JPS59168667A - Electrode material for semiconductor device - Google Patents

Electrode material for semiconductor device

Info

Publication number
JPS59168667A
JPS59168667A JP58042103A JP4210383A JPS59168667A JP S59168667 A JPS59168667 A JP S59168667A JP 58042103 A JP58042103 A JP 58042103A JP 4210383 A JP4210383 A JP 4210383A JP S59168667 A JPS59168667 A JP S59168667A
Authority
JP
Japan
Prior art keywords
phosphate
powder
silver
electrode material
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58042103A
Other languages
Japanese (ja)
Other versions
JPH0337751B2 (en
Inventor
Hirohiko Matsuyama
松山 浩彦
Mitsuo Nakatani
中谷 光雄
Masaaki Okunaka
正昭 奥中
Ataru Yokono
中 横野
Tokio Isogai
磯貝 時男
Tadashi Saito
忠 斉藤
Kunihiro Matsukuma
邦浩 松熊
Sumiyuki Midorikawa
緑川 澄之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58042103A priority Critical patent/JPS59168667A/en
Publication of JPS59168667A publication Critical patent/JPS59168667A/en
Publication of JPH0337751B2 publication Critical patent/JPH0337751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Light Receiving Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a material enabled to form an electrode having low contact resistance without generating junction breakdown by a method wherein the material is constructed of silver powder, one kind or more of titanium and magnesium, one kind or more of silver phosphate, nickel phosphate and magnesium phosphate, an organic binder, and glass powder to be added in occasion demands. CONSTITUTION:Silver powder of 10g of 1mum or less of grain size, titanium powder (0.5-40pts.wt. to 100pts.wt. of silver powder) of 10mum or less of grain size performed with surface stabilization treatment, silver phosphate (5-40pts.wt. to 100pts.wt. of silver powder), and borosilicate lead glass frit of 1g are weighted. A viscous liquid obtained by dissolving 10pts.wt. of ethylcellulose of 10cps to 90pts.wt. of alpha-terpineol is added thereto to be kneaded, and a paste type electrode material of about 200 poise of viscosity is prepared. Screen process printing of the above-mentioned paste type electrode material is performed in a tandem type pattern shape on the N<+> type layer 2 of a P type silicon substrate 1 and in a solid pattern type on the P<+> type layer 3, they are dried at 150 deg.C, and after light receiving side electrodes 4 and back electrodes 5 are formed, calcination is performed at 600 deg.C in a nitrogen gas atmosphere containing 50ppm of oxygen to manufacture a solar cell, for example.

Description

【発明の詳細な説明】 特に太陽電池などの比較的粗いパターンの電極を有する
半導体素子の製造に好適な電極材料に成例を1図に示す
。ル+/P/P+接合を形成した別基板の受光面および
裏面に、受光面電極4゜裏面電極5を形成した構造であ
る。さらに一般には、反射防止膜等も設けられる。
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows an example of an electrode material suitable for manufacturing a semiconductor element having a relatively coarse pattern of electrodes, such as a solar cell in particular. In this structure, a light-receiving surface electrode 4° and a back-surface electrode 5 are formed on the light-receiving surface and back surface of a separate substrate on which a Le+/P/P+ junction is formed. Furthermore, an antireflection film or the like is generally provided.

この太陽電池の近年におけろ重要課題は、製造コストの
低減にあり、受光面電極4.裏面電極5の形成法も従来
の^空蒸着法にかわって、低コストなメッキ法や印刷法
が検討されるようになってきた。このうち%[印刷法は
、自動化が容易で生産性が為いことから広く検討され℃
いろ。この印刷法は、金属粉末、ガラス粉末などを有機
結合剤、有機溶剤と混練したペースト状の物質(以下導
゛亀ペーストという)をスクリ−ン印刷法などで塗布し
、焼成する方法であり上自己の金鵬粉禾としては銀粉末
が一般的である。
An important issue in solar cells in recent years is to reduce manufacturing costs, and the light-receiving surface electrode 4. As for the method of forming the back electrode 5, low-cost plating methods and printing methods are being considered instead of the conventional empty deposition method. Among these, % [Printing method is widely considered because it is easy to automate and has low productivity.
colour. This printing method is a method in which a paste-like substance (hereinafter referred to as a paste) made by kneading metal powder, glass powder, etc. with an organic binder and an organic solvent is applied using a screen printing method, etc., and then fired. Silver powder is commonly used as gold powder.

このような4電ペーストは、太陽電池の電極形成用、あ
るいは厚膜回路基板用などとして多数のものが市販され
又いる。
A large number of such four-electrode pastes are commercially available for use in forming electrodes of solar cells, thick film circuit boards, and the like.

一方、太陽電池等の電極形成においては、電極の接着強
度の大きいこと、シリコンに対する接触抵抗の低いこと
、拡散層に対してつきぬけのないこと(リーク電流の小
さいこと)などが要求される。
On the other hand, in the formation of electrodes for solar cells, etc., the electrodes are required to have high adhesive strength, low contact resistance to silicon, and no penetration to the diffusion layer (low leakage current).

しかし本発明者らが市販の各種のAy系、Ay1−pd
系導電ペーストについて検討した結果によると、いずれ
の導電ペーストも図に示した接合形成シリコンウェハ上
に印刷塗布し、乾燥、焼成した場合に次の問題があった
。すなわち、厚膜回路基板用のAy系あるいはAy −
PtL系導電ペーストでは、シリコンウェハ・と電極と
の間にバリアが生成し、接触抵抗が商く、比較的高い温
度の焼成では接合が破壊し、リーク電流の増大が認めら
れた。
However, the present inventors have discovered that various commercially available Ay systems, Ay1-pd
According to the results of studies on conductive pastes, the following problems occurred when any of the conductive pastes was applied by printing onto the bonding silicon wafer shown in the figure, dried, and fired. That is, Ay-based or Ay − for thick film circuit boards.
In the PtL-based conductive paste, a barrier was formed between the silicon wafer and the electrode, resulting in a high contact resistance, and when baked at a relatively high temperature, the bond was destroyed and leakage current increased.

太陽電池用のAg系導電ペーストでは、シリコンウェハ
と電極との間にバリアの生成しにくいものもあるがいず
れも接触抵抗が置く、太陽電池の光照射時の鶏、流−電
圧特性を腑べろと曲線因子が小さく、高効率な太陽電池
は作れなかった。また焼成温度を比戦的−温にずろと、
接触抵抗は低下する傾回がみられたが、このさいにはリ
ーク電流が増加する問題が生じた。
Some Ag-based conductive pastes for solar cells do not form a barrier between the silicon wafer and the electrode, but they all have contact resistance, so understand the current-voltage characteristics of solar cells when irradiated with light. The fill factor was small, making it impossible to create highly efficient solar cells. Also, set the firing temperature to a relatively low temperature.
Although there was a tendency for the contact resistance to decrease, a problem arose in that the leakage current increased.

このように上記従来の導電ペーストを用いて接合破壊を
起すことなく、接触抵抗の低い電極トにみられた欠点が
7よく、太陽電池ンよどの半導体装置の電極拐料として
非常に有用なI科を提グネシウムから選ばれる少なくと
も一栂の金属と、りん酸銀、りん酸ニッケル、りん酸マ
グネシウムから選はれり少yz (とも−」lのりん化
合物と、M機結合拐と、有機溶剤と、必要に応じて加え
るガラス粉末とからなることを特徴とする。
In this way, the above-mentioned conventional conductive paste does not cause bonding failure and the drawbacks seen in electrodes with low contact resistance can be overcome, making it very useful as an electrode thinning material for semiconductor devices such as solar cells. At least one metal selected from the family of magnesium, a small amount of metal selected from silver phosphate, nickel phosphate, and magnesium phosphate, a phosphorus compound of M, an organic solvent, and glass powder added as needed.

本発明が従来の導電ペーストと異なる点は。The present invention differs from conventional conductive pastes.

チタン、マグネシウムから選はれる少なくとも一種の金
属と、りん酸銀、りん陵ニッケル、リン酸マグネシウム
から選ばれろ少なくとも一種のりん化合物を含むことに
ある。これは、これらの金属とりん化合物を配合I−だ
導電ペーストをシリコンなどの基板上圧印刷し、焼成す
ると。
It contains at least one metal selected from titanium and magnesium, and at least one phosphorus compound selected from silver phosphate, phosphorous nickel, and magnesium phosphate. This is done by pressure printing a conductive paste containing these metals and a phosphorous compound onto a substrate such as silicon, and then firing it.

接合?+”2壊を起す恐れのない比較的低い温度(く7
50℃)の焼成でも、基板に対し工非常に低い接着抵抗
の電極が形成できろことを見い出したことによる。
Joining? +”2 Relatively low temperature without the risk of causing damage (7)
This is due to the discovery that an electrode with extremely low adhesive resistance can be formed on a substrate even when fired at a temperature of 50°C.

本発明の電極材料が従来の導電ベース)K比べ、上記の
ように非常に良好な電極形成が司能であるのは次の塩出
によると考えている。すなわち、従来の導電ペーストを
例えばシリコン基板上に印刷し、焼成した場合、焼成雰
囲気中に含まれる酸素によってシリコン表面に絶縁性の
酸化ケイ素膜が生成してしまう。またこの酸化ケイ紫膜
は導電ペーストが酸化鉛系の低融点ガラスを使用してい
る場合には、酸化鉛とシリコンとの反応によっても生成
してしまう。このようにシリコン表面に酸化ケイ素膜が
生成するため、焼成された電極とシリコン間の接触抵抗
が非常に高くなってしま5ものと予想される。
It is believed that the reason why the electrode material of the present invention is capable of forming a very good electrode as described above compared to the conventional conductive base) is due to the following explanation. That is, when a conventional conductive paste is printed on, for example, a silicon substrate and fired, an insulating silicon oxide film is formed on the silicon surface due to oxygen contained in the firing atmosphere. In addition, when the conductive paste uses lead oxide-based low melting point glass, this silicon oxide film is also generated due to the reaction between lead oxide and silicon. Since a silicon oxide film is thus formed on the silicon surface, it is expected that the contact resistance between the fired electrode and the silicon becomes extremely high.

一方1本発明による電極材料では上記と同様に酸化ケイ
素膜は生成すると考えられるが、電極材料中に含まれる
金属(チタン、マグネシウム)が酸化ケイ素膜と反応し
、酸化ケイ素の還元や、これらの金属のシリサイド化合
物の生成が起き、それによりて電極とシリコンとの接触
抵抗が低くなり、更には、りん酸化合物(りん酸銀、り
ん酸ニッケル、りん酸マグネシウム)の添加により、ペ
ースト中の銀粉末と前述のシリサイド加合物とのコンタ
クトが良好となり。
On the other hand, with the electrode material according to the present invention, a silicon oxide film is thought to be formed in the same way as described above, but the metals (titanium, magnesium) contained in the electrode material react with the silicon oxide film, reducing the silicon oxide and The formation of metal silicide compounds occurs, which lowers the contact resistance between the electrode and silicon, and furthermore, the addition of phosphate compounds (silver phosphate, nickel phosphate, magnesium phosphate) reduces the amount of silver in the paste. There is good contact between the powder and the silicide compound mentioned above.

結果として接触抵抗が非常圧低くなるものと予想される
It is expected that the contact resistance will be extremely low as a result.

本発明の電極材料の成分につい王、以下にさらに詳述す
る。構成成分中のAg粉末、有機結合剤、有機溶剤は従
来の導電ペーストで用いられているものと同様のものを
用いることができる。
The components of the electrode material of the present invention will be described in further detail below. The Ag powder, organic binder, and organic solvent among the constituent components may be the same as those used in conventional conductive pastes.

銀粉末としては粒径1μm以下のものが、有機結合剤と
してはセルロース系化合物や、ポリメタクリレート系化
合物などが、有機溶剤としては多価アルコール系のもの
が特に好適に用いられ得ろ。
As the silver powder, those having a particle size of 1 μm or less are particularly preferably used, as the organic binder, cellulose compounds and polymethacrylate compounds are preferably used, and as the organic solvent, polyhydric alcohols are particularly preferably used.

チタン、マグネシウムの金属は、粉末の状Nで用いるの
が好適である。ただし、これらの金属粉末は活性が高い
ため、粉末表面に薄い酸化膜を形成する方法等で安定化
処理したものを用いるのが好適である。チタン、マグネ
シウムは。
The metals titanium and magnesium are preferably used in the form of N powder. However, since these metal powders have high activity, it is preferable to use ones that have been stabilized by a method such as forming a thin oxide film on the powder surface. titanium and magnesium.

一種を用いても、二種を併用してもよい。更にはこれら
の合金粉末を用いることや、4s粉末表面にこれらの金
属をコーティングして用いることなども可能である。ま
た、りん酸銀、りんばニッケル、リン酸マグネシウムの
りん酸化合物も一種を用い又も、二種以上を併用しても
よい。
One type may be used or two types may be used in combination. Furthermore, it is also possible to use these alloy powders or to coat the surface of the 4s powder with these metals. Further, phosphoric acid compounds such as silver phosphate, phosphorous nickel, and magnesium phosphate may be used alone or in combination of two or more.

また本発明では、カラスを含むことを必ずしも必要とし
ない。たたし、ガラスを配合すると。
Furthermore, the present invention does not necessarily require crows to be included. However, when combined with glass.

形成した電極の半導体素子への接着強度が向上する。ま
た電極の半田に対する配性も向上する。
The adhesive strength of the formed electrode to the semiconductor element is improved. Furthermore, the compatibility of the electrode with respect to solder is also improved.

このため特に太陽電池の電極形成などに用いろ場合には
、むしろガラスを配合するのが好ましい。ここで用いる
ガラスの種類は、特に限定されるものではない。また本
発明の電極材料にpd粉末を配合することにより形成さ
れた電極の半田に対する耐性がさらに向上し、pt粉末
を配合することにより、′a極の接着強度が向上する。
For this reason, especially when used for forming electrodes of solar cells, it is preferable to incorporate glass. The type of glass used here is not particularly limited. Further, by blending PD powder into the electrode material of the present invention, the resistance to solder of the formed electrode is further improved, and by blending PT powder, the adhesive strength of the 'a electrode is improved.

本発明の電極材料を特に太陽電池の電極形成に用いろ場
合には、チタン、マグネシウムから選ばれる少くとも一
極の金属の配合比を、銀粉末100重量部に対して0.
5〜40車量部とするのが好適である。0.5重量部未
満の配合比では形成された電極のシリコンに対するコン
タクト抵抗が尚くなり、40嵐量部をこえる配合比では
形成した電極の導体抵抗が尚(21す、太陽電池の効率
低下を招き易くなる。同様の理由から、りん酸銀、つん
ばニッケル、りん1ツマグネシウムから選ばれる少7瓜
くとも一種のりん酸化合物の配合比は、銀粉末ioo車
量部に対して5へ・4ON量部が好適である。
When the electrode material of the present invention is used particularly for forming electrodes of solar cells, the blending ratio of at least one metal selected from titanium and magnesium is 0.000 parts by weight per 100 parts by weight of silver powder.
It is preferable to set it as 5-40 vehicle volume parts. If the blending ratio is less than 0.5 parts by weight, the contact resistance of the formed electrode to silicon becomes even worse, and if the blending ratio exceeds 40 parts by weight, the conductor resistance of the formed electrode becomes even worse (21 parts by weight, and the efficiency of the solar cell decreases). For the same reason, the blending ratio of at least one phosphoric acid compound selected from silver phosphate, Tsunba nickel, and magnesium phosphorus should be 5 to 5 parts by volume of silver powder. The amount of 4ON is suitable.

〔ノー”−a月つ1笈1(ジイタ1〕 以下1本発明を実施例により更に詳細に説明する。[No”-a month 1 ko 1 (jiita 1) The present invention will be explained in more detail below with reference to Examples.

実施例1 粒径1μフル以下の銀粉末101と、表面を安定化処理
した粒径10μm以下のチタン粉末(銀粉末10〔重量
部に対して0.5〜40皇量部)と、りん酸銀(銀粉末
1[JO爪瀘部に対して5〜40重量部)と、ホウケイ
1浚鉛系カラスフリツト1gとを秤量した。これに10
cpzのエチルロース10皿量部をα−テルピネメール
90血量部に溶解した粘調液を加えながら光分に混練し
、粘度が約200ポイズ(すり速度100/秒)のペー
スト状1!極材料を調整した。太陽電池用の接合形成シ
リコン基板として図に71;1ように、Pmシリコン基
板1(比抵抗1〜5ΩcnL、直径6インチ丸型ウェハ
)の片面にイオン打込み法で深さ0.2〜0.4μ専の
1層2(表凹シート抵抗50・〜70Ω/口)と、反対
面にアルミニウムを1〜2μmの注さに熱拡り又し、P
+層3を形成したものを用いた。次にこのPをシリコン
基板1のル十層2上にはクシ型ノ(ターン状に、P+層
6上にはベタパターン状に上記のペースト状電極材料を
スクリーン印刷し、150℃。
Example 1 Silver powder 101 with a particle size of 1 μm or less, surface-stabilized titanium powder with a particle size of 10 μm or less (silver powder 10 [0.5 to 40 parts by weight), and phosphoric acid. Silver (silver powder 1 [5 to 40 parts by weight based on the JO nail part) and 1 g of Houkei 1 dredged glass frit were weighed. 10 for this
A viscous liquid prepared by dissolving 10 parts of cpz ethylulose in 90 parts of α-terpinemer is mixed in a light beam to form a paste with a viscosity of approximately 200 poise (grinding speed of 100/sec). Adjusted the polar material. As shown in the figure 71; 1, a silicon substrate for forming a junction for solar cells is formed on one side of a Pm silicon substrate 1 (specific resistance 1-5 ΩcnL, 6-inch diameter round wafer) by ion implantation to a depth of 0.2-0. 1 layer 2 of 4 μm (front and concave sheet resistance 50-70 Ω/hole) and aluminum on the other side with a thickness of 1 to 2 μm, heat spread and P
+Layer 3 was used. Next, the paste electrode material was screen printed on the P+ layer 2 of the silicon substrate 1 in a comb shape (turn shape) and on the P+ layer 6 in a solid pattern, and heated at 150°C.

10分間の乾燥処理をし、受光面電極4.裏面電極5を
形成した。次にこの基板を酸素5oppmを含む窒素ガ
ス雰囲気中で600℃、10分間焼成した。
After drying for 10 minutes, the light-receiving surface electrode 4. A back electrode 5 was formed. Next, this substrate was fired at 600° C. for 10 minutes in a nitrogen gas atmosphere containing 5 oppm of oxygen.

このようにして作成した太陽電池の電流−電圧特性(1
−V%性)を調べ、1!極のコンタクト抵抗(RC)、
逆バイアス(1V)でのリーク電流1萌線因子(F、F
)、開放電圧(p’oc ) 、短絡電流(Isc )
を調べた。
Current-voltage characteristics of the solar cell created in this way (1
-V%) and 1! contact resistance (RC) of the pole,
Leakage current at reverse bias (1V) 1 line factor (F, F
), open circuit voltage (p'oc), short circuit current (Isc)
I looked into it.

纂1表に示した如く、チタン粉末とりん酸銀を配合した
本発明の電極材料を用いた太陽電池は、比較例として示
したチタン粉末、りん酸銀を配合しないものを用いた場
合に比べRCが大幅に低くなり、F、F 、 Ireが
大きく、その結果として効率も大幅に向上した。またリ
ーク電流はいずれも10−・Ay/(2m”のオーダー
であり1問題はまったく認められなかった。
As shown in Table 1, the solar cell using the electrode material of the present invention containing titanium powder and silver phosphate has a higher performance compared to the case where the electrode material of the present invention containing titanium powder and silver phosphate is used as a comparative example. RC was significantly lower, F, F, and Ire were larger, and as a result, efficiency was also significantly improved. Furthermore, the leakage current was on the order of 10-.Ay/(2 m'' in all cases, and no problem was observed at all.

このように本発明の電極材料Q工比較的低温の600℃
の焼成でもRcが充分低(、n上層の厚さが0.2〜0
4μmと非常に薄いにもかかわらずリーク電流の増加が
なく、1極材料とし℃従来の導電ペーストに比べ非常圧
優れていることが確認された。
In this way, the electrode material Q of the present invention can be used at a relatively low temperature of 600°C.
Rc is sufficiently low even when firing
Despite being extremely thin at 4 μm, there was no increase in leakage current, and as a single-pole material, it was confirmed that the conductive paste had an extremely superior voltage compared to conventional conductive pastes.

実施例2 金属としてチタン、マグネシウム、りん酸化合物として
りん酸銀、りん酸ニッケル、りん酸マグネシウムを配合
した本発明の実施例について説明する。チタン、マグネ
シウムの金属粉末(表面に薄い酸化膜を形11114)
と、りん酸化合物(つんば銀、りん酸ニッケル、りん酸
マグネシウム)と、ガラス7リツト(ホウケイ酸鉛系。
Example 2 An example of the present invention will be described in which titanium and magnesium are blended as metals, and silver phosphate, nickel phosphate, and magnesium phosphate are blended as phosphoric acid compounds. Titanium and magnesium metal powder (with a thin oxide film on the surface 11114)
, phosphoric acid compounds (Tsuba silver, nickel phosphate, magnesium phosphate), and glass 7 lithium (lead borosilicate type).

ホウケイ酸亜鉛系)とを各種組合せ、これにエチルセル
ロース10 重量部をα−テルピネオール90重量部に
溶解した粘調液を加えながら充分混練し、粘度が約20
0ボイズ(ずり速度100/秒)の組成の異なる各種の
ペースト状電極材料を調整した。
A viscosity solution prepared by dissolving 10 parts by weight of ethyl cellulose in 90 parts by weight of α-terpineol was thoroughly kneaded to obtain a viscosity of about 20%.
Various paste-like electrode materials having different compositions with 0 voids (shear rate of 100/sec) were prepared.

この%L極拐科を実施例1と同様の接合形成シリコン基
板表面にスクリーン印刷し、150℃で10分間乾燥後
、酵素10ppmを含む屋累ガス雰囲気中で6圓℃、1
0分間焼成した。このようにして作製した太陽鉱油の特
性を実施例1と同様にしc調べた結果を、電極材料の無
機成分とともに第2表に示した。チタン、マグネシウム
の金属と、りん酸化合物(りん酸銀、りん酸ニッケル、
りん酸マグネシウム)を配合した本発明の電極材料は、
比較例1,2の組成に比べ、何れもRcが低くなり、ノ
’、F 、 Iscが大きく、その結果として効率も大
幅に向上し良。またリーク電流は何れも10”” 4/
Cm″のオーダーであり1問題は認められなかった。こ
のよ5に実施例2に示した本発明の電極材料も従来の導
電ペーストに比べ非常に優れた効果の得られることが確
認された。
This %L nanoparticle was screen-printed on the surface of a bond-forming silicon substrate similar to that in Example 1, and after drying at 150°C for 10 minutes, it was heated at 6°C for 1 hour in a gas atmosphere containing 10 ppm of enzyme.
Baked for 0 minutes. The properties of the solar mineral oil thus produced were investigated in the same manner as in Example 1, and the results are shown in Table 2 together with the inorganic components of the electrode material. Titanium, magnesium metals and phosphoric acid compounds (silver phosphate, nickel phosphate,
The electrode material of the present invention containing magnesium phosphate) is
Compared to the compositions of Comparative Examples 1 and 2, Rc is lower in both cases, and F', F, and Isc are larger, and as a result, the efficiency is significantly improved. Also, the leakage current is 10""4/
Cm'' order, and no problem was observed.It was thus confirmed that the electrode material of the present invention shown in Example 2 also provided extremely superior effects compared to conventional conductive pastes.

(以下余白) 的低温の焼成でも、浅い接合の半導体素子に対しても接
合破壊やリーク電流の増加を引き起すことなく、かつ接
触抵抗の低い電極形成を可能とする画A、IJ的な月科
であり。このため、太陽電池の電極形成に本発明の電極
材料を用いると、従来の導電ペーストを用いた場合に比
べ非常圧効率の高い太陽電池を得ることができる。
(Left below) Image A, IJ-like moon that makes it possible to form electrodes with low contact resistance without causing junction breakdown or increase in leakage current, even for semiconductor elements with shallow junctions, even during firing at a relatively low temperature. It is a department. Therefore, when the electrode material of the present invention is used to form electrodes of solar cells, it is possible to obtain solar cells with higher emergency pressure efficiency than when conventional conductive pastes are used.

また、本発明の電極拐料は印刷法によって塗布でき、安
価に、高生産性に電極が形成でき工業的にも非常にM用
でお心。さらに本発明の電極材料は、太陽電池以外の受
光素子や他の半導体装置の電極形成にも用いることが可
能である。
In addition, the electrode coating material of the present invention can be applied by a printing method, and electrodes can be formed at low cost and with high productivity, making it very suitable for M applications from an industrial perspective. Furthermore, the electrode material of the present invention can also be used to form electrodes of light receiving elements other than solar cells and other semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図は太陽電池の代表的な構成を示した断面図である。 1・・・P型シリコン基板 2 ・・・  n・中層              
       3 ・・・ P十 層第1頁の続き (塑合 明 者 磯貝時男 横浜市戸塚区吉田町292番地株 式会社日立製作所生産技術研究 所内 ・C発 明 者 斉藤忠 国分寺市東恋ケ窪−丁目280番 地株式会社日立製作所中央研究 所内 q3)発 明 者 松熊邦浩 日立市幸町三丁目1番1号株式 %式% 立原町電子工業株式会社内 手続補正書(自発) 事件の表示 昭和58 年特許願第 42103   シJ発明の名
称 半導体装置用電極材料 補正をする者 ・llf′lとの曲イ 特許出願人 名  ド1′5μ用I式会111f   )’t’−製
 f乍 所代   理   人 補正の対象 明細書中の発明の詳細な説明の掴補正の内
容 1、 明細書第3頁、第8行目の「接触抵抗」を、「コ
ンタクト抵抗」に訂正する。 2、明細書第3頁、第18行目の「接触抵抗」を、「コ
ンタクト抵抗」に訂正する。 3、明却1書1i84貞、第3行目の「接触抵抗」を、
「コンタクト抵抗」に訂正する。 46  明細書第4負、第6行目から第7行目にかけて
「接触抵抗」とあるのを、「コンタクト抵抗」に訂正す
る。 5、 明細1!第4頁、第10行目の[接触抵抗」を、
「コンタクト抵抗」に1正する。 6、明細書第5負、第12行目の1接着抵抗」を、「コ
ンタクト抵抗」に訂正する。 7、明細書第6負、第5行目の「接触抵すし」を、「コ
ンタクト抵抗」に引止する。 8、 明細1第6頁、第12行目から第13行目にかけ
て「接触抵抗」とあるのを「コンタクト抵抗」に1正す
る。 9、 明細実弟6頁、第17行目の「接触抵抗」を、し
コンタクト抵抗」に1正する。 10、明細書第11頁、第1表中の比1セl lの太1
劾寛池特性、Voc (V) 1fM17) l” 0
.58J + [0,54J Jコ萬J正する。 11、明細1i第14負、第2表中の比較例2の太陽電
池特性、Voc (V)掴の[0,58Jをl’−0,
55Jiこに■圧する。 126明細書第15行目、第4行目の「w:触抵抗」を
「コンタクト抵抗」に訂正する。 以上
The figure is a cross-sectional view showing a typical configuration of a solar cell. 1...P-type silicon substrate 2...N-middle layer
3... Continuation of page 1 of P10 layer (Continuation of page 1) Author: Tokio Isogai, 292 Yoshida-cho, Totsuka-ku, Yokohama, Hitachi, Ltd., Production Technology Laboratory, C: Inventor: Tada Saito, 280 Higashi-Koigakubo-chome, Kokubunji City Hitachi, Ltd. Central Research Laboratory q3) Inventor Kunihiro Matsukuma 3-1-1 Saiwaimachi, Hitachi City Shares % formula % Amendment to procedures within Tachiharamachi Electronics Industry Co., Ltd. (spontaneous) Indication of the case 1988 Patent Application No. 42103 Name of the invention Person who corrects electrode materials for semiconductor devices / A song with llf'l Patent applicant name Do1'5μ I ceremony 111f) 't'-made f 乍 Agent Subject of person correction Contents of correction in the detailed description of the invention in the specification 1: "Contact resistance" on page 3, line 8 of the specification is corrected to "contact resistance." 2. "Contact resistance" on page 3, line 18 of the specification is corrected to "contact resistance." 3.Meiyo 1sho 1i84 Tei, “contact resistance” in the third line,
Corrected to "contact resistance". 46 In the 4th negative specification, from the 6th line to the 7th line, "contact resistance" is corrected to "contact resistance." 5. Details 1! [Contact resistance] on page 4, line 10,
Add 1 to “contact resistance”. 6. In the 5th negative line of the specification, 1. Adhesive resistance" is corrected to ``Contact resistance.'' 7. "Contact resistance" in the sixth negative line of the specification is changed to "contact resistance." 8. On page 6 of Specification 1, from line 12 to line 13, change "contact resistance" by one to "contact resistance." 9. Change "contact resistance" in line 17 on page 6 of the specification to "contact resistance." 10, Specification page 11, ratio 1 cell l in Table 1
Gaihiroike characteristic, Voc (V) 1fM17) l” 0
.. 58J + [0,54J J Koman J correct. 11, Specification 1i No. 14 Negative, solar cell characteristics of Comparative Example 2 in Table 2, Voc (V) grip [0,58J l'-0,
Press 55Ji. In the 15th and 4th lines of the 126 specification, "w: contact resistance" is corrected to "contact resistance."that's all

Claims (1)

【特許請求の範囲】 t 銀粉末と、チタン、マグネシウムから選ばれる少な
くとも一種の金属と、りん酸銀、りん酸ニッケル、r)
ん酸マグネシウムから選ばれる少なくとも一種のりん酸
化合物と、有機結合材と、有機溶剤と、必要に応じて加
えるツノラス粉末とからなることを特徴とする半導体装
置用電極材料。 λ チタン、マグネシウムから選ばれる少なくとも一種
の金属の配合割合か、銀粉末100重量部処対しr 0
.5〜40重量部でおることを特徴とする特llf請求
の範囲第一項記載の半導体装置用電極材料。 & りん酸銀、りん酸ニッケル、りん酸マグネシウムか
ら選ばれる少なくとも一種のりん酸化合物の配合割合が
、銀粉末100重量部に対し1.5〜40重蓋部である
ことを特徴とする特許請求の範囲第一項記載の半導体装
置用電極材料。
[Claims] t) Silver powder, at least one metal selected from titanium and magnesium, silver phosphate, nickel phosphate, r)
1. An electrode material for a semiconductor device, comprising at least one phosphoric acid compound selected from magnesium phosphate, an organic binder, an organic solvent, and tunorasu powder added as necessary. λ The blending ratio of at least one metal selected from titanium and magnesium, or 100 parts by weight of silver powder r 0
.. The electrode material for a semiconductor device according to claim 1, characterized in that the content is 5 to 40 parts by weight. & A patent claim characterized in that the blending ratio of at least one phosphoric acid compound selected from silver phosphate, nickel phosphate, and magnesium phosphate is 1.5 to 40 parts by weight per 100 parts by weight of silver powder. The electrode material for a semiconductor device according to the first item.
JP58042103A 1983-03-16 1983-03-16 Electrode material for semiconductor device Granted JPS59168667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042103A JPS59168667A (en) 1983-03-16 1983-03-16 Electrode material for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042103A JPS59168667A (en) 1983-03-16 1983-03-16 Electrode material for semiconductor device

Publications (2)

Publication Number Publication Date
JPS59168667A true JPS59168667A (en) 1984-09-22
JPH0337751B2 JPH0337751B2 (en) 1991-06-06

Family

ID=12626639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042103A Granted JPS59168667A (en) 1983-03-16 1983-03-16 Electrode material for semiconductor device

Country Status (1)

Country Link
JP (1) JPS59168667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661041A (en) * 1994-11-24 1997-08-26 Murata Manufacturing Co., Ltd. Conductive paste, solar cells with grid electrode made of the conductive paste, and fabrication method for silicon solar cells
US5736261A (en) * 1994-11-25 1998-04-07 Murata Manufacturing Co., Ltd. Conductive paste
JP2002141520A (en) * 2000-10-31 2002-05-17 Kyocera Corp Solar cell element and its manufacturing method
WO2012002182A1 (en) * 2010-07-02 2012-01-05 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell
US8889039B2 (en) 2009-09-18 2014-11-18 Noritake Co., Limited Paste composition for solar battery electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526076B1 (en) * 2013-12-19 2015-06-04 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 A fuel preheating control device for diesel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661041A (en) * 1994-11-24 1997-08-26 Murata Manufacturing Co., Ltd. Conductive paste, solar cells with grid electrode made of the conductive paste, and fabrication method for silicon solar cells
US5736261A (en) * 1994-11-25 1998-04-07 Murata Manufacturing Co., Ltd. Conductive paste
JP2002141520A (en) * 2000-10-31 2002-05-17 Kyocera Corp Solar cell element and its manufacturing method
US8889039B2 (en) 2009-09-18 2014-11-18 Noritake Co., Limited Paste composition for solar battery electrode
WO2012002182A1 (en) * 2010-07-02 2012-01-05 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell
JP2012015409A (en) * 2010-07-02 2012-01-19 Noritake Co Ltd Conductive paste composition for solar batteries
US8889040B2 (en) 2010-07-02 2014-11-18 Noritake Co., Limited Conductive paste composition for solar cell

Also Published As

Publication number Publication date
JPH0337751B2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
EP1713093B1 (en) Backside electrode for solar cell and fabrication method
US4256513A (en) Photoelectric conversion device
US6071437A (en) Electrically conductive composition for a solar cell
TW200727503A (en) Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
JP2017171934A (en) Conductive ink
JPH0350365B2 (en)
JPWO2008078374A1 (en) Conductive paste for solar cell
JPH10326522A (en) Conductive composition for solar battery
JPH023554B2 (en)
JPH08148447A (en) Conductive paste and solar battery provided with electrode using conductive paste
JPS59168667A (en) Electrode material for semiconductor device
JPH0773731A (en) Thick film conductive paste composition
WO2015115565A1 (en) Electrode formation composition, electrode, solar cell element, method for producing same, and solar cell
JPH023555B2 (en)
JP2967929B2 (en) Conductor paste for aluminum nitride substrate
JPH06204511A (en) Electrode paste for semiconductor substrate
EP0054706B1 (en) Process of metallizing a silicon solar cell
JPH023553B2 (en)
JP2004235276A (en) Solar cell element and its forming method
JPH0414514B2 (en)
JPH06105792B2 (en) Solar cell manufacturing method
JPH0337752B2 (en)
JPS6159547B2 (en)
JPH0518268B2 (en)
JPS60140882A (en) Paste material for manufacture of semiconductor