JPS59166885A - Density measuring method of radioactive collected substance - Google Patents

Density measuring method of radioactive collected substance

Info

Publication number
JPS59166885A
JPS59166885A JP4064083A JP4064083A JPS59166885A JP S59166885 A JPS59166885 A JP S59166885A JP 4064083 A JP4064083 A JP 4064083A JP 4064083 A JP4064083 A JP 4064083A JP S59166885 A JPS59166885 A JP S59166885A
Authority
JP
Japan
Prior art keywords
radioactive
substance
trap
collected
gamma ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4064083A
Other languages
Japanese (ja)
Inventor
Akihiro Nagatomo
長友 明洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4064083A priority Critical patent/JPS59166885A/en
Publication of JPS59166885A publication Critical patent/JPS59166885A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure automatically the concentration degree of a radioactive collected substance in a tape from the outside of the trap by installing a gamma ray detector opposite by to a gamma ray source through the trap in the vicinity of the outside wall of the trap. CONSTITUTION:The intensities I2, I1 of a gamma ray before and after a substance A is collected are measured by using a gamma ray detector 3 which irradiates a gamma ray to a radioactive substance A collector in a trap 1 by a gamma ray source, to detect the weight of said radioactive substance, to measure the a gamma ray transmissibility, and the weight of a radioactive collected substance B is detected by measuring a gamma ray peculiar to said radioactive collected substance emitted from the radioactive collected substance B in said trap, and subsequently, the ratio of the weight detected value occupied in said weight detected value derives the concentration degree of the radioactive collected substance B in the radioactive collected substance A by using known various constants and by a theroy expression. In this way, the concentration degree of the radioactive collected substance B in the radioactive collected substance A in the trap 1 can be measured automatically from the outside of the trap.

Description

【発明の詳細な説明】 本発明は放射性捕集物質の濃縮度測定方法に係り、トラ
ップ中に捕集された放射性被捕集物質へγ、?#を照射
したときのγ線透過率を測定して同放射性被捕集物質の
重置を検出し、同トラップ中の放射性捕集物質から放出
される同放射性捕集物質特有のγ線を測定して同放射性
捕集物質の重量な検出し、次いで同重量検出値の前記重
量検出値に占める割合から放射性被捕集物質中の放射性
捕集物質の濃縮度を測定することを特徴としたものでそ
の目的とする処は、トラップ中の放射性被捕集物質中の
放射性捕集物質の濃縮度をトラップ外から自動的に測定
できる放射性捕集物質の濃縮度測定方法を供する点にあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the concentration of radioactive trapped substances, in which γ, ? Measure the γ-ray transmittance when irradiated with # to detect the overlapping of the same radioactive collection material, and measure the γ-rays unique to the radioactive collection material emitted from the radioactive collection material in the trap. and detecting the weight of the radioactive collection material, and then measuring the concentration of the radioactive collection material in the radioactive collection material from the ratio of the detected weight value to the detected weight value. The purpose of this invention is to provide a method for measuring the concentration of a radioactive trap, which can automatically measure the concentration of a radioactive trap in a radioactive trap in a trap from outside the trap.

次に本発明の放射性物質の濃縮度測定方法を第1図に示
す一実施例により説明すると、(1)がトラップ、(2
)が同トラップ(1)の外壁付近に設置したγ1#、源
、(3)が同γ線源(2)にトラップfllY介して対
向するように設置したγ線検出器、(1α)がトラップ
Hの入口、(1h)がトラップ(11の出口で、放射性
捕集物質(以下捕進剤とい5 ) (B) (放射性被
捕集物質(A)を補集する捕集剤)を充填したトラップ
(1)中に、放射性被捕集物質(へ十捕集剤(Blが平
行斜綴部のように分布しているとぎK、γ線をγ線源(
2)からトラップ(11の中心部へ照射するように、ま
たトラップ(11中を透過したγ線をγ線検出器(3)
で検出するようになっている。
Next, the method for measuring the concentration of radioactive substances according to the present invention will be explained using an example shown in FIG.
) is the γ-ray source installed near the outer wall of the trap (1), (3) is the γ-ray detector installed to face the same γ-ray source (2) via the trap flY, and (1α) is the trap Inlet of H, (1h) is the outlet of trap (11, filled with radioactive collecting substance (hereinafter referred to as scavenger 5) (B) (collecting agent that collects the radioactive substance to be captured (A)) In the trap (1), a radioactive material to be collected (a collector agent (Bl) is distributed like a parallel oblique section), and a γ-ray source (
2) to the center of the trap (11), and the gamma rays transmitted through the trap (11) to the gamma ray detector (3)
It is now detected by .

次に前記測定装置の作用を説明する。(I)平行斜線部
(被捕集物質(N十捕集剤(日)のゾーンが成長して、
トラップ(11の出口(1h)に至ると、トラップ(1
)は使用不能になるので、その前に捕集剤(均?交換し
なければならない。これに対しては、次のよ5にする。
Next, the operation of the measuring device will be explained. (I) Parallel shaded area (the zone of the substance to be captured (N+ scavenger (day) grows,
When you reach the exit (1h) of trap (11), trap (1
) will become unusable, so you must replace the scavenger (levelling agent) before that happens.For this, we will do the following 5.

即ち、γ線源(2)及びγ線検出器(3)をトラップ(
1)に沿5て上下方向に移動させる。このとき、トラッ
プ(1)中の捕集剤(B)中に被捕集物質(蜀がある場
合とない場合とでは、γ線の吸収率が異るので、上記上
下方向への移動により、トラップ(11中で平行斜線部
(被捕集物質(A)十捕集剤(B))のゾーンがどれだ
け成長しているかを知ることができ、成長していれば捕
集剤(鴎を交換する、(+1)次に被捕集物質(A)の
重量測定について説明する。一般に、γ線源(2)の強
さを工0、透過後のγ線の強さ′  ン工、透過率をE
aとすると、 I=E ・工       ・・・・・・(11α  
 O の関係があり、また物質によるγ線の線吸収係数なμ、
物質の厚みをXとすると、Bをビルト9アッゾ裔礒−≠
し厖2、 プ係数として、 E、 = B、 x pc−μx)・・・・・・(2)
第1図に示すように放射性液捕集物質(A)の捕集され
た場所は、 Ettt = 工t/工o=B1”PC−μs”o−μ
2x2)・・・(3)但し、μm、I2:捕集剤(B)
及び物質(A)の線吸収係数3:1. r a :捕集
剤(B)だけのゾーンの長さI2:捕集剤B十物質Aの
ゾーンの長さxo ”’ x1+ $2+ $3 一方、物閥(Nの捕集され゛(いない場所では、E、a
2= I□/Io= B、 eXp<−μm”O)  
   ・・・・・・(4)式(3)と式(4)より K = EcL2/E、、 = 1.2/I□= gX
P(I2”2 )  −(53故に I2・:t2= 71L(I2/I、)       
   ・・・(6)また物質の密度をρとすると、線吸
収係数μと質量吸収係数μは、 μ二μ。・ρ           ・・・(7)式(
7)を式(6)K代入して ρ2=’ n (工2/I 1 ) /μm2・I2 
     ・・・(8)式(8)において、I2は直接
測定できないので、:t2=xo  とした場合の物質
(A)の密度をρ2/とすると ρ2′= 1rL(I 2 / I 1 )/p、Tn
2・xo    ・・・(9)トラップ(11の長さY
Lとすると、トラップ(1)の容積Vは、 ■=π:co  L/4          −u(1
1よって捕集された物質(A)の重量W2は、W2=ρ
2′・v−π・xo−L=ln(工2/工1)/4μm
z  ’=(ID式(11)において、π、xo、L、
prn2は既知の値であるから、物質(A)が捕集され
る前後のγ線の強さI2,11’に測定することにより
、物質(A)の捕集量が判る。(Ill)次に濃縮度の
測定について説明する。
That is, the γ-ray source (2) and the γ-ray detector (3) are trapped (
1) in the vertical direction along 5. At this time, the absorption rate of γ-rays is different depending on whether or not there is a substance to be collected (Shu) in the trapping agent (B) in the trap (1), so due to the vertical movement, You can see how much the parallel shaded area (substance to be collected (A), collection agent (B)) in the trap (11) has grown, and if it has grown, the trap (seagull) (+1)Next, we will explain the weight measurement of the substance to be collected (A).Generally, the strength of the γ-ray source (2) is 0, and the strength of the γ-ray after transmission is Rate E
If a, I=E ・Eng ......(11α
There is a relationship between
If the thickness of the substance is X, then B is Bild 9
2, As a coefficient, E, = B, x pc-μx) (2)
As shown in Fig. 1, the location where the radioactive liquid collecting substance (A) is collected is Ettt = t/ko = B1"PC-μs"o-μ
2x2)...(3) However, μm, I2: Collection agent (B)
and the linear absorption coefficient of substance (A) 3:1. r a: Length of the zone containing only the scavenger (B) I2: Length of the zone containing the scavenger B + substance A In place, E, a
2= I□/Io= B, eXp<-μm”O)
・・・・・・(4) From formula (3) and formula (4), K = EcL2/E,, = 1.2/I□= gX
P(I2”2) −(53 therefore I2・:t2= 71L(I2/I,)
...(6) Also, if the density of the substance is ρ, the linear absorption coefficient μ and mass absorption coefficient μ are μ2μ.・ρ...Equation (7) (
7) by substituting K into equation (6), ρ2=' n (Work2/I 1 )/μm2・I2
...(8) In formula (8), I2 cannot be measured directly, so if t2=xo and the density of substance (A) is ρ2/, then ρ2'= 1rL(I 2 / I 1 )/ p, Tn
2・xo...(9) Trap (length Y of 11
When L, the volume V of trap (1) is: ■=π:co L/4 −u(1
Therefore, the weight W2 of the substance (A) collected by 1 is W2=ρ
2'・v-π・xo-L=ln(work 2/work 1)/4μm
z'=(ID In formula (11), π, xo, L,
Since prn2 is a known value, the amount of collected substance (A) can be determined by measuring the γ-ray intensities I2 and 11' before and after the substance (A) is collected. (Ill) Next, measurement of concentration will be explained.

捕集された物質(A)中に捕集剤(均(放射性捕集物質
)があるときに、同捕集剤(Eeから放出されるγ線を
測定すると、同捕集剤(B)の存在量が判る。捕集剤(
B)(放射性核種)がN個あった場合、その壊変率Qは
、壊変定数λとして、 Q=Nλ          ・・・(12+一方、そ
の核種のγ線の計数率ルは、 n=Q−E、、η−EoL−Qa) 但し、Ee:その核種のγ線の放出車 η 二 γ線検出器の計数効率 Ea: γ線の物質中の透過率 またN個の核種の重量Wnは、 W’、 = N −M/Ao        ・・・0
4)但し1M:その核種1molJ当りのM量Ao:ア
ボガドロ数 一方、式a刀によって得られた物質(8中の注目核種の
重′M−WJは、 W′二α・W2         ・・・(15)但し
、α:物質(A)中の注目核種の重量比式(121・α
31を式(14)に代入してWrL= (n/E、−η
−Ea−λ)M/Ao−・−06)式(151,μQよ
りウラン濃縮度εは、ε−WrL/%%j =tt−M
/Ao−E、−η−E、:L−λ・α・W2・−aD式
側において、M%Ao、 E、、η、Ea、、λ、σ、
W2は既知であるから、 ε=C□・ル             ・・・α81
但し、C□=M/Ao−E、、η−Ea−λ・α−w2
本発明の放射捕集物質の濃度測定方法は前記のようにト
ラップ中に捕集された放射性被捕集物質へγ線ケ照射し
たときのγ線透過率を測定して同放射性被捕集物質の重
量を検出し、同トラップ中の放射性捕集物質から放出さ
れる同放射性捕集物質特有のγ線を測定して同放射性捕
集物質の重量を検出し、次いで同重量検出値の前記重量
検出値に占める割合から放射性被捕集物質中の放射性捕
集物質の濃縮度ケ測定するので、トラップ中の放射性被
捕集物質中の放射性捕集物質の濃縮度をトラップ外から
自動的に測定できる効果がある。
When there is a collecting agent (radioactive collecting substance) in the collected substance (A), when gamma rays emitted from the collecting agent (Ee) are measured, it is found that the collecting agent (B) is The amount present can be determined. Collection agent (
B) When there are N (radioactive nuclides), their decay rate Q is given by the decay constant λ, Q=Nλ...(12+On the other hand, the counting rate of γ-rays of that nuclide is n=Q-E , , η-EoL-Qa) However, Ee: γ-ray emission vehicle of the nuclide η 2 Counting efficiency of the γ-ray detector Ea: Transmittance of γ-rays in a substance and weight Wn of N nuclides is W ', = N-M/Ao...0
4) However, 1M: the amount of M per 1 molJ of the nuclide Ao: Avogadro's number On the other hand, the material obtained by formula a (the weight of the nuclide of interest in 8)'M-WJ is W'2α・W2... (15) However, α: weight ratio formula of the nuclide of interest in the substance (A) (121・α
31 into equation (14), WrL= (n/E, -η
-Ea-λ)M/Ao-・-06) From the formula (151, μQ), the uranium enrichment ε is ε-WrL/%%j = tt-M
/Ao-E, -η-E, :L-λ・α・W2・-aD On the formula side, M%Ao, E, η, Ea, λ, σ,
Since W2 is known, ε=C□・ru...α81
However, C□=M/Ao-E, η-Ea-λ・α-w2
The method for measuring the concentration of a radiation trapping substance of the present invention is to measure the gamma ray transmittance when the radioactive trapping substance collected in the trap is irradiated with gamma rays as described above. The weight of the radioactive collecting material is detected by measuring the gamma rays peculiar to the radioactive collecting material emitted from the radioactive collecting material in the trap, and then the weight of the same detected weight is measured. Since the concentration of the radioactive collection material in the radioactive collection material is measured from the proportion of the detected value, the concentration of the radioactive collection material in the radioactive collection material in the trap can be automatically measured from outside the trap. There is an effect that can be done.

以上本発明ケ実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の改変を施しうるも
のである。
Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る放射性捕集物質の濃度測定方法の
実施に使用する測定装置の一例を示す側面図である。 (A)・・・放射性被捕集物質、(匂・・・放射性捕集
物質、(i)・−・トラップ、(2)・・・γ線源、(
3)・・・γ線検出器復代理人弁理士岡 本 重 文 外2名 第1図
FIG. 1 is a side view showing an example of a measuring device used to carry out the method for measuring the concentration of a radioactive trapping substance according to the present invention. (A)...Radioactive capture substance, (odor...Radioactive capture substance, (i)...Trap, (2)...γ-ray source, (
3)...Gamma-ray detector sub-agent patent attorney Shige Okamoto (2 persons) Figure 1

Claims (1)

【特許請求の範囲】[Claims] トラップ中に捕集された放射性被捕集物質へγ線を照射
したときのγ線透過率を測定して同放射性被捕集物質の
重量を検出し、同トラップ中の放射性捕集物質から放出
される同放射性捕集物質特有のγ1Illjlヲ測定し
て同放射性捕集物質の重量を検出し、次いで同重量検出
値の前記重量検出値に占める割合から放射性被捕集物質
中の放射性捕集物質の濃縮度を測定することを特徴とし
た放射性捕集物質の濃縮度測定方法。
When gamma rays are irradiated to the radioactive material collected in the trap, the gamma ray transmittance is measured, the weight of the radioactive material is detected, and the weight of the radioactive material is detected and released from the radioactive material in the trap. The weight of the radioactive collecting material is detected by measuring γ1Illjl which is unique to the radioactive collecting material, and then the radioactive collecting material in the radioactive collecting material is determined from the ratio of the detected weight value to the detected weight value. A method for measuring the concentration of a radioactive collection substance, the method comprising measuring the concentration of a radioactive collection substance.
JP4064083A 1983-03-14 1983-03-14 Density measuring method of radioactive collected substance Pending JPS59166885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064083A JPS59166885A (en) 1983-03-14 1983-03-14 Density measuring method of radioactive collected substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064083A JPS59166885A (en) 1983-03-14 1983-03-14 Density measuring method of radioactive collected substance

Publications (1)

Publication Number Publication Date
JPS59166885A true JPS59166885A (en) 1984-09-20

Family

ID=12586155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064083A Pending JPS59166885A (en) 1983-03-14 1983-03-14 Density measuring method of radioactive collected substance

Country Status (1)

Country Link
JP (1) JPS59166885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783341A (en) * 1987-05-04 1988-11-08 United Technologies Corporation Method and apparatus for measuring the density and hardness of porous plasma sprayed coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783341A (en) * 1987-05-04 1988-11-08 United Technologies Corporation Method and apparatus for measuring the density and hardness of porous plasma sprayed coatings

Similar Documents

Publication Publication Date Title
US3922555A (en) Portable instrument for selectively detecting alpha-particles derived from radon
Khan et al. Calibration of a CR-39 plastic track detector for the measurement of radon and its daughters in dwellings
US4591720A (en) Method of measuring radioactivity
Tothill et al. Quantitative profile scanning for the measurement of organ radioactivity
JPH1164529A (en) Dust monitor
Sciocchetti et al. Results of a survey on radioactivity of building materials in Italy
Palmer et al. A shadow shield whole-body counter
US3555278A (en) Potential alpha ray activity meter
Sherr et al. Radioactivity of C 10 and O 14
JPS59166885A (en) Density measuring method of radioactive collected substance
JPS5622980A (en) Radioactivity monitoring method
Barber et al. Evidence for k-shell ionization accompanying the alpha-decay of po 210
Johnston et al. Rapid analysis of 226Ra in waters by γ-ray spectrometry
Rock et al. Radon-daughter exposure measurement with track etch films
Friedman et al. Instrumental neutron activation analysis for mercury in dogs administered methylmercury chloride. Use of a low energy photon detector
Sill et al. Comparison of excretion analysis with whole-body counting for assessment of internal radioactive contaminants
JPS62179684A (en) System for evaluating and measuring radioactive nuclide contained in low level solid waste
Delafield Nuclear accident dosimetry
JPS60111981A (en) Quantitative analysis of strontium
Mozzo et al. α-Spectroscopy on CR-39 track detectors for the dosimetry of radon daughters
RU2054659C1 (en) Method for determining quantitative composition of two- component fissile heavy nuclei mixture
JPS5977346A (en) Analyzing apparatus for element composition of substance
Katona et al. Determining 222 Rn daughter activities by simultaneous alpha-and beta-counting and modeling
Nishizawa et al. Application of NaI (T1) Scintillation Detector to Measurement of Tritium Concentration
Marshall Environmental Resuspension and Health Impacts of Radioactive Particulate Matter