JPS59168484A - Image element - Google Patents

Image element

Info

Publication number
JPS59168484A
JPS59168484A JP4348083A JP4348083A JPS59168484A JP S59168484 A JPS59168484 A JP S59168484A JP 4348083 A JP4348083 A JP 4348083A JP 4348083 A JP4348083 A JP 4348083A JP S59168484 A JPS59168484 A JP S59168484A
Authority
JP
Japan
Prior art keywords
liquid crystal
writing
substrate
display
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4348083A
Other languages
Japanese (ja)
Inventor
省平 苗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4348083A priority Critical patent/JPS59168484A/en
Publication of JPS59168484A publication Critical patent/JPS59168484A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は熱書込方式の記録・表示素子に関する。[Detailed description of the invention] The present invention relates to a thermal writing type recording/display element.

高密度の記録・表示が可能な素子としで、液晶物質を二
枚の基板で挾持した構造の液晶セルにレーザ光を照射し
て画像を書込む方式のレーザ熱書込液晶素子や、液晶セ
ルの基板上に設けたヒータ電極に電流を流して発生する
ジーール熱を利用して画像を書込む方式のジュール熱書
込液晶素子等が知られている。これらはいずれも液晶の
電気熱光学効果を利用したものである。即ち、透明な液
晶組織を呈するコレステリック液晶あるいはスメクチッ
ク液晶の薄層を部分的に加熱・急冷すると、その部分は
一般に光を散乱する不透明な液晶組織に遷移する。この
現象を利用して、レーザ光を照射・走査して照射部分の
液晶物質を光散乱状態に移行せしめて画像を書込むのが
レーザ熱書込液晶素子である。書込み画像は液晶セルに
一様に電界を印加することによって消去できる。また、
液晶セルにXYマl−IJクス構成の電極を形成してお
き、片側の電極(例えばX電極)に電流を印加してジー
ール熱を発生せしめ、その電極上の液晶物質を光散乱状
態に移行せしめて画像を書込むのがジュール熱書込液晶
素子である。この場合、対向基板側の電極(ここではX
電極)は液晶物質が加熱された後、冷却過程にある期間
にX電極−X電極間に選択的に電界を印加するのに用い
られる。このような駆動によってX電極−X電極の交差
部分に形成される画素内の液晶物質を選択的に光散乱状
態に移行せしめることができる。なぜならば、加熱・急
冷された液晶薄層は光散乱状態になるが、冷却時に電界
が印加されている場合には電界による液晶分子配列効果
により、光散乱状態にならずに透明状態になるからであ
る。このジュール熱書込液晶素子においては、順次画像
を書換えてゆくことができる。これらのレーザ熱書込液
晶素子やジュール熱書込液晶素子は、画像記録素子ある
いは書込んだ画像を直接液る直視型表示素子として用い
られる他に、書込んだ画像を投射用の光源・光学系を用
いて投映して観る方式の投射型表示素子としても用いら
れる。以上は液晶を用いた熱書込方式の記録・表示素子
の従来例であるが、液晶以外の物質を用いた例も知られ
ている。例えば、発熱抵抗体を並べたヘッドを用いて、
Ag2Hg1.等の無機物質に温度変化を与えて画像を
書込む方式の熱記録・表示素子がある。また熱書込方式
以外の書込方式による記録・表示素子も幾つか知られて
いる。その−例は液晶セルの片側基板に光導電膜を形成
しておき、例えばCRT (カソードレイチー−ブ)等
の表示画面を光導電膜上に投映し、光学画像を電圧分布
像に変換して液晶薄膜に画像に応じて分布した電圧を印
加することで液晶薄膜に画像を書込む方式の光書込液晶
素子である。以上述べたように、画像を記録・表示する
素子は幾つか知られているが、記録・表示素子に要求さ
れる高密度書込・高速書込の2つの性能を共に満足する
素子は得られていないのが現状である。即ち、レーザ熱
書込液晶素子は高密度書込は出来るが、レーザ光を走査
する為に高速書込が出来ないし、ジュール熱書込液晶素
子は高速化の為ζこは記録・表示面積を小さくする必要
があり、この場合には電極密度に限界があって高密度化
が出来ないといった具合である。また、無機物質を用い
た熱書込方式においては発熱抵抗体ヘッドを機械的に走
査して書込む為に高速書込が出来ない。一方、光書込液
晶素子においては画像がCR1画面で制限される為に高
密度書込が出来ない。このように従来の画像素子では高
密度書込・高速書込の2つの性能を共に満足することは
出来ない。しかしながら、電子ビームを走査して物質に
照射し、その物質に部分的な温度上昇を生せしめること
によって画像書込を行なう方式であれば高密度・高速書
込が可能である。高速動作が可能であるのはCRTにお
けるのと同じである。更に、C)!、Tによる表示ある
いはCRTを用いた前述の光書込液晶素子はCRTの螢
光体を発光せしめる為に高エネルギー“即ち大電子流を
必要とし、その結果′電子ビーム径が大きくなって表示
あるいは記録の高密度化を妨げているのに対して、電子
ビームを熱源として用いる場合には大電子流を必要とし
ない為に電子ビーム径を小さく絞ることか出来、高密度
書込が可能となる訳である。これは、1個の電子を1■
の電位差で加速した時に電子が得るエネルギー1eVを
温度に換算すると11605 Kにも達することがら理
解できる。このように電子ビームを走査して物質に照射
し、その物質に部分的な温度上昇を生せしめることによ
って画像書込を行なう方式は高密度書込・高速書込が可
能であり、その温度上昇をうける物質としては前述の従
来方式の熱書込方式の記録・表示素子に用いられる物質
、即ち、液晶物質やハロゲン化水銀系の無機物等が用い
られる。
Devices capable of high-density recording and display include laser thermal writing liquid crystal devices, which write images by irradiating a laser beam onto a liquid crystal cell with a structure in which a liquid crystal material is sandwiched between two substrates, and liquid crystal cells. A Joule heat writing liquid crystal element is known, which writes an image using the Zeel heat generated by passing a current through a heater electrode provided on a substrate. All of these utilize the electrothermo-optic effect of liquid crystal. That is, when a thin layer of cholesteric liquid crystal or smectic liquid crystal exhibiting a transparent liquid crystal structure is partially heated and rapidly cooled, that portion generally transitions to an opaque liquid crystal structure that scatters light. A laser thermal writing liquid crystal element utilizes this phenomenon to write an image by irradiating and scanning a laser beam to shift the liquid crystal material in the irradiated area to a light scattering state. The written image can be erased by uniformly applying an electric field to the liquid crystal cell. Also,
Electrodes with an XY-IJ configuration are formed in a liquid crystal cell, and a current is applied to one electrode (for example, the At least the Joule thermal writing liquid crystal element is used to write images. In this case, the electrode on the opposing substrate side (here,
After the liquid crystal material has been heated, the electrodes are used to selectively apply an electric field between the X electrodes during the cooling process. By such driving, the liquid crystal material in the pixel formed at the intersection of the X electrode and the X electrode can be selectively shifted to a light scattering state. This is because a thin liquid crystal layer that is heated and rapidly cooled becomes a light-scattering state, but if an electric field is applied during cooling, the liquid crystal molecule alignment effect caused by the electric field causes it to become transparent instead of becoming a light-scattering state. It is. In this Joule thermal writing liquid crystal element, images can be sequentially rewritten. These laser thermal writing liquid crystal elements and Joule thermal writing liquid crystal elements are used as image recording elements or direct-view display elements that directly display written images. It is also used as a projection type display element that uses a system to project images for viewing. The above is a conventional example of a thermal writing type recording/display element using liquid crystal, but examples using substances other than liquid crystal are also known. For example, using a head lined with heating resistors,
Ag2Hg1. There are thermal recording/display elements that write images by applying temperature changes to inorganic materials such as. Furthermore, some recording/display elements using writing methods other than the thermal writing method are also known. An example of this is to form a photoconductive film on one side of the substrate of a liquid crystal cell, project a display screen such as a CRT (cathode beam) onto the photoconductive film, and convert the optical image into a voltage distribution image. This is an optical writing liquid crystal element that writes an image on a liquid crystal thin film by applying a voltage distributed according to the image to the liquid crystal thin film. As mentioned above, several devices for recording and displaying images are known, but no device has been found that satisfies both the high-density writing and high-speed writing performance required of recording and display devices. The current situation is that this is not the case. In other words, although laser thermal writing liquid crystal elements can perform high-density writing, they cannot perform high-speed writing due to scanning laser light, and Joule thermal writing liquid crystal elements have a large recording/display area in order to increase the speed. In this case, there is a limit to the electrode density and it is not possible to increase the density. Furthermore, in the thermal writing method using an inorganic material, high-speed writing is not possible because the heating resistor head is mechanically scanned for writing. On the other hand, in an optical writing liquid crystal element, high-density writing is not possible because the image is limited to the CR1 screen. As described above, conventional image elements cannot satisfy both high-density writing and high-speed writing performance. However, high-density and high-speed writing is possible if an image is written by scanning an electron beam and irradiating the material to cause a partial temperature rise in the material. High-speed operation is possible, just as in a CRT. Furthermore, C)! , T display or the optically written liquid crystal element using a CRT requires high energy, that is, a large electron flow, in order to make the phosphor of the CRT emit light. On the other hand, when using an electron beam as a heat source, the diameter of the electron beam can be narrowed to a small size, making it possible to perform high-density writing. This means that one electron is
This can be understood from the fact that when the energy 1 eV that an electron obtains when accelerated by a potential difference of , is converted into temperature, it reaches 11,605 K. This method of writing images by scanning and irradiating a material with an electron beam and causing a partial temperature rise in the material is capable of high-density and high-speed writing; As the material to be subjected to the irradiation, the materials used in the recording/display elements of the conventional thermal writing method mentioned above, ie, liquid crystal materials, mercury halide-based inorganic materials, etc. are used.

特に、液晶物質は状態変化を生じる温度が低い為に、書
込に必要な温度上昇が少なくて済み、高密度書込・高速
書込の点で優れているが、流動性がある為に2枚の基板
で挾持して用いなければならず、この為に電子ビーム照
射即ち電子の衝突による発熱を利用する熱書込方式には
不利となる。なぜならば、前述のレーザ熱書込方式やジ
ーール熱書込方式では基板の液晶物質と接する面が発熱
部となるので差支えないが、電子を基板に衝突せしめて
発熱させる方式では発熱部が基板の液晶と接する面とは
反対側となるので熱利用効率の点で基板の存在が不利と
なる訳である。この結果、電子ビーム走査による熱書込
方式のもつ高密度書込・高速書込の特徴が低減してしま
う。本発明者は電子の照射をうける基板の材質や構造を
数多く検討し、電子の衝突による発熱を有効に伝導する
構成の基板を見出した結果、液晶物質の如く2枚の基板
で挾持する必要のある物質を用いても極めて高密度・高
速の画像書込が可能な電子ビーム走査方式の$書込方式
画像素子を実現し、本発明に至ったものである。
In particular, since the temperature at which liquid crystal materials change state is low, the temperature rise necessary for writing is small, and they are excellent in terms of high-density writing and high-speed writing, but because of their fluidity, It must be used while being held between two substrates, which is disadvantageous to a thermal writing method that utilizes heat generated by electron beam irradiation, that is, collision of electrons. This is because in the aforementioned laser thermal writing method and Ziehl thermal writing method, the surface of the substrate in contact with the liquid crystal material becomes the heat generating part, so there is no problem, but in the method of generating heat by colliding electrons with the substrate, the heat generating part is on the substrate. The presence of the substrate is disadvantageous in terms of heat utilization efficiency since it is on the opposite side of the surface that comes into contact with the liquid crystal. As a result, the high-density writing and high-speed writing features of the thermal writing method using electron beam scanning are reduced. The inventor of the present invention has studied many materials and structures of substrates that are irradiated with electrons, and has found a substrate with a structure that effectively conducts heat generated by collision of electrons. The present invention has been achieved by realizing a $ writing type image element using an electron beam scanning method that allows extremely high-density and high-speed image writing even when using a certain material.

本発明の目的は、高密度書込・高速書込の2つの点で特
に優れた性能を有する画像素子を提供することにある。
An object of the present invention is to provide an image element that has particularly excellent performance in two aspects: high-density writing and high-speed writing.

本発明の画像素子は、電子の衝突による発熱を用いて物
質に部分的湿度上昇を生ぜしめ、該物質の該温度と昇を
うけた部分に生じる状態変化を利用して画像を表示ある
いは記録する画像素子で、かつ前記温度上昇をうける物
質が2枚の基板に挾持された構造の画像素子であり、該
2枚の基板のうちの電子照射側の1枚が、電子照射を受
ける側から、導電性薄層と膜厚方向の熱伝導−率が膜の
広がり方向の熱伝導率よりも大さい絶縁性物質の層との
少なくとも2層から成る多層構造である点に特徴がある
The image element of the present invention uses heat generated by electron collisions to cause a local increase in humidity in a substance, and displays or records an image by using the temperature of the substance and the state change that occurs in the area that has undergone the increase. The image element is an image element having a structure in which the substance subject to the temperature increase is sandwiched between two substrates, and one of the two substrates on the electron irradiation side is arranged so that the substance subjected to the temperature increase is It is characterized in that it has a multilayer structure consisting of at least two layers: a conductive thin layer and a layer of an insulating material whose thermal conductivity in the film thickness direction is higher than that in the direction in which the film extends.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の画像素子の一実施例を示す断面図であ
る。第1図において、■はガラス管で、その内部は1O
−6TOrr 程度の真空になっている。また、ガラス
管1の前面部1′の内面には配向処理膜2が形成されて
いる。3はガラス管1の前面部1′と共に液晶物質7を
挾持する基板であり、厚さ約0.3鰭の結晶性Be0層
13の片方の面に厚さ約1000穴のM薄層15、もう
片方の面に配向処理膜14が形成されている。配向処理
膜2および]4はいずれも約50OAの厚さで形成した
ジメチルオクタデシルアミノプロビルトリメトキシシリ
ルクロライドの薄膜である。この基板3はスペーサ6を
介してカラス管1の前面部1′と対向しており、その間
隙は約16μmに保持されている。8は陰極であり、こ
こから飛び出した電子は陽極9で引き出され、電子流1
0すなって基板3のM薄層−15に衝突する。
FIG. 1 is a sectional view showing an embodiment of the image element of the present invention. In Figure 1, ■ is a glass tube, the inside of which is 1O
The vacuum is about -6 TOrr. Furthermore, an alignment treatment film 2 is formed on the inner surface of the front surface portion 1' of the glass tube 1. 3 is a substrate that holds the liquid crystal substance 7 together with the front part 1' of the glass tube 1, and has an M thin layer 15 with about 1000 holes on one side of a crystalline Be0 layer 13 with a thickness of about 0.3 fins; An alignment treatment film 14 is formed on the other surface. The alignment treatment films 2 and ]4 are both thin films of dimethyloctadecylaminoprobyltrimethoxysilyl chloride formed to a thickness of about 50 OA. This substrate 3 faces the front part 1' of the glass tube 1 via a spacer 6, and the gap therebetween is maintained at about 16 μm. 8 is a cathode, and the electrons that jump out from here are extracted by the anode 9, and the electron flow 1
0, which collides with the M thin layer -15 of the substrate 3.

この電子流10の強さはグリッド電極11によって制御
され、またその方向は偏向コイル12によって制御され
る。このような構造の画像素子を液晶vlJ買7として
ノルマルペンチルシアノビフェニル(以下5CBと記す
)に二色性色素G202(日本感光色素研究新製)をi
−o重量%添加した材料を用いて構成し、電子流を強度
変調し、なから走査してガラス管1の前面から観察した
ところ、透明背景(Adi!H1i’i15によるミラ
ー面)に紫色の画像をテレビ画面に充分に追随する速度
で表示することができた。これは次のような原理に基つ
くものである。
The strength of this electron flow 10 is controlled by a grid electrode 11 and its direction by a deflection coil 12. An image element with such a structure is used as a liquid crystal vlJ7, and dichroic dye G202 (manufactured by Nippon Photosensitive Research Institute) is added to normal pentyl cyanobiphenyl (hereinafter referred to as 5CB).
When observed from the front of the glass tube 1 by scanning the electron flow by intensity modulating the electron flow, a purple color was observed on the transparent background (mirror surface by Adi!H1i'i15). Images could be displayed at a speed that sufficiently followed the TV screen. This is based on the following principle.

第2図は本実施例の画像素子の表示原理を示す為の図で
、電子流の照射をうけた点(画素)における液晶物質の
視度変化とM薄層を介して観察した反射光強度変化とを
示している。液晶物質の温度は電子流の照射をうけ−C
いる期間は電子の衝突による発熱の為に上昇し続け、そ
の途中で液晶物質の液晶−液体転移温度Tc (本実施
例の5CBでは35℃)を越える。即ち、液晶物質のそ
の画素部分は一時的に液体状態となる。次に、電子流の
照射が止むと温度が降下し始め、TC以下になると液体
状態にあった画素部分の液晶物質は再び液晶状態に戻る
。このように本実施例の画像素子では、液晶物質か電子
流の照射によって加熱され、瞬時液体状態に変化するこ
とを利用している。即ち、液晶物質が液晶状態にある時
は二色性色素が均一に配向し、この実施例の場合には配
向処理膜2および14の効果で二色性色素G202が基
板3の面に垂直な方向に配向して2す、二色性色素によ
る光の吸収が生じない為に透明(反射光強慶大))こ見
える。しかしながら、液晶物質が液体状態になるお液晶
分子の配向が乱れ、それにつれて二色性色素の配向が札
れる結果、特定波長の元の吸収が生じてその部分は着色
して見える(反射光強度低下)。再び温度が降下して液
晶状態に戻ると二色性色素による光の吸収はlS<なり
透明に戻るが、温度降下の際はその変化がゆるやかで1
.る為に液晶分子の再配向も徐々に起こり、従って着色
状態から透明状態への移行はゆるやかに生じる。駆動上
は電子流が照射される直前の液晶物質の温度は一定であ
ることが好韮しいので本実施例においては、液晶温度が
電子流照射前の温度に戻るまでの時間をフレーム時間、
温度TCに戻るまでの時間をフィールド時間とし、フィ
ールド時間がフレーム時間の約2分の1になるように電
子流の強度を制御しである。このようにして、いわゆる
飛び越し走査を行ない動画表示を行なった。フレーム時
間は約25m5であり、表示密度は16間高Q表示面に
約1200本であった。書込速度はCRTと同じである
が、高密度書込が可能であるのはCRTが螢光体の発光
の為に大きいビーム電流を必要とし、その結果、電子流
のビーム径が約0.2朋程度に広がってしまうのに比べ
て、本実施例の画像素子では液晶物質をわずかに40℃
程度昇温させれは充分である為、非常に細いビーム径の
電子流で書込が行なえるからである。このことは、1個
の電子を1■の電位差で加速した時に電子が得るエネル
ギーl eVを温度に換算すると11605 Kにも達
することからも理解できる。また、本実施例の画像素子
においては基板3として結晶性Be0層13の電子照射
側にM薄層15を形成した構造の基板を用いていること
が電子ビーム走査による熱書込方式のもつ高密度書込の
特徴を充分発揮させるのに重要な要素となっている。即
ち、電子の照射による発熱はM薄層15において生じ、
これが基板3を伝導して液晶物質7を部分的に昇温せし
める為、電子照射面において温度上昇を生じるのが微小
領域であっても熱が基板を伝導する間に、基板の厚さ方
向のみならず基板の広がり方向にも熱が伝導し、液晶物
質に熱が伝わったところでは温度上昇をうける領域が照
射電子ビーム径よりも広くなってしまうという不都合が
一般に生じる。しかしながら、本実施例の如く結晶性B
eOを基板に用いた画像素子においてはそのような不都
合は生じずに約10μtn径のスポットで画像を表示す
ることができた。即ち、16mm高の表示面に約120
0本の密度で表示することができた。これは結晶性Be
0層が層厚方向の熱伝導率が層の広がり方向の熱伝導率
に比べて4倍程度大きいという特徴を有している結果、
基板の広がり方向には殆んど熱が伝わらずに効率的lこ
基板の厚さ方向、即ち電子照射による発熱部から液晶物
質へ熱が伝えられた為である。なお、用いた結晶性Be
0rfiiの熱伝導率は層厚方向が0.63cal /
CCm−5−deで、層の広がり方向が0.14Caレ
ー・s−degであった。結晶性Be0層の表面に設け
た導電性M薄層は照射された電子の堆積を防ぐのに必要
であり、この層のない構造の画像素子においては電子ビ
ーム照射による発熱が充分に生じず、画像の表示ができ
なかった。またこの導電性薄層は表示画像をガラス面1
′の側から観るのに十分なミラー面を形成する範囲で可
能な限り薄い方が望ましい。なお、熱伝導率が膜の広が
り方向に比べて膜厚方向番こ犬きい物質を基板に用いる
ことが高速・高密度書込を実現するのに必要な要素であ
ることを確認する為に、比較例として前記実施例におけ
る結晶性Be0層の代りにガラス層を用いた構造の画像
素子を作成したところフレーム時間は約3Qmsで、表
示密度は16間高Q表示面に約1000本と、いずれも
前記実施例に及ばなかった。また今一つの比較例として
前記実施例における結晶性Be0層とM薄層の二層構造
の代りにM基板の単層構造とした画像素子を作成したと
ころ、フレーム時間は約25m5で前記実施例と同じで
あったが表示密度は15m1高の表示面に約600本で
前記実施例に比べて著しく劣った。これらの比較例に用
いたガラス層およびM基板の熱伝導率はそれぞれQ、Q
Q 15 ca I /can s * degおよび
0.65 ca17cm・s ・degであり、いずれ
も基板の広がり方向と厚さ方向とで差はなかった。また
、前記実施例に用いた結晶性Be0層と比べると、熱伝
導率はガラス層は結晶性Be0層より小さく、M基板は
結晶性Be0層より大きい。このように、単に基板の熱
伝導率を変えただけでは高速書込・高密度書込を共に実
現することはできず、本発明の画像素子の如く、膜厚方
向の熱伝導率が膜の広がり方向の熱伝導率よりも大きい
物質の層を構成要素とする基板を用いることによって初
めて高速書込・高密度書込の2つの点で特に優れた性能
が得られることが確かめられた。
Figure 2 is a diagram showing the display principle of the image element of this example, showing the diopter change of the liquid crystal material at the point (pixel) irradiated with the electron flow and the reflected light intensity observed through the M thin layer. It shows the change. The temperature of the liquid crystal material is -C under the irradiation of the electron stream.
During this period, the temperature continues to rise due to heat generation due to electron collisions, and in the middle of this period, the temperature exceeds the liquid crystal-liquid transition temperature Tc of the liquid crystal material (35° C. in the case of 5CB in this example). That is, that pixel portion of the liquid crystal material is temporarily in a liquid state. Next, when the electron current irradiation stops, the temperature begins to drop, and when the temperature drops below TC, the liquid crystal material in the pixel portion that was in the liquid state returns to the liquid crystal state again. In this manner, the image element of this embodiment utilizes the fact that the liquid crystal material is heated by irradiation with an electron stream and instantaneously changes into a liquid state. That is, when the liquid crystal material is in a liquid crystal state, the dichroic dye is uniformly aligned, and in this embodiment, the dichroic dye G202 is aligned perpendicular to the surface of the substrate 3 due to the effects of the alignment treatment films 2 and 14. When oriented in the direction of 2, the dichroic pigment does not absorb light, so it appears transparent (highly reflected light). However, when the liquid crystal substance becomes liquid, the orientation of the liquid crystal molecules is disturbed, and as a result, the orientation of the dichroic dye becomes distorted, resulting in the original absorption of a specific wavelength, and the area appears colored (reflected light intensity decrease). When the temperature drops again and returns to the liquid crystal state, the absorption of light by the dichroic pigment becomes lS< and returns to transparency, but when the temperature drops, the change is gradual and 1
.. As a result, reorientation of liquid crystal molecules also occurs gradually, and therefore the transition from a colored state to a transparent state occurs gradually. In terms of driving, it is preferable that the temperature of the liquid crystal substance immediately before being irradiated with the electron current is constant, so in this embodiment, the time required for the liquid crystal temperature to return to the temperature before being irradiated with the electron current is defined as the frame time.
The time required for the temperature to return to TC is defined as the field time, and the intensity of the electron flow is controlled so that the field time is about half of the frame time. In this way, so-called interlaced scanning was performed to display a moving image. The frame time was about 25 m5, and the display density was about 1200 lines on a 16-meter high-Q display surface. The writing speed is the same as that of CRT, but high-density writing is possible because CRT requires a large beam current for the phosphor to emit light, and as a result, the beam diameter of the electron flow is approximately 0. In contrast, in the image element of this example, the liquid crystal material is heated to a temperature of only 40°C.
This is because the temperature can be raised to a sufficient extent, so that writing can be performed using an electron stream with a very narrow beam diameter. This can be understood from the fact that when one electron is accelerated by a potential difference of 1 sq., the energy leV obtained by the electron reaches 11605 K when converted into temperature. In addition, in the image element of this embodiment, the use of a substrate having a structure in which the M thin layer 15 is formed on the electron irradiation side of the crystalline Be0 layer 13 is used as the substrate 3, which has the advantages of the thermal writing method using electron beam scanning. This is an important element to fully utilize the characteristics of density writing. That is, heat generation due to electron irradiation occurs in the M thin layer 15,
This conducts through the substrate 3 and partially raises the temperature of the liquid crystal substance 7, so even if the temperature rise occurs in a minute area on the electron irradiated surface, while the heat is conducted through the substrate, only in the thickness direction of the substrate. In addition, the heat is also conducted in the direction in which the substrate spreads, and when the heat is transferred to the liquid crystal material, there is generally a problem that the area where the temperature increases is larger than the diameter of the irradiated electron beam. However, as in this example, crystalline B
In an image element using eO as a substrate, an image could be displayed with a spot having a diameter of about 10 μtn without such a problem. In other words, approximately 120
It was possible to display with a density of 0 lines. This is crystalline Be
As a result of the fact that the 0 layer has a characteristic that the thermal conductivity in the layer thickness direction is about 4 times larger than the thermal conductivity in the spreading direction of the layer,
This is because almost no heat is transferred in the direction of expansion of the substrate, and heat is efficiently transferred in the thickness direction of the substrate, that is, from the heat generating portion due to electron irradiation to the liquid crystal material. In addition, the crystalline Be used
The thermal conductivity of 0rfii is 0.63 cal/in the layer thickness direction.
In CCm-5-de, the layer spreading direction was 0.14 Ca ray·s-deg. The conductive M thin layer provided on the surface of the crystalline Be0 layer is necessary to prevent the deposition of irradiated electrons, and in an image element with a structure without this layer, sufficient heat generation due to electron beam irradiation is not generated. The image could not be displayed. This conductive thin layer also allows the displayed image to be transferred to the glass surface 1.
It is desirable that it be as thin as possible within a range that forms a mirror surface sufficient for viewing from the side . In addition, in order to confirm that using a material for the substrate whose thermal conductivity is lower in the film thickness direction than in the film spreading direction is a necessary element to realize high-speed, high-density writing. As a comparative example, an image element with a structure using a glass layer instead of the crystalline Be0 layer in the above example was created, and the frame time was about 3 Qms, and the display density was about 1000 lines on the high Q display surface of 16. However, the results were not as good as those of the above examples. In addition, as another comparative example, an image element with a single-layer structure of an M substrate instead of the two-layer structure of the crystalline Be0 layer and the thin M layer in the previous example was created. Although the display density was the same, the display density was approximately 600 lines on a display surface of 15 m1 high, which was significantly inferior to the previous example. The thermal conductivities of the glass layer and M substrate used in these comparative examples are Q and Q, respectively.
Q 15 ca I /can s * deg and 0.65 ca 17 cm·s ·deg, and there was no difference between the spread direction and the thickness direction of the substrate. Furthermore, compared to the crystalline Be0 layer used in the above example, the glass layer has a lower thermal conductivity than the crystalline Be0 layer, and the M substrate has a higher thermal conductivity than the crystalline Be0 layer. In this way, it is not possible to achieve both high-speed writing and high-density writing simply by changing the thermal conductivity of the substrate. It was confirmed for the first time that particularly excellent performance in two aspects of high-speed writing and high-density writing can be obtained by using a substrate composed of a layer of a material whose thermal conductivity is higher than that in the spreading direction.

なお、膜厚方向の熱伝導率が膜の広がり方向の熱伝導率
よりも大きい物質が絶縁性であることは本質的には必要
なく、またその物質が導電性であればその物質上に導電
性薄層を形成する必要もないと考えられるが、現在のと
ころそのような物質を見出すことはできていない。また
本実施例の画像素子は表示面を直接に観る直視型表示と
しての他に、投射光源と光学系を用いて表示面を拡大投
映して観、る投射型表示として用いることができ、特に
投射型表示として用いる場合にはCRTの表示面を投映
する方式と比べて極めて明るい画面が得られることが確
認された。なお、表示色は二色性色素として最大吸収波
長力S 548 nmのG202を用いた為に紫色とな
ったが、二色性色素の選択・混合lこよって黒を含む任
意の色での表示fJj可能であることは言うまでもない
。また本実施例の如きリフレ、ソシュ方式の表示に限ら
す、温度上昇履歴前後において生じる状態変化が意図的
に操作しない限り持続する、いわゆる蓄積型の液晶物質
を用いることによって蓄積型表示あるいは画像記録等が
可能であることも言うまでもない。
Note that it is not essentially necessary for a substance whose thermal conductivity in the film thickness direction is larger than that in the film spreading direction to be insulating, and if the material is conductive, there is no need to Although it is thought that there is no need to form a thin layer, no such substance has been found so far. Furthermore, the image element of this embodiment can be used not only as a direct-view display in which the display surface is viewed directly, but also as a projection-type display in which the display surface is enlarged and viewed using a projection light source and an optical system. It has been confirmed that when used as a projection display, an extremely bright screen can be obtained compared to a method that projects the display surface of a CRT. The displayed color was purple because G202 with a maximum absorption wavelength of S 548 nm was used as the dichroic dye, but the selection and mixing of dichroic dyes made it possible to display any color including black. It goes without saying that fJj is possible. In addition, it is limited to the reflation and Soche type display as in this embodiment, and the change in state that occurs before and after the temperature rise persists unless intentionally manipulated, so-called storage type liquid crystal material is used to display the storage type display or image recording. Needless to say, etc. are also possible.

以上では、液晶物質を用いた実施例について本発明の画
像素子を説明したが、加熱によって色変化を生じるいわ
ゆるサーモクロミック物質を用いる場合等でも二枚の基
板で挾持して用いる必要がある場合であれば本発明の構
造の画像素子が有効であることは言うまでもない。
In the above, the image element of the present invention has been described with reference to an embodiment using a liquid crystal substance, but even when using a so-called thermochromic substance that changes color when heated, it may be necessary to use it by sandwiching it between two substrates. Needless to say, the image element having the structure of the present invention is effective if such an object exists.

以上説明したように、本発明によれは高密度書込・高速
書込の2つの点で特に優れた性能を有する画像素子が得
られる。
As described above, according to the present invention, an image element having particularly excellent performance in two aspects of high-density writing and high-speed writing can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の画像素子の一実施例の断面図であり、
1はガラス管、1′はガラス管の前面部、2は配向処理
膜、3は結晶性Be0層13、配向処理膜14、M薄層
15から成る基板、6はスペーサー、7は液晶物質、8
は陰極、9は陽極、10は電子流、11はグリッド電極
、12は偏向コイルである。 第2図は本発明の画像素子の一実施例における表示原理
を説明する図である。
FIG. 1 is a cross-sectional view of one embodiment of the image element of the present invention,
1 is a glass tube, 1' is a front part of the glass tube, 2 is an alignment film, 3 is a substrate consisting of a crystalline Be0 layer 13, an alignment film 14, and an M thin layer 15, 6 is a spacer, 7 is a liquid crystal material, 8
is a cathode, 9 is an anode, 10 is an electron current, 11 is a grid electrode, and 12 is a deflection coil. FIG. 2 is a diagram illustrating the display principle in one embodiment of the image element of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 電子の衝突により発熱する物質を2枚の基板間に備えて
いる表示素子と、電子を放出する陰極と、陽極と、前記
陰極と前記陽極との間に設けたグリッド電極とを内部に
有する真空容器と、電子流の方向を変える偏向器♂を備
え、前記表示素子の一方の基板は前記真空容器の壁面か
ら成り、もう一方の基板は、導電性薄膜と、膜厚方向の
熱伝導率が膜面方向の熱伝導率よりも大きい絶縁性薄膜
とを少なくとも積層した多層構造から成り、導電性薄膜
を電子照射を受ける側に配置したことを特徴とする画像
素子。
A vacuum having a display element between two substrates with a substance that generates heat due to collision of electrons, a cathode that emits electrons, an anode, and a grid electrode provided between the cathode and the anode. The display element includes a container and a deflector ♂ for changing the direction of electron flow, one substrate of the display element is made of the wall surface of the vacuum container, and the other substrate is made of a conductive thin film and a material having a thermal conductivity in the film thickness direction. 1. An image element comprising a multilayer structure in which at least an insulating thin film is laminated with a thermal conductivity higher than the thermal conductivity in the film surface direction, and the conductive thin film is disposed on the side receiving electron irradiation.
JP4348083A 1983-03-16 1983-03-16 Image element Pending JPS59168484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4348083A JPS59168484A (en) 1983-03-16 1983-03-16 Image element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4348083A JPS59168484A (en) 1983-03-16 1983-03-16 Image element

Publications (1)

Publication Number Publication Date
JPS59168484A true JPS59168484A (en) 1984-09-22

Family

ID=12664883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4348083A Pending JPS59168484A (en) 1983-03-16 1983-03-16 Image element

Country Status (1)

Country Link
JP (1) JPS59168484A (en)

Similar Documents

Publication Publication Date Title
US4277145A (en) Liquid-crystal display device
US4288822A (en) System for the analysis and the recording of monochromic images
WO1983001841A1 (en) Liquid crystal display unit
JPS60144721A (en) Method and device for image forming
US4595260A (en) Liquid crystal projection display with even temperature elevation
EP0068939A1 (en) Liquid crystal display device with two addressing modes
US4701029A (en) Laser addressed smectic displays
JPS59168484A (en) Image element
Maydan Infrared laser addressing of media for recording and displaying of high-resolution graphic information
JPS61268080A (en) Information display method
Haven Electron-beam addressed liquid-crystal light valve
JPS5929228A (en) Positive type liquid crystal light bulb
JPH01250926A (en) Liquid crystal cell with addressing possible by laser
JPH0548883B2 (en)
JP3070252B2 (en) Spatial light modulation element and display device
JPH0468310A (en) Display device
JPS59121742A (en) Picture element
JPS59121741A (en) Picture display element
JP3018651B2 (en) Display panel
JPS6248813B2 (en)
JPS5991187A (en) Liquid crystal
JPS58207024A (en) Liquid crystal display
JPH0566393A (en) Liquid crystal element and liquid crystal display device
EP0425321A2 (en) Liquid crystal cells and their use for recording information or for projecting an image
JPS60165626A (en) Thermal writing type liquid crystal display device