JPH023555B2 - - Google Patents

Info

Publication number
JPH023555B2
JPH023555B2 JP57143203A JP14320382A JPH023555B2 JP H023555 B2 JPH023555 B2 JP H023555B2 JP 57143203 A JP57143203 A JP 57143203A JP 14320382 A JP14320382 A JP 14320382A JP H023555 B2 JPH023555 B2 JP H023555B2
Authority
JP
Japan
Prior art keywords
electrode
electrode material
powder
silicon
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57143203A
Other languages
Japanese (ja)
Other versions
JPS5933869A (en
Inventor
Haruhiko Matsuyama
Mitsuo Nakatani
Masaaki Okunaka
Ataru Yokono
Tokio Isogai
Tadashi Saito
Sumyuki Midorikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57143203A priority Critical patent/JPS5933869A/en
Publication of JPS5933869A publication Critical patent/JPS5933869A/en
Publication of JPH023555B2 publication Critical patent/JPH023555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は半導体装置用の電極材料に係り、特に
太陽電池などの比較的粗いパターンの電極を有す
る半導体素子の製造に好適な電極材料に関する。 半導体素子の例として太陽電池の代表的な構成
例を図に示す。n+/P/P+接合を形成したSi
基板の受光面および裏面に受光面電極4、裏面電
極5を形成した構造である。さらに一般には反射
防止膜等も設けられる。 この太陽電池の近年における重要課題は、製造
コストの低減にあり、受光面電極4、裏面電極5
の形成法も従来の真空蒸着法にかわつて、低コス
トなメツキ法や印刷法が検討されるようになつて
きた。このうち特に印刷法は、自動化が容易で生
産性が高いことから広く検討されている。この印
刷法は、金属粉末、ガラス粉末などを有機結合剤
有機溶剤と混練したペースト状の物質(以下導電
ペーストという)をスクリーン印刷法などで塗布
し、焼成する方法であり、上記の金属粉末として
は銀粉末が一般である。このような導電ペースト
は、太陽電池の電極形成用、あるいは厚膜回路基
板用などとして多数のものが市販されている。 一方、太陽電池等の電極形成においては、電極
の接着強度の大きいこと、シリコンに対する接触
抵抗の低いこと、拡散層に対してつきぬけのない
こと(リーク電流の小さいこと)などが要求され
る。 しかし発明者らが市販の各種のAg系、Ag−Pd
系導電ペーストについて検討した結果によると、
いずれの導電ペーストも図に示した接合形成シリ
コンウエハ上に印刷塗布し、乾燥、焼成した場合
には次の問題があつた。すなわち、厚膜回路基板
用のAg系あるいはAg−Pd系導電ペーストでは、
シリコンウエハと電極との間にバリアが生成し、
接触抵抗が高く、比較的高い温度の焼成では接合
が破壊し、リーク電流の増大が認められた。 太陽電池用のAg系導電ペーストでは、シリコ
ンウエハと電極との間にバリアの生成しにくいも
のもあるがいずれも接触抵抗が高く、太陽電池の
光照射時の電流−電圧特性を調べると曲線因子が
小さく、高効率な太陽電池は作られなかつた。ま
た焼成温度を比較的高温にすると、接触抵抗は低
下する傾向がみられたが、このさいにはリーク電
流が増加する問題が生じた。 このように上記従来の導電ペーストを用いて接
合破壊を起すことなく、接触抵抗の低い電極を形
成することは非常に困難であつた。 本発明の目的は、上記した従来の導電ペースト
にみられた欠点がなく、太陽電池などの半導体装
置の電極材料として非常に有用な材料を提供する
ことにある。 本発明の電極材料はAg粉末と、モリブデン
(Mo)、タングステン(W)から選ばれる少なく
とも一種の金属と、有機結合剤と、有機溶剤と、
ガラス粉末とからなることを特徴とする。 本発明が従来の導電ペーストと異なる点は、
Mo、Wから選ばれる少なくとも一種の金属を含
むことにある。これはこれらの金属を配合した導
電ペーストをシリコンなどの基板上に印刷し、焼
成すると、接合破壊を起す恐れのない比較的低い
温度(<750℃)の焼成でも、基板に対して非常
に低い接触抵抗の電極を形成できることを見い出
したことによる。 本発明の電極材料が従来の導電ベーストに比
べ、上記のように非常に良好な電極形成が可能で
あるのは次の理由によると考えている。すなわ
ち、従来の導電ペーストを例えばシリコン基板上
に印刷し、焼成した場合、焼成雰囲気中に含まれ
る酸素によつてシリコン表面に絶縁性の酸化ケイ
素膜が生成してしまう。またこの酸化ケイ素膜は
導電ペーストが酸化鉛系の低融点ガラスを使用し
ている場合には酸化鉛とシリコンとの反応によつ
ても生成してしまう。このようにシリコン表面に
酸化ケイ素膜が生成するため、焼成された電極と
シリコン間の接触抵抗が非常に高くなつてしまう
ものと予想される。 一方、本発明による電極材料では、上記と同様
に酸化ケイ素膜は生成すると考えられるが、電極
材料中に含まれる金属(Mo、W)が酸化ケイ素
膜と反応し、シリコンの還元やこれらの金属のシ
リサイド化合物の生成が起き、それによつて電極
とシリコンとの接触抵抗が非常に低くなるものと
予想される。 本発明の電極材料の成分について以下にさらに
詳述する。構成成分中のAg粉末、有機結合剤、
有機溶剤は従来の導電ペーストで用いられている
ものと同様のものを用いることができる。銀粉末
としては粒径1μm以下のものが、有機結合剤と
してはセルロース系化合物や、ポリメタンクリレ
ート系化合物などが、有機溶剤としては多価アル
コール系のものが特に好適に用いられ得る。 Mo、Wの金属は、粉末の状態で用いるのが好
適である。ただし、これらの金属の粉末は活性が
高いため、粉末表面に薄い酸化膜を形成する方法
等で安定化処理したものを用いるのが好適であ
る。Mo、Wは一種を用いても、二種を併用して
もよい。さらには二種の合金粉末を用いること
や、Ag粉末表面にこれらの金属をコーテイング
して用いることなども可能である。 また本発明では、ガラスを含むことを必ずしも
必要としない。ただし、ガラスを配合すると、形
成した電極の半導体素子への接着強度が向上す
る。また電極の半田に対する耐性も向上する。こ
のため特に太陽電池の電極形成などに用いる場合
にはむしろガラスを配合するのが好ましい。ここ
で用いるガラスの種類は特に限定されるものでは
ない。また本発明の電極材料にPd粉末を配合す
ることにより形成された電極の半田に対する耐性
がさらに向上し、Pt粉末を配合することにより、
電極の接着強度が向上する。 また本発明の電極材料を特に太陽電池の電極形
成に用いる場合には、Mo、Wから選ばれる少な
くとも一種の金属の配合比をAg粉末の100重量部
に対して0.5〜30重量部とするのが好適である。
0.5重量部未満の配合比では形成された電極のシ
リコンに対する接触抵抗が高くなり、30重量部を
こえる配合比では形成した電極の抵抗値がやや高
くなり、太陽電池の効率低下を招き易くなる。 以下本発明の実施例について説明する。 実施例 1 金属としてMo、Wを配合した本発明の電極材
料の実施例について説明する。Mo、Wの金属粉
末(表面に薄い酸化膜を形成)と、粒径1μm以
下のAg粉末とガラスフリツト(ホウケイ酸鉛系、
ホウケイ酸亜鉛系、リン酸系)とを各種組合せ、
これにポリイソブチルメタクリレート40重量部と
分散剤0.5重量部をα−テルピネオール60重量部
に溶解した粘調液を加えながら十分に混練し、粘
度が約200ポイズ(ずり速度100/秒)の組成の異
なる各種のペースト状電極材料を調整した。 太陽電池用の接合形成シリコン基板として、図
に示すようにP型シリコン基板1(比抵抗1〜
5Ω・cm、直径3インチ丸型ウエハ)の片面にイ
オン打ち込み法で深さ0.3〜0.5μmのn+層の(比
抵抗約1.5×10-3Ω・cm)と、反対面にAl拡散法
で深さ1〜2μmのp+層3を形成したものを用い
た。次にこのP型シリコン基板1のn+層上2に
は櫛型パターン状に、p+層3にはべたパターン
状に上記のペースト状電極材料をスクリーン印刷
し、150℃、10分間の乾燥処理をし受光面電極4、
裏面電極5を形成した。次にこの基板を酸素
5ppmを含む窒素ガス雰囲気中で600℃、10分間焼
成視た。 このようにして作成した太陽電池の電流−電圧
特性(I−V特性)を調べ、電極の接触抵抗、逆
バイアス(IV)でのリーク電流、曲線因子(E.
F.)、開放電圧(Voc)、短絡電流(Isc)を調べ
た。結果を電極材料の無機成分とともに第1表
The present invention relates to an electrode material for a semiconductor device, and particularly to an electrode material suitable for manufacturing a semiconductor element having a relatively rough pattern of electrodes such as a solar cell. The figure shows a typical configuration example of a solar cell as an example of a semiconductor element. Si with n+/P/P + junction formed
It has a structure in which a light-receiving surface electrode 4 and a back-surface electrode 5 are formed on the light-receiving surface and the back surface of the substrate. Furthermore, an antireflection film or the like is generally provided. An important issue for solar cells in recent years is to reduce manufacturing costs.
As for the forming method, low-cost plating methods and printing methods are being considered instead of the conventional vacuum deposition method. Among these methods, printing methods in particular are being widely studied because they are easy to automate and have high productivity. This printing method is a method in which a paste-like substance (hereinafter referred to as conductive paste) made by kneading metal powder, glass powder, etc. with an organic binder and an organic solvent is applied using a screen printing method, etc., and then fired. Generally, silver powder is used. Many such conductive pastes are commercially available for use in forming electrodes of solar cells, thick film circuit boards, and the like. On the other hand, in the formation of electrodes for solar cells, etc., the electrodes are required to have high adhesive strength, low contact resistance to silicon, and no penetration to the diffusion layer (low leakage current). However, the inventors discovered that various commercially available Ag-based, Ag-Pd
According to the results of studying conductive pastes,
When any of the conductive pastes was applied by printing onto the bond-forming silicon wafer shown in the figure, dried, and baked, the following problem occurred. In other words, in Ag-based or Ag-Pd-based conductive paste for thick film circuit boards,
A barrier is created between the silicon wafer and the electrode,
The contact resistance was high, and when fired at a relatively high temperature, the bond was destroyed and an increase in leakage current was observed. Some Ag-based conductive pastes for solar cells do not easily form a barrier between the silicon wafer and the electrode, but they all have high contact resistance, and when examining the current-voltage characteristics when solar cells are irradiated with light, the fill factor is low. However, small and highly efficient solar cells could not be created. Furthermore, when the firing temperature was set to a relatively high temperature, the contact resistance tended to decrease, but this caused the problem of increased leakage current. As described above, it has been extremely difficult to form electrodes with low contact resistance using the above-mentioned conventional conductive pastes without causing bond breakdown. An object of the present invention is to provide a material that does not have the drawbacks of the conventional conductive pastes described above and is very useful as an electrode material for semiconductor devices such as solar cells. The electrode material of the present invention includes Ag powder, at least one metal selected from molybdenum (Mo) and tungsten (W), an organic binder, and an organic solvent.
It is characterized by consisting of glass powder. The present invention differs from conventional conductive pastes in that:
It contains at least one metal selected from Mo and W. This is because when a conductive paste containing these metals is printed on a substrate such as silicon and fired, even at a relatively low temperature (<750°C) that does not cause bond breakdown, the temperature is extremely low compared to the substrate. This is due to the discovery that it is possible to form electrodes with contact resistance. It is believed that the reason why the electrode material of the present invention is capable of forming a very good electrode as described above compared to the conventional conductive base material is as follows. That is, when a conventional conductive paste is printed on, for example, a silicon substrate and fired, an insulating silicon oxide film is formed on the silicon surface due to oxygen contained in the firing atmosphere. Furthermore, when the conductive paste uses lead oxide-based low melting point glass, this silicon oxide film is also generated due to the reaction between lead oxide and silicon. Since a silicon oxide film is thus formed on the silicon surface, it is expected that the contact resistance between the fired electrode and the silicon will become extremely high. On the other hand, with the electrode material according to the present invention, it is thought that a silicon oxide film is generated in the same manner as described above, but the metals (Mo, W) contained in the electrode material react with the silicon oxide film, reducing silicon and forming these metals. It is expected that the formation of a silicide compound will occur, thereby making the contact resistance between the electrode and silicon extremely low. The components of the electrode material of the present invention will be explained in further detail below. Ag powder, organic binder,
The organic solvent can be the same as that used in conventional conductive pastes. As the silver powder, those having a particle size of 1 μm or less, as the organic binder, cellulose compounds and polymethane acrylate compounds, and as the organic solvent, polyhydric alcohols can be particularly preferably used. The metals Mo and W are preferably used in powder form. However, since these metal powders have high activity, it is preferable to use powders that have been stabilized by forming a thin oxide film on the powder surface. Mo and W may be used alone or in combination of two kinds. Furthermore, it is also possible to use two types of alloy powders or to coat the surface of Ag powder with these metals. Furthermore, the present invention does not necessarily require glass to be included. However, when glass is added, the adhesive strength of the formed electrode to the semiconductor element is improved. Furthermore, the resistance of the electrode to solder is also improved. For this reason, it is preferable to incorporate glass, especially when used for forming electrodes of solar cells. The type of glass used here is not particularly limited. In addition, by blending Pd powder into the electrode material of the present invention, the resistance to solder of the formed electrode is further improved, and by blending Pt powder,
The adhesive strength of the electrode is improved. Further, when the electrode material of the present invention is used particularly for forming electrodes of solar cells, the blending ratio of at least one metal selected from Mo and W is 0.5 to 30 parts by weight per 100 parts by weight of Ag powder. is suitable.
If the blending ratio is less than 0.5 parts by weight, the contact resistance of the formed electrode to silicon will increase, and if the blending ratio exceeds 30 parts by weight, the resistance value of the formed electrode will become somewhat high, which tends to cause a decrease in the efficiency of the solar cell. Examples of the present invention will be described below. Example 1 An example of an electrode material of the present invention containing Mo and W as metals will be described. Mo, W metal powder (forms a thin oxide film on the surface), Ag powder with a particle size of 1 μm or less, and glass frit (lead borosilicate,
various combinations of zinc borosilicate type, phosphoric acid type),
A viscous solution prepared by dissolving 40 parts by weight of polyisobutyl methacrylate and 0.5 parts by weight of a dispersant in 60 parts by weight of α-terpineol was thoroughly kneaded to obtain a composition with a viscosity of about 200 poise (shear rate 100/sec). A variety of different pasty electrode materials were prepared. As a junction-forming silicon substrate for solar cells, as shown in the figure, a P-type silicon substrate 1 (specific resistance 1~
A 0.3 to 0.5 μm deep N + layer (specific resistance approximately 1.5×10 -3 Ω・cm) was formed by ion implantation on one side of a 5 Ω・cm, 3 inch diameter round wafer, and an Al diffusion method was applied to the other side. A p + layer 3 having a depth of 1 to 2 μm was formed thereon. Next, the above paste electrode material was screen printed on the n + layer 2 of this P type silicon substrate 1 in a comb-shaped pattern and on the p + layer 3 in a solid pattern, and dried at 150°C for 10 minutes. Processed light-receiving surface electrode 4,
A back electrode 5 was formed. Next, this substrate is exposed to oxygen.
It was baked at 600°C for 10 minutes in a nitrogen gas atmosphere containing 5 ppm. The current-voltage characteristics (IV characteristics) of the solar cell created in this way were investigated, and the electrode contact resistance, leakage current at reverse bias (IV), and fill factor (E.
F.), open circuit voltage (Voc), and short circuit current (Isc). Table 1 shows the results along with the inorganic components of the electrode material.

【表】 に示した。Mo、Wの金属を配合した本発明の電
極材料は比較例の組成に比べいずれも接触抵抗が
低くなり、F.F.、Iscが大きく、その結果として
効率も大幅に向上した。またリーク電流はいずれ
も10-6A/cm2のオーダーであり、問題は認められ
なかつた。このように実施例に示した本発明の電
極材料も従来の導電ベーストに比べ非常に優れた
効果の得られることが確認された。 以上のように本発明の電極材料は比較的低温の
焼成でも、浅い接合の半導体素子に対しても接合
破壊やリーク電流の増加を引き起こすことなく、
かつ接触抵抗の低い電極形成を可能とする画期的
な材料である。このため太陽電池の電極形成に本
発明の電極材料を用いると従来の導電ペーストを
用いた場合に比べ非常に効率の高い太陽電池を得
ることができる。 また、本発明の電極材料は印刷法によつて塗布
でき、安価に、高生産性に電極が形成でき、工業
的にも非常に有用である。さらに本発明の電極材
料は太陽電池以外の受光素子や他の半導体装置の
電極形成にも用いることが可能である。
It is shown in [Table]. The electrode materials of the present invention containing the metals Mo and W all had lower contact resistance and larger FF and Isc than the composition of the comparative example, and as a result, the efficiency was significantly improved. Further, the leakage current was on the order of 10 -6 A/cm 2 in all cases, and no problem was observed. As described above, it was confirmed that the electrode material of the present invention shown in the Examples also provides extremely superior effects compared to the conventional conductive base. As described above, the electrode material of the present invention can be baked at a relatively low temperature without causing junction breakdown or an increase in leakage current even in semiconductor elements with shallow junctions.
Moreover, it is an epoch-making material that enables the formation of electrodes with low contact resistance. Therefore, when the electrode material of the present invention is used to form electrodes of a solar cell, a solar cell with much higher efficiency can be obtained than when a conventional conductive paste is used. Furthermore, the electrode material of the present invention can be applied by a printing method, and electrodes can be formed at low cost and with high productivity, making it very useful industrially. Furthermore, the electrode material of the present invention can also be used to form electrodes of light receiving elements other than solar cells and other semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

図は太陽電池の代表的な構成を示した断面図で
ある。 1……P型シリコン基板、2……n+層、3…
…p+層、4……受光面電極、5……裏面電極。
The figure is a cross-sectional view showing a typical configuration of a solar cell. 1... P-type silicon substrate, 2... n + layer, 3...
...p + layer, 4...light-receiving surface electrode, 5...back surface electrode.

Claims (1)

【特許請求の範囲】 1 Ag粉末と、モリブデン、タングステンから
選ばれる少なくとも一種の金属と、有機結合剤
と、有機溶剤と、ガラス粉末とからなることを特
徴とする半導体装置用電極材料。 2 モリブデン、タングステンから選ばれる少な
くとも一種の金属の配合割合が、Ag粉末100重量
部に対して0.5〜30重量部であることを特徴とす
る特許請求の範囲第一項記載の半導体装置用電極
材料。
[Claims] 1. An electrode material for a semiconductor device comprising Ag powder, at least one metal selected from molybdenum and tungsten, an organic binder, an organic solvent, and glass powder. 2. The electrode material for a semiconductor device according to claim 1, wherein the blending ratio of at least one metal selected from molybdenum and tungsten is 0.5 to 30 parts by weight based on 100 parts by weight of Ag powder. .
JP57143203A 1982-08-20 1982-08-20 Electrode material for semiconductor device Granted JPS5933869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143203A JPS5933869A (en) 1982-08-20 1982-08-20 Electrode material for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143203A JPS5933869A (en) 1982-08-20 1982-08-20 Electrode material for semiconductor device

Publications (2)

Publication Number Publication Date
JPS5933869A JPS5933869A (en) 1984-02-23
JPH023555B2 true JPH023555B2 (en) 1990-01-24

Family

ID=15333271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143203A Granted JPS5933869A (en) 1982-08-20 1982-08-20 Electrode material for semiconductor device

Country Status (1)

Country Link
JP (1) JPS5933869A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078374A1 (en) * 2006-12-25 2008-07-03 Namics Corporation Conductive paste for solar cell
JP5144857B2 (en) * 2010-03-01 2013-02-13 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell
JP5416631B2 (en) * 2010-03-25 2014-02-12 株式会社日立製作所 Glass composition and conductive paste for aluminum electrode wiring, electronic component including the aluminum electrode wiring, and method for manufacturing the electronic component
US8497420B2 (en) 2010-05-04 2013-07-30 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
TWI745562B (en) 2017-04-18 2021-11-11 美商太陽帕斯特有限責任公司 Conductive paste composition and semiconductor devices made therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963994A (en) * 1972-10-26 1974-06-20
JPS5384495A (en) * 1976-12-29 1978-07-25 Japan Solar Energy Semiconductor electrode and method of forming same
JPS5713164A (en) * 1980-06-28 1982-01-23 Matsushita Electric Ind Co Ltd Paste of activating metallic material for electroless plating and plating method using said paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963994A (en) * 1972-10-26 1974-06-20
JPS5384495A (en) * 1976-12-29 1978-07-25 Japan Solar Energy Semiconductor electrode and method of forming same
JPS5713164A (en) * 1980-06-28 1982-01-23 Matsushita Electric Ind Co Ltd Paste of activating metallic material for electroless plating and plating method using said paste

Also Published As

Publication number Publication date
JPS5933869A (en) 1984-02-23

Similar Documents

Publication Publication Date Title
US4256513A (en) Photoelectric conversion device
EP1713094B1 (en) Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US6071437A (en) Electrically conductive composition for a solar cell
EP1713093A2 (en) Electroconductive thick film composition, electrode, and solar cell formed therefrom
JP3760361B2 (en) Conductive composition for solar cell
EP2696353B1 (en) Paste composition for electrodes, and solar cell
JPH023554B2 (en)
JP6206491B2 (en) Electrode forming composition, solar cell element and solar cell
JP2011171273A (en) Electrode paste composition and solar cell
TW201840496A (en) Glass frit, conductive paste and use of the conductive paste
JPH0773731A (en) Thick film conductive paste composition
JPH023555B2 (en)
JPH0337751B2 (en)
WO2015115565A1 (en) Electrode formation composition, electrode, solar cell element, method for producing same, and solar cell
JPH023553B2 (en)
JP2967929B2 (en) Conductor paste for aluminum nitride substrate
JPH0414514B2 (en)
JPH0337752B2 (en)
JPS6159546B2 (en)
JPH06105792B2 (en) Solar cell manufacturing method
JPS6159547B2 (en)
JP5408322B2 (en) Electrode paste composition and solar cell
JPS6228597B2 (en)
JPH0518268B2 (en)
JPS6159551B2 (en)