この場合入力元が有効にP型InGaAsP層24に入
るという利点がある。第6図は、本発明の別の実施例を
示した図である。第6図の実施例は第4図の実施例と1
4な9レ一ザ発振光を制御する機能を有する。第4図の
例とは異なシ、S10.膜28は巾数μη1程度のスト
ライプ状に除去されておシ、第1のP型I nG aA
 s P層22の厚みは0.2pm程度としている。第
7図に示した様に入力光のない場合、リーク電流が大き
いため発振しきい値が低く、入力光を強くすると、リー
ク電流が著しく減少するため発振しきい匝は高くなる。
When a current is passed in the forward direction through this optical semiconductor element, electron-hole recombination occurs first in the fifth P-type InGaAsP layer 26. Second. third and fourth P-type InGaAsP layers 23,
Since the P concentration of 24 and 25 is low on the order of 10161-3, the barrier to electrons of the fifth P-InGaAsP7M26 is low at about 100 meV, and when the current is increased, the leakage current increases, and as a result, the first P-InGaAsP7M26 Type I
The number of electrons flowing into the IIG aA s P layer 22 increases, and the optical output at a wavelength of 13 μ2n increases rapidly. Here, wavelength 1.
When light of 06μ〃J is incident through the window, the third P type I n
It is absorbed by the GaAsP layer 24 and generates holes and electrons. While increasing the incident light intensity, the third P-type InGaAs
The hole concentration in the P layer 24 increases, the hole Fermi level approaches the valence, and the barrier to electrons of the fifth P-type InGaAgP#26 increases by about 100 to 200 meV. As a result, the leakage current gradually decreases, and the optical output at a wavelength of 13 μm decreases as shown in FIG. In this way, according to this embodiment, it was possible to directly control the LED output light according to the level of multiple input lights. Note that a structure for inputting and outputting light from the example of the n-InP layer 27 has a similar light control function, but
In this case, there is an advantage that the input source effectively enters the P-type InGaAsP layer 24. FIG. 6 is a diagram showing another embodiment of the present invention. The embodiment shown in Fig. 6 is the same as the embodiment shown in Fig. 4.
It has the function of controlling four to nine laser oscillation lights. S10, which is different from the example in FIG. The film 28 is removed in a stripe shape with a width of about several μη1, and the first P-type InG aA
The thickness of the sP layer 22 is approximately 0.2 pm. As shown in FIG. 7, when there is no input light, the leakage current is large and the oscillation threshold is low; when the input light is strengthened, the leakage current decreases significantly and the oscillation threshold becomes high.

従って、電流を一定にして入力光強度を変えると、第8
図に示した様に出力光強度が大きく変化する。本実施例
により、光入力レベルに応じてレーザ発振出力を直接制
御することができた。第6図の例では、第1゜第2及び
第3のP型I nG aA gP層22 、23 、2
4が素子全面に亘って設けられているが、共振器方向の
一部分にのみ設けるようにしても、同様の光制御機能を
実現することができる。この場合、よシ小さい光入力レ
ベルで出力光を制御することができる。
Therefore, if the input light intensity is changed while keeping the current constant, the 8th
As shown in the figure, the output light intensity changes greatly. According to this embodiment, the laser oscillation output could be directly controlled according to the optical input level. In the example of FIG. 6, the first, second and third P-type InGaA gP layers 22 , 23 , 2
4 is provided over the entire surface of the element, the same light control function can be achieved even if it is provided only in a portion in the direction of the resonator. In this case, the output light can be controlled with a much smaller optical input level.

以上の実施例では、発光波長が1.3μm人カ波長が1
06μmの場合について示してきたが、他の波長の場合
でも各層のEgやキャリヤ濃度、厚さを変えることによ
シ本発明を適用することができる。
In the above embodiment, the emission wavelength is 1.3 μm and the human power wavelength is 1.
Although the case of 0.06 μm has been shown, the present invention can be applied to other wavelengths by changing the Eg, carrier concentration, and thickness of each layer.

又、GaAg/AノG a A s  をはじめ他の化
合物半導体を用いた素子にも適用できる。さらに、各層
の電気的導電型が逆の場合も適用できる。
Further, the present invention can also be applied to devices using other compound semiconductors such as GaAg/A (GaAs). Furthermore, the present invention can also be applied when the electrical conductivity types of each layer are reversed.

以上詳しく述べてきた様に、本発明にょシ単一の素子で
、光入力に応じて、レーザ発振光、自然発光にかかわら
ず光出力レベルを直接制御することのできる光半導体素
子を得ることができた。
As described above in detail, the present invention makes it possible to obtain an optical semiconductor device that can directly control the optical output level depending on the optical input, regardless of whether it is laser oscillation light or natural light emission, using a single device. did it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の動作原理を、第4図
、第5図は本発明の第1の実施例を、第6図、第7図、
第8図は本発明の第2の実施例をそれぞれ示す図である
。 図中11.27はE g ”E g tの第1導電型半
導体層、12.26はEg”’Egsの第一2導電型半
導体鳩、13゜25はEg=E g sの第2導電型半
導体層、14.24はEg””Eg4の第2導電型半導
体層、15.23はE g”E g 5の第2導電型半
導体層、16.22はEg−Egaの第2導電型半導体
層、17.21はE gJ gγの第2導電型半導体層
をそれぞれ示している。 第1図 (a) /7j  ’6 j15j/4j/3jlZj //第
2図 Of     と    3 i :J者も  (θ、(1) 第 3図 OI     2    3 光入力 ((1,u) 鴇5図 0   1    2   3 光入力 (a、u) にh  乙  図 9 第 7 図 Ol    2   3 尼 シ乳 C(1,u) 第 D 図 0     1     2    3光入力 ((1
,u)
Figures 1, 2, and 3 illustrate the operating principle of the present invention, Figures 4 and 5 illustrate the first embodiment of the present invention, and Figures 6, 7,
FIG. 8 is a diagram showing a second embodiment of the present invention. In the figure, 11.27 is the first conductivity type semiconductor layer of E g ``E g t, 12.26 is the first conductivity type semiconductor layer of Eg'''Egs, and 13゜25 is the second conductivity type semiconductor layer of Eg = E g s. 14.24 is a second conductivity type semiconductor layer of Eg""Eg4, 15.23 is a second conductivity type semiconductor layer of Eg"Eg5, and 16.22 is a second conductivity type of Eg-Ega. Semiconductor layer 17.21 indicates the second conductivity type semiconductor layer of E gJ gγ. FIG. 1(a) /7j '6 j15j/4j/3jlZj //FIG. Also (θ, (1) Fig. 3 OI 2 3 Optical input ((1, u) Toshi 5 Fig. 0 1 2 3 Optical input (a, u) ni h Otsu Fig. 9 Fig. 7 Ol 2 3 Nishii milk C (1, u) Fig. 0 1 2 3 optical input ((1
,u)

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体からなる光半導体素子において、少なくと
も、第1の導電型でバンドギャップエネルギー(以下E
gと呼ぶ)が、E g=E g tの半導体>Egg)
かつ低キャリヤ濃度の半導体層と、第2の導電型でEg
”=Egi (Ega>Egs+ )かつ低キャリヤ濃
度の半導体層と、第2の導゛畦型でEg”Egs(E 
g b > E g s )かつ低キャリヤ濃度の半導
体層と、第2の導電型でEg””Ega (、Ega 
<Egs)の半導体層と第2の導電型でEg”=Egy
 (Egy>Ega )の半導体層が順に形成され、上
記E g”E g aの半導体層を主発光層とし、上記
Eg=Eg4の半導体層を主光吸収層とした構造を備え
ていることを特徴とする光半導体素子。
In an optical semiconductor device made of a compound semiconductor, at least the first conductivity type has a band gap energy (hereinafter E
g) is a semiconductor of E g=E g t>Egg)
and a semiconductor layer with a low carrier concentration and a second conductivity type of Eg.
”=Egi (Ega>Egs+) and a semiconductor layer with low carrier concentration, and the second conductive type, Eg”Egs(Egs
g b > E g s ) and a semiconductor layer with a low carrier concentration, and a semiconductor layer of the second conductivity type with Eg""Ega (, Ega
<Egs) semiconductor layer and the second conductivity type, Eg"=Egy
Semiconductor layers of (Egy>Ega) are formed in order, the semiconductor layer of Eg"Ega is the main light emitting layer, and the semiconductor layer of Eg=Eg4 is the main light absorption layer. Features of optical semiconductor devices.
JP58042566A 1983-03-15 1983-03-15 Optical semiconductor element Pending JPS59168683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042566A JPS59168683A (en) 1983-03-15 1983-03-15 Optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042566A JPS59168683A (en) 1983-03-15 1983-03-15 Optical semiconductor element

Publications (1)

Publication Number Publication Date
JPS59168683A true JPS59168683A (en) 1984-09-22

Family

ID=12639604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042566A Pending JPS59168683A (en) 1983-03-15 1983-03-15 Optical semiconductor element

Country Status (1)

Country Link
JP (1) JPS59168683A (en)

Similar Documents

Publication Publication Date Title
USRE35665E (en) Surface light emitting diode with electrically conductive window layer
JPH09172229A (en) Transparent substrate vertical resonance type surface luminescence laser manufactured by semiconductor wafer bonding
JPH02103021A (en) Quantum well optical device
JPS59208889A (en) Semiconductor laser
JPS59168683A (en) Optical semiconductor element
US3680001A (en) Dynamic am control of the transverse modes of a self-pulsing semiconductor laser
JPH04112584A (en) Semiconductor device
JP2758472B2 (en) Light modulator
JPH04255286A (en) Semiconductor laser device
JPS6034088A (en) Optical semiconductor element
JPH053338A (en) Photoreceptor element
JPS59168684A (en) Optical semiconductor element
JPH09179080A (en) Optical device
JPS59188185A (en) Photosemiconductor element
JPS61220389A (en) Integrated type semiconductor laser
Kim et al. Performance enhancement of non-biased symmetric self electro-optic effect device with extremely shallow multiple quantum wells using an impedancemismatched asymmetric Fabry-Perot structure
JP2720136B2 (en) Semiconductor optical function device
JPS5943106B2 (en) semiconductor light emitting device
JP2000228561A (en) Field-effect light emitting element
JPH02172288A (en) Semiconductor laser device
JPH0334488A (en) Semiconductor laser element
JP2692013B2 (en) Optical gate array
KR960015274B1 (en) Semiconductor laser device
JPS58199583A (en) Multiple wavelength semiconductor laser
JPS63122190A (en) Manufacture of semiconductor light-emitting device