JPS5916590A - Treatment of waste water containing heavy metal - Google Patents

Treatment of waste water containing heavy metal

Info

Publication number
JPS5916590A
JPS5916590A JP12623682A JP12623682A JPS5916590A JP S5916590 A JPS5916590 A JP S5916590A JP 12623682 A JP12623682 A JP 12623682A JP 12623682 A JP12623682 A JP 12623682A JP S5916590 A JPS5916590 A JP S5916590A
Authority
JP
Japan
Prior art keywords
liquid
ions
heavy metal
precipitate
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12623682A
Other languages
Japanese (ja)
Other versions
JPS603869B2 (en
Inventor
Shigemi Shimizu
惠己 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI KANKYO ENG KK
Original Assignee
NIPPON DENKI KANKYO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI KANKYO ENG KK filed Critical NIPPON DENKI KANKYO ENG KK
Priority to JP12623682A priority Critical patent/JPS603869B2/en
Publication of JPS5916590A publication Critical patent/JPS5916590A/en
Publication of JPS603869B2 publication Critical patent/JPS603869B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To remove efficiently harmful metallic ions, by adding ferrous ions and an alkali to the waste water, which is brought into contact with the magnetite particles formed with an iron oxyhydroxide layer on the surface, to control the pH thereof to neutral or above then stirring the water. CONSTITUTION:The magnetite or ferrite particles having an iron oxyhydroxide layer on the surface are charged into waste water contg. heavy metals, and the pH of the liquid is controlled to adsorb heavy metals ions on said particles, whereby the liquid is separated to precipitate and supernatant liquid. Ferrous ions and an alkali are added to the liquid contg. precipitate to control the pH thereof to >=8, and an oxidizing gas is blown to oxidize the ferrous salt compd. The blowing of the oxidizing gas is then stopped and ferrous ions are added to the liquid; further, the pH of the liquid is controlled to neutral or above, whereafter the liquid is stirred to form the crystal particles precipitated with magnetite or ferrite so that the heavy metallic ions are incorporated into the crystal lattice of the above-described precipitated crystal particles.

Description

【発明の詳細な説明】 本発明は工場廃液などの排水中に含まれた有害金属を除
去する処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for removing harmful metals contained in waste water such as factory waste liquid.

排水中の有害金属を除去する方法としていわゆる゛フェ
ライト法″′が開発され、排水処理の有効な方法として
現在すでに実用化されている。この方法は次の工程から
なるものである。すなわち、■ 第一鉄塩混合工程 排水中に含有される重金属の種類および処理排水量に対
応した量の第一鉄塩(主に硫酸第一鉄Fe SO4・7
H20) w排水中に投入して攪拌する。
The so-called "ferrite method" has been developed as a method for removing harmful metals from wastewater, and is already in practical use as an effective method for wastewater treatment.This method consists of the following steps: The amount of ferrous salt (mainly ferrous sulfate, FeSO4, 7
H20) Pour into waste water and stir.

■ p l−1調整工程 次にアルカリ(例えば苛性ソーダNa0H) q加え、
上記混合排水のpHを調整し、排水中に混合水酸化物を
生成させろ。
■ p l-1 adjustment step Next, add q of alkali (e.g. caustic soda Na0H),
Adjust the pH of the mixed wastewater and generate mixed hydroxide in the wastewater.

■ 酸化工程 p H調整後、蒸気又はヒータで60〜70℃に加熱し
、次に排水中に空気を送入し、フェライト化反応を進め
ろ。フェライト化反応の進行と共に重金属はフェライト
結晶格子に組み込まれ、フエライトスラッジとして沈澱
する。
(2) Oxidation process pH After adjusting the pH, heat to 60-70°C using steam or a heater, then introduce air into the waste water to proceed with the ferrite reaction. As the ferrite reaction progresses, heavy metals are incorporated into the ferrite crystal lattice and precipitate as ferrite sludge.

以上の処理工程を行なうことにより、最終的にフェライ
ト沈澱物を脱型金属水から分離して重金属を排水中から
除去するものである。
By carrying out the above treatment steps, the ferrite precipitate is finally separated from the demolding metal water and the heavy metals are removed from the waste water.

この方法は、 の反応を利用したものであるが、第一鉄イオンの酸化に
よりどのような化合物が最終的に生成するかは、反応条
件によって決定されるため、フェライト乞生成させるに
は特定の条件の下で処理を行なわなければならない。第
1図は第一鉄塩溶液にアルカリヲ添加し、酸化反応を活
発に行った場合に、生成する鉄化合物の結晶構造が、ア
ルカリの添加比と、反応温度とで変化する様相を示した
ものである。同図によって明らかなとおり、高い反応温
度でFe3O4が生成し、低い温度ではFe00Hが生
成する。したがってフェライトヲ生成させるには少くと
も60℃以上の高温で処理する必要があり、その他、フ
ェライト生成はアルカリの添加量、酸化時間などに左右
されろ・ため、処理条件の設定が厄介であるとされてい
た。
This method utilizes the reaction of , but since the type of compound ultimately produced by the oxidation of ferrous ions is determined by the reaction conditions, specific conditions are required to produce ferrite. Processing must be carried out under certain conditions. Figure 1 shows how the crystal structure of the iron compound produced changes depending on the alkali addition ratio and reaction temperature when an alkali is added to a ferrous salt solution and an oxidation reaction is actively carried out. It is. As is clear from the figure, Fe3O4 is produced at high reaction temperatures, and Fe00H is produced at low temperatures. Therefore, in order to generate ferrite, it is necessary to process at a high temperature of at least 60°C, and ferrite generation also depends on the amount of alkali added, oxidation time, etc., so setting the processing conditions is difficult. It had been.

これとは別に、酸化反応を静かに行なわせることによっ
て常温で処理する試みもあったが、酸化反応のための特
殊な設備7要し、酸化反応に長時間2要するなどの欠点
があった。
Separately, there have been attempts to carry out the oxidation reaction quietly at room temperature, but these had drawbacks such as requiring special equipment for the oxidation reaction and requiring a long time for the oxidation reaction.

また、上記方法によるとぎには、マグネタイト生成条件
と、成る金属イオン(例えばCd2+など)を完全にマ
グネタイトの結晶格子に取込ませるに最適な条件とが必
ずしも一致しないために、処理可能な重金属イオンの種
類や濃度には限界があるのはやむ2得ないものとされて
いた。
In addition, when using the above method, the conditions for magnetite production and the optimal conditions for completely incorporating the metal ions (such as Cd2+) into the crystal lattice of magnetite do not necessarily match, so heavy metal ions that can be processed It was considered unavoidable that there were limits to the types and concentrations of carbon dioxide.

もつとも、上記方法は有害金属イオン乞比較的大量に含
む排水の処理に適用して有効であるが少量の有害金属乞
食む稀薄液の大量処理については従来有効な方法がな(
、そのまま放流されろことが多いため、いわゆる総量規
制を実現するうえにも、稀薄液の有効処理の開発が強(
望まれていた。
Although the above method is effective when applied to the treatment of wastewater containing relatively large amounts of harmful metal ions, there is no conventional method that is effective for the treatment of large quantities of dilute liquids containing small amounts of harmful metal ions (
In many cases, the liquid should be discharged as is, so in order to achieve the so-called total volume control, it is necessary to develop an effective treatment for diluted liquid (
It was wanted.

本発明は比較的少量の有害金属イオン(重金属イオン)
を含んだ稀薄な排水の処理に有効な方法を提供するもの
で、表面にオキシ水酸化鉄を形。成させたマグネタイト
又はフェライト粒子を重釜属含有排水中に投入し、液の
p Hi調整して各粒子に重金属イオンケ吸着させ、液
中に沈降した沈澱と−」二澄液とを分離し、沈澱物を含
む液中に第一鉄イオンとアルカリとを添加して液中のp
 I−128以上に調整し、空気またはその他の酸化性
ガスを吹込んで第一鉄塩化合物ケ酸化したのち、酸化性
ガスの吹込みを停止すると共に第一鉄イオンケ加え、さ
らにアルカリを添加して液のp I−1g中性付近以上
に調整し、次いで酸化性ガスを吹込むことな(液ヶ攪拌
することにより、最終的にマグネタイト又はフェライト
沈澱乞液中に生じさせ、オキシ水酸化鉄に吸着させた重
金属イオンを沈澱結晶粒子の結晶格子中に取り組むこと
を特徴とするものである。
The present invention uses a relatively small amount of harmful metal ions (heavy metal ions).
It provides an effective method for treating dilute wastewater containing iron oxyhydroxide in the form of iron oxyhydroxide on the surface. The resulting magnetite or ferrite particles are put into heavy metal-containing wastewater, the pH of the liquid is adjusted to allow each particle to adsorb heavy metal ions, and the precipitate that has settled in the liquid is separated from the clear liquid. By adding ferrous ions and alkali to a solution containing a precipitate, p in the solution can be reduced.
After adjusting the temperature to I-128 or higher and oxidizing the ferrous salt compound by blowing in air or other oxidizing gas, stop blowing in the oxidizing gas, add ferrous ions, and then add alkali. Adjust the pH of the liquid to around neutrality or higher, and then do not blow in oxidizing gas (stir the liquid) to finally form magnetite or ferrite precipitate in the liquid, and turn it into iron oxyhydroxide. This method is characterized by incorporating the adsorbed heavy metal ions into the crystal lattice of precipitated crystal particles.

本発明において、オキシ水酸化鉄2表面に形成したマグ
ネタイト又はフェライト粒子は次の処理によって得ろこ
とができろ。すなわち、第一鉄イオン馨投入した液中に
アルカリを添加してそのp f(’118〜11に設定
し、常温下で空気またはその他の酸化性ガスを吹込み、
液中に生ずる気泡で攪拌しながら第一鉄塩化合物の酸化
ケ進行させる。第1図に明らかなとうり液温か常温の場
合には沈澱物の殆んどが黄褐色のオキシ水酸化鉄であり
、これに黒色のマグネタイトが僅かに混入して全体とし
て茶褐色の沈澱となる。この沈澱が生じた後、酸化性ガ
スの吹込みケ停止し、液中に第一鉄イオンを加えろ。第
−銖イオンの添加によって液のp I−1が低下するた
め、さらにアルカリを加えてpHg中性付近以上に戻し
、次いで酸化性ガスを供給することな(、機械的又は窒
素などの不活性ガスを液中に吹込んで液を攪拌する。こ
の攪拌により液中に生じた全てのオキシ水酸化鉄はマグ
ネタイトに変化し、その表向に余剰の第一鉄イオンが吸
着された沈澱となる。この沈澱欠食む液中にさらに空気
などの酸化性ガスを常温で吹込むことによって沈澱物F
e3O4の表面に吸着されたFe2+イオンを酸化する
と、常温の下では」−述のようにオキシ水酸化鉄Fe0
011となり、第2図に示すように表面がオキシ水酸化
鉄の層で覆われたマグネタイト(又はフェライト)が液
中に生成する。
In the present invention, the magnetite or ferrite particles formed on the surface of the iron oxyhydroxide 2 can be obtained by the following treatment. That is, add an alkali to the liquid containing ferrous ions, set its p f ('118 to 11), blow air or other oxidizing gas at room temperature,
The oxidation of the ferrous salt compound is progressed while stirring with air bubbles generated in the liquid. As is clear from Figure 1, when the liquid is warm and at room temperature, most of the precipitate is yellowish brown iron oxyhydroxide, with a small amount of black magnetite mixed in, resulting in a brownish brown precipitate as a whole. . After this precipitation occurs, stop blowing in the oxidizing gas and add ferrous ions to the liquid. Since the pI-1 of the liquid decreases due to the addition of the ion, add an alkali to return the pH to around neutrality or higher, and then add an oxidizing gas (mechanical or inert gas such as A gas is blown into the liquid and the liquid is stirred.As a result of this stirring, all the iron oxyhydroxide produced in the liquid changes to magnetite, which becomes a precipitate with excess ferrous ions adsorbed on its surface. By further blowing an oxidizing gas such as air into this precipitate-depleting liquid at room temperature, the precipitate F
When Fe2+ ions adsorbed on the surface of e3O4 are oxidized, at room temperature, iron oxyhydroxide Fe0
011, and as shown in FIG. 2, magnetite (or ferrite) whose surface is covered with a layer of iron oxyhydroxide is generated in the liquid.

本発明ではFe001−1の粒子が吸着して(・ろ状態
ケも合せてFe001−1酸化物層という。
In the present invention, the Fe001-1 particles are adsorbed (and the filtration state is also referred to as the Fe001-1 oxide layer).

本発明は上記1程によって得られた沈澱を利用し、これ
を処理剤として重金属含有排水の処理を行うものである
The present invention utilizes the precipitate obtained in step 1 above and uses the precipitate as a treatment agent to treat heavy metal-containing wastewater.

周知のとうり、オキシ水酸化鉄は重金属イオンの吸着性
に優れており、重金属イオンケ含む液中に」二記沈澱物
?投入することによって、重金属イオン、例えばCd、
 Mn、 Co、 Ni、 Pl)、 Zn、 Cu、
 CrイオンブエどのイオンM2+(もしくはM”)&
ま、第6図に示すように上記沈澱の表面に吸着されろ。
As is well known, iron oxyhydroxide has excellent adsorption properties for heavy metal ions, and it forms a precipitate in liquids containing heavy metal ions. By introducing heavy metal ions, such as Cd,
Mn, Co, Ni, Pl), Zn, Cu,
Which ion M2+ (or M”) &
Well, as shown in Figure 6, it is adsorbed on the surface of the precipitate.

また上記沈澱はその主体が比重の太き(・マグネタイト
(又はフェライト)であるため、短時間で沈降する。重
金属イオンを吸着させたマグネタイト表面降させた後、
その上澄iY除き、沈澱を含む重金属イオンの濃縮液2
小容器内へ移す。この/1・容著器内の濃縮液中に第一
鉄イオンを加え、さらにアルカリを添加して液のp I
−1を8〜11に調整した後、空気その他の酸化性ガス
を液中に送り込み、Fe”イオンを酸化させ、酸化反応
終了後、酸化性ガスの吹込みを停止し、さらに第一鉄イ
オンを加え、さらにアルカリ乞添加して液のp I−1
i中性付近以−Lに戻し、次いで酸化性ガスを供給する
ことなく機械的又は窒素などのガスの吹込みによって攪
拌を行なう。
In addition, since the above precipitate is mainly composed of magnetite (or ferrite) with a high specific gravity, it settles in a short time.
Concentrated solution of heavy metal ions including the precipitate except for the supernatant iY 2
Transfer to a small container. This /1: Add ferrous ions to the concentrated liquid in the container, and then add an alkali to increase the pI of the liquid.
After adjusting −1 to 8 to 11, air or other oxidizing gas is fed into the liquid to oxidize the Fe” ions. After the oxidation reaction is complete, the blowing of the oxidizing gas is stopped, and then ferrous ions are added. was added, and further alkali was added to increase the pI-1 of the solution.
i Return the temperature to near neutrality and then stir it mechanically or by blowing in a gas such as nitrogen without supplying an oxidizing gas.

以上の処理によってマグネタイト表面のオキシ水酸化鉄
層に吸着された重金属イオンがマグネタイトの結晶格子
中に取り組まれてフェライトとなり、これらが液中に沈
澱し、その沈澱物の表面には余剰のFe2+イオンが吸
着する。この沈澱物を洗浄して液より分離すれば液中に
Fe2+イオンが残る。
Through the above treatment, the heavy metal ions adsorbed on the iron oxyhydroxide layer on the magnetite surface are incorporated into the crystal lattice of magnetite to form ferrite, which precipitates in the liquid, and the surface of the precipitate contains excess Fe2+ ions. is absorbed. If this precipitate is washed and separated from the liquid, Fe2+ ions remain in the liquid.

このFe2+イオンを含む液は本発明方法に用いろ処理
剤の原液となり、また、Fe2+イオンか吸着したマグ
ネタイト及びフェライト7含む液中に常温で酸化性ガス
乞吹込み、Fe2+イオンケ酸化すれば、表面にオキシ
水酸化鉄Fe0O1−I Ffi ’Y影形成たマグネ
タイト及びフェライト粒子沈澱物となり、この沈澱物は
そのまま本発明の処理剤となる。
This liquid containing Fe2+ ions becomes the stock solution of the filtration treatment agent used in the method of the present invention, and if an oxidizing gas is injected at room temperature into the liquid containing magnetite and ferrite 7 which have adsorbed Fe2+ ions, the Fe2+ ions can be oxidized. The iron oxyhydroxide Fe0O1-I Ffi 'Y forms a precipitate of magnetite and ferrite particles, and this precipitate serves as the treatment agent of the present invention as it is.

したかつて本発明によれば、重金属排水処理にともなっ
て副生じた生成物乞そのまま排水処理剤に利用できろの
みならず、副生物を除去した排水ケそのまま処理剤生成
用原液に利用できる。本発明は処理剤を重金属含有排液
中に投入した段階で、液中に含まれた重金属イオンの全
量ケ処理剤に吸着、沈降させろことができろため、その
上澄液を除去することによって実質上排水処理が完了し
、重金属イオンを吸着させた沈澱物やこの沈澱物を含む
液は後処理によって排水処理剤に再生できろ点が大きな
特徴である。本発明によれば温度条件や反応条件に殆ん
ど左右されず、また、格別の設備を要することなく、希
薄な重金属イオン含有排液を大量に処理でさ、重金属廃
液の総量規制に十分対応できろ効果ケ有するものである
According to the present invention, not only can the by-products produced during heavy metal wastewater treatment be used as wastewater treatment agents, but also the wastewater from which the byproducts have been removed can be used as is as a stock solution for producing treatment agents. In the present invention, when the treatment agent is put into the waste liquid containing heavy metals, all of the heavy metal ions contained in the liquid can be adsorbed and precipitated by the treatment agent, so by removing the supernatant liquid, A major feature is that the wastewater treatment is substantially completed, and the precipitate that has adsorbed heavy metal ions and the liquid containing this precipitate can be regenerated into a wastewater treatment agent through post-treatment. According to the present invention, a large amount of dilute heavy metal ion-containing waste liquid can be treated in large quantities without being affected by temperature conditions or reaction conditions, and without the need for special equipment, and is fully compliant with regulations on the total amount of heavy metal waste liquid. It is something that can be done and has an effect.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(実施例) Cd、 Mn、 Co、 N i、門)、Fe、Zn、
Cu、Crイオンケそれぞれ10 ppm f含む90
0meの排水中に、処理剤としてオキシ水酸化鉄層を表
面に形成したマグネタイトスラッジ0.7y’i水1o
omeと共に投入し、さらにアルカIJ Y適量添加し
て液のp I−1’fg 10.5に調整した。この排
水を適宜攪拌して重金属イオンをオキシ水酸化鉄に吸着
させ、2時間経過後、処理剤乞沈降させた。沈降に要し
た時間は約10分であった。上澄液に重金属イオンか含
まれていないことを確認し、その415に相当するso
omgを放流し、底にたまった沈澱を含む約100me
の濃縮液を200WLeのビー力に移し、その液中にt
’ e S O4・7H20w 4 y加え、さらにア
ルカリを適量添加して液のp +−1’i 9.5に保
ち、20m//minの空気を送り込んで約1時間空気
酸化化行った。一時間後、空気の吹込みを停止し、再び
l’esO4・7H,、Oy 2 y加えると共にアル
カIJ Y、<適量添加し、p I−1を9に調整した
。この液中に窒素ガスケ約2時間吹き込んで液を攪拌し
たところ、液中に黒色の沈澱か生成された。これらの沈
澱物はすべてマグネタイト及びフェライト粒子であった
。これらの沈澱物の粒子には後に添加した余剰Fe2+
イオンか吸着しており、このFe  イオンを酸化する
ため、液中に空気を約一時間吹き込み、Fe2+イオン
をオキシ水酸化鉄に変化させて本発明方法に使用する処
理剤として再生した。勿論生成したフェライト粒子から
重金属イオンが溶出することはなかった。
(Example) Cd, Mn, Co, Ni, Fe, Zn,
90 containing 10 ppm f each of Cu and Cr ions
Magnetite sludge with iron oxyhydroxide layer formed on the surface as a treatment agent in 0me wastewater 0.7y'i water 1o
ome, and further added an appropriate amount of Alka IJY to adjust the p I-1'fg of the liquid to 10.5. This waste water was appropriately stirred to cause heavy metal ions to be adsorbed on iron oxyhydroxide, and after 2 hours, the treatment agent was allowed to settle. The time required for sedimentation was approximately 10 minutes. Confirm that the supernatant liquid does not contain heavy metal ions, and add SO corresponding to 415.
Approximately 100 me including sediment accumulated at the bottom after discharging omg
Transfer the concentrated liquid to a 200 W Le beer force, and add t to the liquid.
' e SO4.7H20w 4 y was added, and an appropriate amount of alkali was added to maintain the p + -1'i of the liquid at 9.5, and air oxidation was performed for about 1 hour by feeding air at 20 m//min. After one hour, the air blowing was stopped, and l'esO4.7H,, Oy 2 y was added again, and an appropriate amount of alkali IJ Y was added to adjust p I-1 to 9. When nitrogen gas was blown into the liquid for about 2 hours and the liquid was stirred, a black precipitate was formed in the liquid. These precipitates were all magnetite and ferrite particles. Surplus Fe2+ added later to these precipitate particles
In order to oxidize the Fe ions, air was blown into the solution for about an hour to convert the Fe 2+ ions into iron oxyhydroxide, which was regenerated as a treatment agent used in the method of the present invention. Of course, heavy metal ions were not eluted from the produced ferrite particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第一鉄イオンの酸化反応におけろアルカリの添
加比と反応温度とに対する生成物の違いを示す図、第2
図、第3図は本発明方法による副生物の変化ケ示す説明
図である。 特許出願人 日本電気環境エンジニアリング株式会社代
 理 人 弁理上 菅  野    中   ノ第1図 not−1/2Fe 第2図
Figure 1 is a diagram showing the difference in products depending on the addition ratio of alkali and reaction temperature in the oxidation reaction of ferrous ions.
3 are explanatory diagrams showing changes in by-products according to the method of the present invention. Patent Applicant: NEC Environmental Engineering Co., Ltd. Attorney: Naka Kanno Figure 1 not-1/2Fe Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  表面にオキシ水酸化鉄層を形成させたマグネ
タイト又はフェライト粒子を重金属含有排水中に投入し
、液のpH−1調整して各粒子表面のオキシ水酸化鉄に
重金属イオンを吸着させ、液中に沈降した沈澱と、」二
澄液とを分離し、沈澱物を含む液中に第一鉄イオンとア
ルカリとを添加して液のp l−I Y 8以上に調整
し、空気又はその他の酸化性ガスを一定時間吹きこんで
第一鉄塩化合物ケ酸化したのち、酸化性ガスの吹込みケ
停止すると共に液中に第一鉄イオンを加え、さらにアル
カIJ ’aj添加して液のp +−47中性付近以上
に調整し、次いで液を攪拌することにより、最終的にマ
グネタイト又はフェライト沈澱結晶粒子を液中に生じさ
せ、最初オキシ水酸化鉄層に吸着させた重金属イオンケ
沈澱結晶粒子の結晶格子中に取り組むことを特徴とする
重金属排液処理方法。
(1) Magnetite or ferrite particles with an iron oxyhydroxide layer formed on the surface are poured into heavy metal-containing wastewater, the pH of the liquid is adjusted to -1, and heavy metal ions are adsorbed to the iron oxyhydroxide on the surface of each particle. The precipitate that has settled in the liquid is separated from the clear liquid, and ferrous ions and alkali are added to the liquid containing the precipitate to adjust the p l-I Y of the liquid to 8 or more, and then air or After blowing in another oxidizing gas for a certain period of time to oxidize the ferrous salt compound, the blowing of the oxidizing gas is stopped, ferrous ions are added to the liquid, and alkali IJ 'aj is added to the liquid. By adjusting the p + -47 to around neutrality or higher, and then stirring the liquid, magnetite or ferrite precipitated crystal particles are finally generated in the liquid, and the heavy metal ion precipitates that were initially adsorbed on the iron oxyhydroxide layer are A heavy metal wastewater treatment method characterized by working in the crystal lattice of crystal particles.
JP12623682A 1982-07-20 1982-07-20 Heavy metal wastewater treatment method Expired JPS603869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12623682A JPS603869B2 (en) 1982-07-20 1982-07-20 Heavy metal wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12623682A JPS603869B2 (en) 1982-07-20 1982-07-20 Heavy metal wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS5916590A true JPS5916590A (en) 1984-01-27
JPS603869B2 JPS603869B2 (en) 1985-01-31

Family

ID=14930153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12623682A Expired JPS603869B2 (en) 1982-07-20 1982-07-20 Heavy metal wastewater treatment method

Country Status (1)

Country Link
JP (1) JPS603869B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009192A1 (en) * 1988-03-31 1989-10-05 Commonwealth Scientific And Industrial Research Or Hydrometallurgical effluent treatment
JPH04267995A (en) * 1990-12-17 1992-09-24 Yun H Zhang Water filter device and method for removing impurity
WO2004101142A1 (en) * 2003-05-15 2004-11-25 Alcan International Limited Method of preparing a water treatment product
CN103332810A (en) * 2013-07-24 2013-10-02 武汉大学 Treatment method of heavy metals in desulfurization waste water
CN110668614A (en) * 2019-01-16 2020-01-10 深圳市深投环保科技有限公司 Method for treating etching waste liquid by combining electrocatalytic oxidation with electromagnetic composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009192A1 (en) * 1988-03-31 1989-10-05 Commonwealth Scientific And Industrial Research Or Hydrometallurgical effluent treatment
JPH04267995A (en) * 1990-12-17 1992-09-24 Yun H Zhang Water filter device and method for removing impurity
WO2004101142A1 (en) * 2003-05-15 2004-11-25 Alcan International Limited Method of preparing a water treatment product
AU2004238612B2 (en) * 2003-05-15 2009-02-19 Alcan International Limited Method of preparing a water treatment product
CN103332810A (en) * 2013-07-24 2013-10-02 武汉大学 Treatment method of heavy metals in desulfurization waste water
CN110668614A (en) * 2019-01-16 2020-01-10 深圳市深投环保科技有限公司 Method for treating etching waste liquid by combining electrocatalytic oxidation with electromagnetic composite material
CN110668614B (en) * 2019-01-16 2021-06-29 深圳市环保科技集团有限公司 Method for treating etching waste liquid by combining electrocatalytic oxidation with electromagnetic composite material

Also Published As

Publication number Publication date
JPS603869B2 (en) 1985-01-31

Similar Documents

Publication Publication Date Title
KR100853970B1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
CN106927547B (en) Method for removing complex heavy metal by reducing and breaking complexing of magnetic iron-based material
JPS5916590A (en) Treatment of waste water containing heavy metal
USH1852H (en) Waste treatment of metal plating solutions
CN106698637A (en) Treatment method of arsenic-containing wastewater
JPH0952716A (en) Production of multiple oxide powder for soft ferrite from waste plating liquid
JPS58174286A (en) Treatment of waste water containing heavy metal complex salt
JPS5916589A (en) Production of treating agent for waste water containing heavy metal
CZ288514B6 (en) Purification process of acid solutions containing metals
JPS59196796A (en) Treatment of liquid waste
CN102583904B (en) Method for treating wastewater generated in production of hexabromocyclododecane
JPS60118288A (en) Water treating method
JPS6019092A (en) Treatment of waste liquid
JPS6135133B2 (en)
JPH09150164A (en) Treatment of selenium-containing waste water
CN113526562B (en) Method for preparing scorodite by treating arsenic-containing smoke dust through ozone microbubble oxidation method
JP3018020B2 (en) Purification method of iron chloride waste liquid containing chromium, etc.
JPS5849490A (en) Treatment for waste water containing mercury
JPS60235726A (en) Preparation of ferric oxide for ferrite
JP4004748B2 (en) Batch processing method and equipment for heavy metal wastewater containing selenium
CN112010416B (en) Method for removing arsenic and chlorine in ultrasonic-enhanced contaminated acid
JPS6018476B2 (en) Treatment method for wastewater containing heavy metal ions
JPS5834085A (en) Treatment of noxious metal-contg. waste water
JPH0128629B2 (en)
JPS5834086A (en) Treatment of noxious metal-contg. waste water