JPS59166641A - Shape memory alloy member and preparation thereof - Google Patents

Shape memory alloy member and preparation thereof

Info

Publication number
JPS59166641A
JPS59166641A JP58040988A JP4098883A JPS59166641A JP S59166641 A JPS59166641 A JP S59166641A JP 58040988 A JP58040988 A JP 58040988A JP 4098883 A JP4098883 A JP 4098883A JP S59166641 A JPS59166641 A JP S59166641A
Authority
JP
Japan
Prior art keywords
shape memory
temp
alloy
memory alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58040988A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58040988A priority Critical patent/JPS59166641A/en
Publication of JPS59166641A publication Critical patent/JPS59166641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prepare a shape memory alloy member capable of performing shape restoration in multi-stepwise or continuously over a certain temp. width, by a method wherein a mixture comprising two or more of alloy powders different in a transformation temp. and inverse transformation temp. is sintered and processed while beta-phase forming treatment is applied to the sintered and processed alloy mixture. CONSTITUTION:Two or more of alloy powders different in a transformation temp. and an inverse transformation temp. are mixed and, after sintering, the sintered alloy mixture is subjected to hot or cold processing and subsequently allowed to receive beta-phase forming treatment to obtain a shape memory alloy member capable of developing shape memory effect multi-stepwise or continuously over a considerable temp. width. In the above mentioned method, by adjusting the temp. and time of beta-phase forming treatment, the distribution of the transformation temp. is adjusted and the temp. width capable of restoring a shape can be changed. In addition, the above mentioned alloy powder can be constituted of different elements or same elements different in composition ratio and pref. used as a particle size of 200mum or less.

Description

【発明の詳細な説明】 l豆O9Nt この発明は、形状記憶合金部材、特に粉体を焼結してな
る形状記憶合金部材およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape memory alloy member, particularly a shape memory alloy member formed by sintering powder, and a method for manufacturing the same.

人工」11五】に」 近年、各種アクチュエータおよび感温素子などに形状記
憶合金部材が広く用いられている。「形状記憶合金部材
」どは、マルテンサイト相で変形されたものが、逆変態
温度で母相になるとき形状が回復するという形状記憶効
果を有する合金部材をいう。しかしながら、逆変態温度
は、組成および形状記憶効果を付与するための処理すな
わちβ相化処理で一義的に決まる温度であるため、成る
1個の温度でしか形状回復は行なうことができなかった
。それゆえに、かなりの温度幅をもって形状回復するこ
とが要望されている用途、あういは複数の温度で形状回
復が要求される用途に用いることができる形状記憶合金
部材は未だ存在しなかった。
In recent years, shape memory alloy members have been widely used in various actuators, temperature-sensitive elements, and the like. "Shape memory alloy member" refers to an alloy member that has a shape memory effect in which the shape is restored when the material is deformed in the martensitic phase and becomes the parent phase at the reverse transformation temperature. However, since the reverse transformation temperature is uniquely determined by the composition and the treatment for imparting a shape memory effect, that is, the β-phase treatment, shape recovery could only be performed at one temperature. Therefore, there has not yet been a shape memory alloy member that can be used in applications where shape recovery is required over a considerable temperature range, or where shape recovery is required at multiple temperatures.

発明の目的 それゆえに、この発明の目的は、上述の要望を見たし、
多段にあるいは連続的に成る温度幅をもって形状回復を
行ない得る形状記憶合金部材およびその製造方法を提供
することにある。
OBJECT OF THE INVENTION Therefore, the object of the invention is to meet the above-mentioned needs and to
It is an object of the present invention to provide a shape memory alloy member capable of recovering its shape over a multistage or continuous temperature range, and a method for manufacturing the same.

11悲1え この発明は、変態温度および逆変B温度の異なる2fi
以上の合金粉末を混合し焼結してなる、見掛けの変M温
度が多段または連続的に分布していることを特徴とする
形状記憶合金部材、ならびに変8温度および逆変態温度
の異なる2種以上の合金粉末を混合し、焼結した後、熱
間または冷間で加工し、次いでβ相化処理を行なう、形
状記憶合金部材の製造方法である。
11 Sad 1 E This invention is based on 2fi with different transformation temperature and reverse transformation B temperature.
A shape memory alloy member made by mixing and sintering the above alloy powders and characterized in that the apparent transformation temperature is distributed in multiple stages or continuously, and two types with different transformation temperatures: transformation temperature and reverse transformation temperature. This is a method for manufacturing a shape memory alloy member, in which the above alloy powders are mixed, sintered, hot- or cold-processed, and then subjected to β-phase treatment.

各合金粉末は、異種の元素からなるものでもよく、ある
いは同一元素からなるものでもよい。同一元素からなる
場合には、組成比のみが異なることになる。これによっ
て全体の変態温度すなわち見掛けの変態温度を、多段ま
た(よ連続的に分布することが可能となる。
Each alloy powder may be made of different elements, or may be made of the same element. When they are made of the same element, only the composition ratio is different. This makes it possible to distribute the overall transformation temperature, that is, the apparent transformation temperature, in multiple stages or more continuously.

好ましい実施例では、合金粉末の粒径は、200μl以
下である。また、各合金粉末が、β相構造を有し得る銅
合金から構成される。
In a preferred embodiment, the particle size of the alloy powder is less than or equal to 200 μl. Further, each alloy powder is composed of a copper alloy that can have a β-phase structure.

この発明の第2の発明すなわち形状記憶合金部材の製造
方法の発明においては、β相化処理の温度と時間を調節
することにより、見掛けの変態温度の分布を調整するこ
とができる。
In the second invention of the present invention, that is, the invention of the method for manufacturing a shape memory alloy member, the distribution of the apparent transformation temperature can be adjusted by adjusting the temperature and time of the β-phase treatment.

この発明のその他の目的および特徴は、図面を参照して
行なう以下の実施例についての説明により一層明らかと
なろう。
Other objects and features of the invention will become more apparent from the following description of embodiments with reference to the drawings.

次にこの発明の原理を第1図ないし第5図を参照して説
明する。第1図は、この発明の一例を略図的に示す断面
図である。第1図から咀らかなように、逆変態温度T、
の合金組成の粉末1と、逆変態温度T2の合金組成の粉
末2とが混合・焼結されて、この発明の形状記憶合金部
vJ3が得られる。形状記憶合金部材3は、焼結前には
、第2図に示すように、温度T1の逆変態温度を有する
組成の合金粉末コの部分と、温度1−2の逆変態流度を
有する組成の合金粉末2とからなる。ところが、加x1
シて焼結することにより、第3図から第5図に示ずよう
な逆変態温度の分布を達成することができる。すなわち
、焼結のための加熱処哩が低温あるいは短詩間である場
合には、第3図に示すように、2m階にわたる逆変態温
度が存在することになり、加熱をより高温かつ長詩間に
した場合には、第11図および第5図に示されるように
、連続的な見掛(ブの変態)0度を得ることができる。
Next, the principle of this invention will be explained with reference to FIGS. 1 to 5. FIG. 1 is a sectional view schematically showing an example of the present invention. As is clear from Figure 1, the reverse transformation temperature T,
Powder 1 having an alloy composition of 1 and powder 2 having an alloy composition of reverse transformation temperature T2 are mixed and sintered to obtain the shape memory alloy part vJ3 of the present invention. As shown in FIG. 2, the shape memory alloy member 3 has, before sintering, a part of the alloy powder having a composition having a reverse transformation temperature of temperature T1, and a part of the alloy powder having a composition having a reverse transformation flow rate of temperature 1-2. It consists of alloy powder 2. However, addition x1
By sintering, it is possible to achieve the reverse transformation temperature distribution as shown in FIGS. 3 to 5. In other words, if the heating process for sintering is at a low temperature or a short period, as shown in Figure 3, there will be a reverse transformation temperature over 2 m levels, and if the heating is performed at a higher temperature and a long period In this case, as shown in FIGS. 11 and 5, a continuous apparent (transformation of B) of 0 degrees can be obtained.

したがって、焼結のための加熱時間および温度を調節す
ることにより、この発明の形状記憶合金部材3の見掛け
の逆変態温度を多段にあるいは連続的に分布させること
ができる。、F述したように、形状記憶合金部材全体の
見掛けの変態温度の分布は、焼結のための加熱条件のみ
ならず、β相化処理の温度と時間を調節することによっ
ても可能である。
Therefore, by adjusting the heating time and temperature for sintering, the apparent reverse transformation temperature of the shape memory alloy member 3 of the present invention can be distributed in multiple stages or continuously. , F As mentioned above, the distribution of the apparent transformation temperature of the entire shape memory alloy member can be achieved not only by adjusting the heating conditions for sintering but also by adjusting the temperature and time of the β-phase treatment.

実施例の説明 及1」1 CU−,28,8重量%およびZn−6,31if1%
を含有するΔ庭合金号分末(粒径的50μI)と、Cl
−29,2重量%およびZn−6,Oi量%を含有する
Am合金粉末(粒径的45μm)とを、等しい重量弁だ
け均一に混合し、これを冷間プレスで幅100IllI
i×長さ100mmx厚み11に固めた。次に、非酸化
雰囲気中で焼結し、厚さ0.5mmに圧延加工した。さ
らに、この部材を真っ直ぐな形状に固定し、700℃の
温度で15分間加熱保持した後、水中にて急冷して、β
相化処理を行なった。
Description of Examples and 1 CU-,28,8% by weight and Zn-6,31if1%
and Cl
-29.2% by weight and Am alloy powder (particle size: 45 μm) containing Zn-6, Oi amount % is uniformly mixed with equal weight valves, and this is cold pressed into a width of 100IllI.
It was hardened to a size of i×length 100mm×thickness 11. Next, it was sintered in a non-oxidizing atmosphere and rolled to a thickness of 0.5 mm. Furthermore, this member was fixed in a straight shape, heated and held at a temperature of 700°C for 15 minutes, and then rapidly cooled in water to obtain β
A phase treatment was performed.

このようにして得た部材を、0℃の温度で、曲率半仔1
51、湾曲角度的120°となるように曲げ後、徐々に
加熱したところ、50℃で約600の角度に回復し、9
0℃でほとんど完全に元の直線形状に回復した。したが
って、この実施例1の形状記憶合金部材では、2段階の
形状回復効果が観察された。
The thus obtained member was heated at a temperature of 0°C with a curvature of 1
51. After bending to a curvature angle of 120°, when heated gradually, the angle recovered to about 600 at 50°C, and 9
At 0°C, it almost completely recovered to its original linear shape. Therefore, in the shape memory alloy member of Example 1, two stages of shape recovery effects were observed.

人j」LL CIJ−14,2重量%およびAl1−3.9重量%を
含有するNi合金粉末(粒径的30μ[11)と、C1
j−13,9重量%およびAfL−4,2重層%を含有
するNi合金粉末(粒径的28μm)とを、前者と後者
との重量比が4対6となるように混合した後、直径10
101l1長さ11001I1となるように、静水圧下
で800℃にて2時間焼結した。これを、850℃の温
度で熱間辻延し、幅約i5Il1m、厚さQ、7mmの
真っ直ぐな条とした。なお、少なくとも最終の圧延後直
ちに急冷を行なった。
Ni alloy powder (particle size 30μ [11) containing 2% by weight of CIJ-14 and 3.9% by weight of Al1, and C1
After mixing Ni alloy powder (particle size 28 μm) containing J-13.9% by weight and AfL-4.2% by weight so that the weight ratio of the former and the latter was 4:6, the diameter 10
It was sintered under hydrostatic pressure at 800°C for 2 hours so that the length was 101l1 and 11001l1. This was hot cross-rolled at a temperature of 850° C. to form a straight strip with a width of about i5Il1m and a thickness Q of 7mm. Note that rapid cooling was performed at least immediately after the final rolling.

このようにして得た真っ直ぐな条を、−70℃のアルコ
ール−ドライアイス混合体中で、約120℃の角度をな
すように曲げた後、100℃まで徐々に加熱したところ
、はぼ温度の上昇につれて形状が徐々に回復した。
The straight strip thus obtained was bent at an angle of approximately 120°C in an alcohol-dry ice mixture at -70°C, and then gradually heated to 100°C. As it ascended, it gradually regained its shape.

発明の効果 以上のように、この発明によれば、変態温度および逆変
ta度の異なる2種以上の合金粉末から構成されている
ため、形状記憶効果を多段にあるいはかなりの温度幅に
わたり連続的に発揮し得る形状記憶合金部材を得ること
ができる。また、この形状記憶効果を発揮する温度幅は
、焼結条件およびβ相化処運条件などを変化させること
により、かなりの範囲に設定し得ることが可能である。
Effects of the Invention As described above, according to the present invention, since it is composed of two or more types of alloy powders having different transformation temperatures and degrees of inverse transformation, the shape memory effect can be achieved in multiple stages or continuously over a considerable temperature range. It is possible to obtain a shape memory alloy member that can exhibit the following properties. Moreover, the temperature range at which this shape memory effect is exhibited can be set within a considerable range by changing the sintering conditions, β-phase processing conditions, and the like.

したがって、各種アクブーユエータ、感温素子およびバ
イメタルなど楊々な用途に用いることができる。
Therefore, it can be used for various applications such as various actuators, temperature sensing elements, and bimetals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は、この発明の原理を示すための各
図であり、第1図はこの発明の一例を示す概略断面図で
あり、第2図ないし第5図はこの発明の形状記憶合金部
材の見掛けの変態温度の分布を示す図である。 1.2・・・合金粉末、3・・・形状記憶合金部材。 くほか2名) 第1図 第2図       第3図 第4図        第5図
1 to 5 are diagrams for showing the principle of this invention, FIG. 1 is a schematic sectional view showing an example of this invention, and FIGS. 2 to 5 are diagrams showing the shape of this invention. FIG. 3 is a diagram showing a distribution of apparent transformation temperatures of a memory alloy member. 1.2... Alloy powder, 3... Shape memory alloy member. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (6)

【特許請求の範囲】[Claims] (1) 変[温度および逆変態温度の異なるような組成
の2種以上の合金粉末を混合し、焼結してなり、見掛け
の変S渦度が多段または連続的に分布していることを特
徴とする、形状記憶合金部材。
(1) It is made by mixing and sintering two or more types of alloy powders with different compositions at different temperatures and reverse transformation temperatures, and the apparent modified S vorticity is distributed in multiple stages or continuously. Features: Shape memory alloy components.
(2) 前記各合金粉末は、同一元素から構成されてお
り、組成比のみが異なる、特許請求の範囲第1項記載の
形状記憶合金部材。
(2) The shape memory alloy member according to claim 1, wherein each of the alloy powders is composed of the same element and differs only in composition ratio.
(3) 前記合金粉末の粒径は200μ割以下である、
特許請求の範囲第1項または第2項記載の形状記憶合金
部材。
(3) The particle size of the alloy powder is 200 μm or less,
A shape memory alloy member according to claim 1 or 2.
(4) 各合金粉末は、β相41I造を有し得る銅合金
粉末である、特許請求の範囲第1項ないし第3項のいず
れかに記載の形状記憶合金部材。
(4) The shape memory alloy member according to any one of claims 1 to 3, wherein each alloy powder is a copper alloy powder that can have a β-phase 41I structure.
(5) 変lll温度および逆変W7A温度の異なる2
種以上の合金粉末を混合し、焼結した後、熱間または冷
間で加工し、次いでβ相化処理を行なう、形状記憶合金
部材の製造方法。
(5) 2 different temperatures of variable Ill temperature and reverse variable W7A temperature
A method for manufacturing a shape memory alloy member, which comprises mixing and sintering various types of alloy powders, then hot or cold processing, and then β-phase treatment.
(6) 前記β相化処理の温度と時間を調整することに
より、変態温度の分布を特徴する特許請求の範囲第5項
記載の形状記憶合金部材の製造方法。
(6) The method for manufacturing a shape memory alloy member according to claim 5, wherein the distribution of transformation temperature is characterized by adjusting the temperature and time of the β-phase treatment.
JP58040988A 1983-03-12 1983-03-12 Shape memory alloy member and preparation thereof Pending JPS59166641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58040988A JPS59166641A (en) 1983-03-12 1983-03-12 Shape memory alloy member and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58040988A JPS59166641A (en) 1983-03-12 1983-03-12 Shape memory alloy member and preparation thereof

Publications (1)

Publication Number Publication Date
JPS59166641A true JPS59166641A (en) 1984-09-20

Family

ID=12595802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58040988A Pending JPS59166641A (en) 1983-03-12 1983-03-12 Shape memory alloy member and preparation thereof

Country Status (1)

Country Link
JP (1) JPS59166641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219443A (en) * 1983-05-28 1984-12-10 Daido Steel Co Ltd Multi-changing type shape memory alloy and its production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105441A (en) * 1980-01-10 1981-08-21 Special Metals Corp Production of shape memory effect alloy having desired transformation temperature
JPS57108228A (en) * 1980-12-25 1982-07-06 Hitachi Metals Ltd Composite magnetic material having compound magnetization curve by powder metallurgy
JPS57158357A (en) * 1981-03-25 1982-09-30 Hitachi Metals Ltd Composite hot working tool material with wear and heat resistance
JPS57164944A (en) * 1981-04-02 1982-10-09 Hitachi Metals Ltd Alloy with high toughness and high electric resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105441A (en) * 1980-01-10 1981-08-21 Special Metals Corp Production of shape memory effect alloy having desired transformation temperature
JPS57108228A (en) * 1980-12-25 1982-07-06 Hitachi Metals Ltd Composite magnetic material having compound magnetization curve by powder metallurgy
JPS57158357A (en) * 1981-03-25 1982-09-30 Hitachi Metals Ltd Composite hot working tool material with wear and heat resistance
JPS57164944A (en) * 1981-04-02 1982-10-09 Hitachi Metals Ltd Alloy with high toughness and high electric resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219443A (en) * 1983-05-28 1984-12-10 Daido Steel Co Ltd Multi-changing type shape memory alloy and its production
JPH0471977B2 (en) * 1983-05-28 1992-11-17 Daido Steel Co Ltd

Similar Documents

Publication Publication Date Title
US4533411A (en) Method of processing nickel-titanium-base shape-memory alloys and structure
JPS58151445A (en) Titanium-nickel alloy having reversible shape storage effect and its manufacture
US3417461A (en) Thin-film diffusion brazing of titanium members utilizing copper intermediates
AU3424189A (en) A method for producing a shape memory alloy member having specific physical and mechanical properties
US6358380B1 (en) Production of binary shape-memory alloy films by sputtering using a hot pressed target
EP0161066A1 (en) Nickel/titanium-base alloys
JPS59166641A (en) Shape memory alloy member and preparation thereof
JPS6210291B2 (en)
US4166739A (en) Quarternary β-brass type alloys capable of being rendered heat recoverable
GB1593499A (en) Copper aluminium zinc alloy
JPS6247937B2 (en)
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JP2004292886A (en) Rare earth-added ferromagnetic shape memory alloy
JPS6140741B2 (en)
JP2003277856A (en) Shape memory alloy and method of producing the same
JPS6214216B2 (en)
JPS6227518A (en) Manufacture of low expansion alloy material
JP2724815B2 (en) Shape memory alloy coil spring and method of manufacturing the same
JPH04350139A (en) Nickel/titanium/copper shape memory alloy
Zengin et al. Oxidation behaviour and kinetic properties of shape memory CuAlxNi4 (x= 13.0 and 13.5) alloys
JPH0317238A (en) Cu-al-mn series shape memory alloy and its manufacture
JPH01191757A (en) Ni-ti shape memory alloy and production thereof
JPS5836669B2 (en) A method for creating alloys with reversible shape memory phenomenon
JP2524780B2 (en) Method for manufacturing copper alloy member having giant crystal surface
JPH059686A (en) Production of shape memory niti alloy