JPS59166379A - Automatic welding machine - Google Patents

Automatic welding machine

Info

Publication number
JPS59166379A
JPS59166379A JP4180283A JP4180283A JPS59166379A JP S59166379 A JPS59166379 A JP S59166379A JP 4180283 A JP4180283 A JP 4180283A JP 4180283 A JP4180283 A JP 4180283A JP S59166379 A JPS59166379 A JP S59166379A
Authority
JP
Japan
Prior art keywords
sensor
magnetic
welding
weld line
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4180283A
Other languages
Japanese (ja)
Inventor
Masakazu Taki
正和 滝
Susumu Maeda
進 前田
Kenji Yoshizawa
憲治 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4180283A priority Critical patent/JPS59166379A/en
Priority to US06/588,418 priority patent/US4571479A/en
Publication of JPS59166379A publication Critical patent/JPS59166379A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1276Using non-contact, electric or magnetic means, e.g. inductive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/127Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using non-mechanical sensing
    • B23Q35/13Sensing by using magnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To enable simultaneous welding while specifying a weld line in an automatic welding machine provided with a magnetic sensor that detects leakage flux generated from weld line gap by covering the sensor with a non-magnetic body. CONSTITUTION:Magnetic flux is generated in space when a magnetic body such as iron is arc welded. Out of this magnetic flux, that which goes out in the space across a weld line 2 gap is multiplied by relative permeability of an object 1 to be welded, and distribution of magnetic flux becomes strongest at the center of weld line. Accordingly, the weld line 2 can be specified by detecting the maximum place of distribution of magnetic flux by a magnetic sensor 9 attached to a welding torch 8. A large quantity of spatter is generated during welding. However, as the sensor 9 is covered with a sensor case 12 and a sensor case cover 121, the sensor 9 is not hit directly by the spatter 11.

Description

【発明の詳細な説明】 この発明は自動溶接機、とくにセンサ付自動溶接機のセ
ンサ部分に関するものである。従来、自動溶接機に備え
られるセンサのうち、磁気センサを用いたものとして、
第1図に示すものがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic welding machine, and particularly to a sensor portion of an automatic welding machine with a sensor. Conventionally, among the sensors equipped in automatic welding machines, magnetic sensors are used.
There is one shown in Figure 1.

第1図は、従来の自動溶接機の磁気センサを示す構成図
である。
FIG. 1 is a configuration diagram showing a magnetic sensor of a conventional automatic welding machine.

図において、(1)は被溶接物、(2)は溶接線、(3
)は送信コイルであシ、低周波磁界(5)を発生させる
In the figure, (1) is the object to be welded, (2) is the welding line, and (3) is the welding line.
) generates a low frequency magnetic field (5) using a transmitting coil.

(4)は送信コイル(3)で発生した低周波磁界(5)
を検出する受信コイル、(6)は送信コイル(3)に低
周波磁界(5)を発生させるだめの信号を出力するとと
もに。
(4) is the low frequency magnetic field (5) generated by the transmitting coil (3)
The receiving coil (6) detects the magnetic field and outputs a signal to generate a low frequency magnetic field (5) to the transmitting coil (3).

受信コイル(4)で検出された信号を処理するコントロ
ーラ、 (71は送受信コイルを覆うケースであシ。
A controller that processes the signal detected by the receiving coil (4) (71 is a case that covers the transmitting and receiving coil).

非金属材料からなる。Made of non-metallic material.

次に動作について説明する。送信コイル(3)で発生し
た[氏周波磁界(5)は2両側に配置された受信コイル
(41で検出される。この時、低周波磁界(5)の状態
が左右対称であれば9両受信コイル(4)の出力信号は
バランスする。しかし、左右非対称、すなわち、被溶接
物(1)の溶接線(2)がある場合は、磁気抵抗や渦電
流損が異なシバランスがくずれる。この信号をコントロ
ーラ(6)で処理することにより溶接線(2)を特定す
る。ケース(7)は、送・受信コイル(3)(4)を覆
う様に構成されており、耐環境性を良くしている。又、
ケース(7)の材料としては、送信コ゛イル(3)から
発生される低周波磁界(5)に影響を及ぼさない非金属
材料、だとえは樹脂が使用されろうもし、ケース(7)
の材料として金属を用いるとケース(7)材の渦電流損
の増大によシ、被溶接物filの磁気抵抗、渦電流損の
大小を検出する精度が悪くなり好ましく々い。
Next, the operation will be explained. The frequency magnetic field (5) generated by the transmitting coil (3) is detected by the receiving coils (41) placed on both sides of the 2. At this time, if the state of the low frequency magnetic field (5) is symmetrical, The output signals of the receiving coil (4) are balanced. However, if the welding line (2) of the workpiece (1) is asymmetrical, the balance will be disrupted due to the difference in magnetic resistance and eddy current loss. The welding line (2) is identified by processing the signal with the controller (6).The case (7) is constructed to cover the transmitting/receiving coils (3) and (4), and has good environmental resistance. Also,
The case (7) may be made of a non-metallic material, such as a resin, which does not affect the low-frequency magnetic field (5) generated from the transmitting coil (3).
If metal is used as the material of the case (7), the eddy current loss of the material of the case (7) increases, and the accuracy of detecting the magnitude of the magnetic resistance and eddy current loss of the welded object fil deteriorates, which is not preferable.

一方、前記従来のセンサを用いて溶接を行ないながら溶
接線(2)を検出する場合、溶接時のスパッタが前記ケ
ース(7)に飛散する。そうするとケース(7)が非金
属材料からなる。たとえば樹脂で構成されているので、
スパッタが溶着することになり。
On the other hand, when the conventional sensor is used to detect the weld line (2) while welding, spatter during welding is scattered onto the case (7). Then, the case (7) is made of a non-metallic material. For example, since it is made of resin,
This will result in spatter welding.

低周波磁界(5)に影響を及ぼし、溶接1@f2+を特
定で衣なかった。又、溶接時に発生するアークの輻射熱
により、ケース(7)が熱変形する等の欠点があった。
It affected the low frequency magnetic field (5) and did not specifically affect welding 1@f2+. Further, there was a drawback that the case (7) was thermally deformed due to the radiant heat of the arc generated during welding.

従って、従来の自動溶接機では、溶接線(2)を特定し
ながら同時に溶接を行うことは難かしぐ、あらかじめ、
上記のようなセンサで溶接線(2)を特定し、自動溶接
機にこの溶接線(2)を教示して、溶接を行なっていた
Therefore, with conventional automatic welding machines, it is difficult to identify the welding line (2) and weld at the same time.
The welding line (2) was identified by the sensor as described above, and the welding line (2) was taught to an automatic welding machine to perform welding.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、溶接線をなす被溶接物間のギャ
ップから生ずる洩れ磁束を検出する磁気センサを備えた
自動溶接機に対し、磁気センサを非磁性体で覆うことに
より、溶接中における磁気センサへのスパッタの付着を
防止し、溶接線を特定しながら、同時に溶接が行なえる
自動溶接機を提供することを目的としている。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional welding machine. The present invention aims to provide an automatic welding machine that can prevent spatter from adhering to the magnetic sensor during welding by covering the magnetic sensor with a non-magnetic material, and can perform welding at the same time while specifying the welding line.

第2図はこの発明による自動溶接機の部分構成図であシ
、第3図(a)は、溶接線をなす被溶接物間のギャップ
における洩れ磁束分布図、第3図Tb)は溶接線をなす
被溶接物間のギャップにおける洩れ磁束の一例を示す説
明図である。図中、(8)は溶接トーチ、(9)は取付
治具114fiによシ溶接トーチ(8)に固定される磁
気センサ、011は了−り溶接時におけるスパッタを示
している、 次に動作について説明する。鉄々どの磁性体をアーク溶
接する場合、溶接トーチ(8)に流れる電流に起因して
、ビオ・サバールの法則に従った磁束が空間中に発生す
る。この磁束のうち、被溶接物(1)中にあって、溶接
線(2)ギャップを横切って空間中に出る磁束は、被溶
接物fl’lの比透磁率倍に強められ、第3図のように
溶接線中心Cが最も強い磁束分布となる。したがって溶
接トーチ(8)に暇付けられだ磁気センサf91によシ
、上記磁束分布の最大個所を検出すれば、溶接線特定す
ることができる。
Fig. 2 is a partial configuration diagram of an automatic welding machine according to the present invention, Fig. 3(a) is a leakage magnetic flux distribution diagram in the gap between the workpieces forming the weld line, and Fig. 3 Tb) is a diagram of the weld line. FIG. 2 is an explanatory diagram showing an example of leakage magnetic flux in a gap between objects to be welded. In the figure, (8) is the welding torch, (9) is the magnetic sensor fixed to the welding torch (8) by the mounting jig 114fi, and 011 is the spatter during welding. I will explain about it. When arc welding magnetic materials such as iron, magnetic flux according to the Biot-Savart law is generated in space due to the current flowing through the welding torch (8). Of this magnetic flux, the magnetic flux that is in the object to be welded (1) and that crosses the weld line (2) gap and exits into space is strengthened to the relative permeability of the object to be welded fl'l, as shown in Figure 3. As shown, the weld line center C has the strongest magnetic flux distribution. Therefore, by detecting the maximum point of the magnetic flux distribution using the magnetic sensor f91 attached to the welding torch (8), the welding line can be specified.

磁気センサ(9)としては例えば1次に示すようなもの
がある。
As the magnetic sensor (9), there is, for example, one shown in the primary order.

第4図は−1この発明にかかわる磁気センサの一実施例
を示す部分構成図で、磁気センサ(9)は、磁気感知素
子として例えば、ホール素子(9a) 、 (9blを
用い2個のホール素子(9al 、 (9blを短かい
間隔で配投し、このような構成の磁気センサ(9)を第
4図に示される矢印方向に移動し1両ホール素子(9a
l 、 (9blのそれぞれの出力が等しくなる点、即
ち磁束の最大点Cを検出して、溶接線(2)を特定する
Fig. 4 is a partial configuration diagram showing an embodiment of the magnetic sensor according to the present invention. The elements (9al, (9bl) are arranged at short intervals, and the magnetic sensor (9) with such a configuration is moved in the direction of the arrow shown in Fig. 4, and one Hall element (9a
The welding line (2) is identified by detecting the point where the respective outputs of l, (9bl) are equal, that is, the maximum point C of the magnetic flux.

従来の自動溶接機のセンサが、センサ近傍の磁気抵抗と
、渦電流損の変化を検出することによシ溶接線(2)を
特定していたのに対し、この発明で用いられるセンサ(
9)は、洩れ磁束の変化のみを検出することで溶接線(
21を特定している。
While conventional automatic welding machine sensors identify the weld line (2) by detecting changes in magnetic resistance and eddy current loss near the sensor, the sensor used in this invention (
9) detects the weld line (
21 have been identified.

以下、溶接線検出方法の違いを基にこの発明による一実
施例を説明する。
Hereinafter, one embodiment of the present invention will be described based on differences in weld line detection methods.

第5図は、この発明にかかわる磁気センサの一実施例の
一部切り欠いて内部を示す部分斜視図である。
FIG. 5 is a partial perspective view showing the inside of an embodiment of the magnetic sensor according to the present invention, with a portion cut away.

図において、O2は磁気センサ(9)を覆う非磁性体か
らなるセンサケース、 (121) Uセンサケースo
zに取付ける非a注体からなるセンサケースぶた。
In the figure, O2 is a sensor case made of a non-magnetic material that covers the magnetic sensor (9), (121) U sensor case o
A sensor case lid consisting of a non-a-type body that is attached to the z.

f13IはfHt−にン191の取付板、Q41U取付
板+131 ヲセ7サケースO2に固定する支持材、α
りは磁気センサ(9)からの信号線である。
f13I is the mounting plate for fHt-nin 191, Q41U mounting plate +131, the support material to be fixed to the case O2, α
This is the signal line from the magnetic sensor (9).

被溶接物fllが磁性体であれば、溶接トーチ(8)か
ら被溶接物fi+に流ね、る溶接電流が作りだす洩れ磁
束を、磁気センサt91が検出することで溶接線(2)
を識別する。轟然、上記溶接中にお伝では多量のスパッ
タが発生するか、磁気センサ(9)はセンサケース02
及びセンサケースぶた(121)にょシ覆ワれて力るの
で、スパッタが直撃することはない。
If the object to be welded fl1 is a magnetic material, the magnetic sensor t91 detects the leakage magnetic flux generated by the welding current flowing from the welding torch (8) to the object to be welded fi+, and the weld line (2)
identify. Apparently, a large amount of spatter is generated during the above welding, or the magnetic sensor (9) is not connected to the sensor case 02.
Since the sensor case lid (121) is covered and stressed, spatter does not directly hit the sensor case lid (121).

なお前記従来例では、低周波磁界(5)に悪影響を及ぼ
すために、ケース(7)の材料として金属は使用できな
かったけれども、この発明の一実施例に使用されるセン
サケースa2及びセンサケースぶた(1211の材料に
は洩れ磁束に影響を及ぼさない非磁性体であればよく、
たとえばアルミニウム・銅等の金属を用いることができ
る。
Note that in the conventional example, metal could not be used as the material for the case (7) because it would have an adverse effect on the low frequency magnetic field (5), but the sensor case a2 and the sensor case used in one embodiment of the present invention The material for the lid (1211) may be any non-magnetic material that does not affect the leakage magnetic flux.
For example, metals such as aluminum and copper can be used.

従って、ケース(7)の熱変形の心配もなく、溶接線(
2)を磁気センサ(9)によシ特定しながら同時に溶−
接を行うことが可能となる。
Therefore, there is no fear of thermal deformation of the case (7), and there is no need to worry about the welding line (
2) is identified by the magnetic sensor (9) and melted at the same time.
It becomes possible to conduct contact.

なお、上記実施例では、磁気センサとして2つのホール
素子(9al 、 (9b)を用いたもので説明したが
、1つのホール素子で洩れ磁束の最大点Cを識別する磁
気センサに対しても適用できることは勿論である。
In the above embodiment, two Hall elements (9al, (9b)) are used as the magnetic sensor, but the present invention can also be applied to a magnetic sensor that uses one Hall element to identify the maximum point C of leakage magnetic flux. Of course it can be done.

以上のように、この発明によれば、溶接線をなす被溶接
物間のギャップから生ずる洩れ磁束を検出する磁気セン
サを備えた自動溶接機に対し、磁気センサを非磁性体で
覆うことによシ、磁気センサに溶接時のスパッタが直撃
せず、又、センサケースが熱変形をおこしにくいので、
溶接線の特定と同時に溶接が行える効果がある。
As described above, according to the present invention, an automatic welding machine equipped with a magnetic sensor that detects leakage magnetic flux generated from a gap between objects to be welded forming a welding line is covered with a non-magnetic material. The magnetic sensor is not directly hit by spatter during welding, and the sensor case is less likely to be thermally deformed.
This has the effect of allowing welding to be performed at the same time as identifying the welding line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動溶接機の磁気センサを示す構成図、
第2図はこの発明による自動溶接機の部分構成図、第3
図は溶接線をなす被溶接物間のギャップにおける洩れ磁
束の分布図、第4図はこの発明にかかわる磁気センサの
一実施例を示す部分構成図、第5図はこの発明にかかわ
る磁気センサの一実施例の一部切シ欠いて内部を示す部
分斜視図である。図中、(1)は被溶接物、(2)は溶
接線、(9)は磁気センサを示す。 なお2図中、同一符号は同−又は相当部分を示す。 代理人 葛 野 信 −
Figure 1 is a configuration diagram showing the magnetic sensor of a conventional automatic welding machine.
Fig. 2 is a partial configuration diagram of an automatic welding machine according to the present invention;
The figure is a distribution diagram of leakage magnetic flux in the gap between the workpieces forming the weld line, Figure 4 is a partial configuration diagram showing an embodiment of the magnetic sensor according to the present invention, and Figure 5 is a diagram of the magnetic sensor according to the present invention. FIG. 2 is a partial perspective view showing the interior of one embodiment with a portion cut away. In the figure, (1) shows the object to be welded, (2) shows the welding line, and (9) shows the magnetic sensor. Note that in the two figures, the same reference numerals indicate the same or equivalent parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 fll  溶接線をなす被溶接物間のギャップから生ず
る洩れ磁束を検出する磁気センサを備えた自動溶接機に
おいて、上記磁気センサを非磁性体で覆ったことを特徴
とする自動溶接機。 (2)非磁性体が非磁性金属であることを特徴とする特
許請求の範囲第1項記載の自動溶接機。
[Claims] fll An automatic welding machine equipped with a magnetic sensor for detecting leakage magnetic flux generated from a gap between objects to be welded forming a welding line, characterized in that the magnetic sensor is covered with a non-magnetic material. Welding machine. (2) The automatic welding machine according to claim 1, wherein the non-magnetic material is a non-magnetic metal.
JP4180283A 1983-03-14 1983-03-14 Automatic welding machine Pending JPS59166379A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4180283A JPS59166379A (en) 1983-03-14 1983-03-14 Automatic welding machine
US06/588,418 US4571479A (en) 1983-03-14 1984-03-12 Welding machine with automatic seam tracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180283A JPS59166379A (en) 1983-03-14 1983-03-14 Automatic welding machine

Publications (1)

Publication Number Publication Date
JPS59166379A true JPS59166379A (en) 1984-09-19

Family

ID=12618460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180283A Pending JPS59166379A (en) 1983-03-14 1983-03-14 Automatic welding machine

Country Status (1)

Country Link
JP (1) JPS59166379A (en)

Similar Documents

Publication Publication Date Title
JP3811039B2 (en) Magnetic leak detection sensor for magnetic flaw detector
US3268805A (en) Seam tracking and flaw detection
US4303883A (en) Apparatus for detecting the center of a welded seam in accordance with fundamental harmonic component suppression
CA2240045A1 (en) Eddy current flaw detector
GB1531825A (en) Split pole eddy current test coil
US3873830A (en) Method and apparatus for monitoring the quality of welds in seamed tubes
JPS59166379A (en) Automatic welding machine
JP6736778B2 (en) Method and apparatus for detecting welding wire diameter or welding wire composition in a welding device
US5703298A (en) Magnetostrictive torque sensing device
US5886522A (en) Dual mode coating thickness measuring probe for determining the thickness of a coating on ferrous and non-ferrous substrates
US3995211A (en) Electromagnetic induction type detectors
JPH0141438B2 (en)
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JP3132971B2 (en) Eddy current flaw detector
JPH07311180A (en) Eddy current flaw detection coil
JP3608701B2 (en) Metal detector
KR20200027289A (en) Metallic foreign components detecting sensor combinied with magnet and metallic foreign components detecting apparatus including the sensor
JPH0242162B2 (en)
SU728070A1 (en) Device for detecting the butt of metallic strips and welded joints
JPS6248191B2 (en)
JPH02229410A (en) Detection of direct-current deflecting magnetism in iron core of transformer
JP2548069Y2 (en) Pass / fail judgment of spot welds
JPS6251779B2 (en)
SU899295A1 (en) Electromagnetic differential transducer of position of joint at welding
RU2161795C2 (en) Method of testing quality of welds of thin-walled metal parts and device for its embodiment