JPS59165428A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPS59165428A
JPS59165428A JP58038322A JP3832283A JPS59165428A JP S59165428 A JPS59165428 A JP S59165428A JP 58038322 A JP58038322 A JP 58038322A JP 3832283 A JP3832283 A JP 3832283A JP S59165428 A JPS59165428 A JP S59165428A
Authority
JP
Japan
Prior art keywords
semiconductor
diffraction grating
laser light
light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038322A
Other languages
Japanese (ja)
Other versions
JPH0126529B2 (en
Inventor
Noriaki Tsukada
塚田 紀昭
Sumio Sugata
菅田 純雄
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58038322A priority Critical patent/JPS59165428A/en
Publication of JPS59165428A publication Critical patent/JPS59165428A/en
Publication of JPH0126529B2 publication Critical patent/JPH0126529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Abstract

PURPOSE:To form a periodic structure on the surface of a semiconductor without deteriorating composition and crystal of semiconductor as a diffraction grating by irradiating the surface of semiconductor within the photo chemical etchant with a linearly polarized single laser light. CONSTITUTION:When a semiconductor base plate 2 within a photo chemical etchant 3 is irradiated with a linearly polarized single laser light, a diffraction grating pattern is formed on the surface of substrate on the basis of the incident light and interference of surface magnetic wave induced by such incident light. The intensive field area of semiconductor surface is more quickly etched than the weak field area and a pattern consisting of concaved and convexed areas is formed in the same interval as that of diffraction grating pattern. Depth and shape of concaved groove are determined by an output of laser light, irradiation time, etchant and a kind of semiconductor. When wavelength of laser light and angle of receiving the light at the semiconductor substrate are changed, an interval of irregular areas also changes and thereby an interval of diffraction grating can be adjusted.

Description

【発明の詳細な説明】 この発明は半導体表面に回折格子を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a diffraction grating on a semiconductor surface.

回折格子は光を回折させてスペクトルを得るのに用いら
れており、これまで、高精度の送シ機構で格子材料を一
定間隔づつ移動させながらダイヤモンドバイトにより溝
を細かく刻んで作られていたが、最近ではレーザ光の回
折と干渉と糸トリックラフイを利用したホログラフィッ
ク回折格子が開発され、分布帰還(DFB)レーザ、グ
レーティングレンズやレーザと導波路の結合に使用され
、今後、光集積回路の製造、開発に寄与されることにな
る。
Diffraction gratings are used to obtain spectra by diffracting light, and up until now, they have been made by moving the grating material at regular intervals using a high-precision feeding mechanism and carving fine grooves with a diamond cutting tool. Recently, a holographic diffraction grating that utilizes laser light diffraction and interference and thread trick roughy has been developed, and is used for distributed feedback (DFB) lasers, grating lenses, and coupling between lasers and waveguides, and will be used in optical integrated circuits in the future. will contribute to the manufacturing and development of

しかるにこのホトリソグラフィを利用した回折格子の製
造方法ではフォトレジストによるマスク作成過程が不可
欠で、回折格子を作成後このフォトレジストマスクを取
除く必要がある。
However, this method of manufacturing a diffraction grating using photolithography requires a process of creating a mask using photoresist, and it is necessary to remove this photoresist mask after creating the diffraction grating.

格子材料として半導体表面に上述の如くフォトレジスト
塗布、ベーキング、エツチング、フォトレジスト除去を
行うと、半導体表面の組成、結晶性等に影響を与えるの
で、上述の方法により作成した回折格子上に再び高品質
の結晶を行うのは困難である。
Applying photoresist to the semiconductor surface as a grating material, baking, etching, and removing the photoresist as described above will affect the composition, crystallinity, etc. of the semiconductor surface. It is difficult to achieve quality crystallization.

乙のようにホトリソグラフィを利用した回折格子の製造
方法は多くのプロセスを要するため経済的でなく、更に
得られた製品についても問題があった。
The method of manufacturing a diffraction grating using photolithography as described in Part B is not economical because it requires many processes, and there are also problems with the resulting product.

更に半導体酸るいは誘電体に強力なレーザ光を照射する
と(レーザアニール)、その照射表面に周期的な損傷が
形成されることが知られている。即ち、YAGレーザ等
よシ発振される直線偏光単一レーザ光はレーザ光の波長
をλとし、レーザ光の基板表面への入射角をθとすると
、レーザ光の電界がレーザ入射面に平行の場合、即ちP
−偏光の場合には上記レーザ光の電界方向にほぼ垂直方
向に周期がA±=λ/(1±sinθ)で与えられる周
期の異なる2種類の縞が観察され、一方、レーザ光の電
界がレーザ入射面に垂直な場合、即ち、S−偏光の場合
には損傷の周期がAo=λ/、osθで与えられる。
Furthermore, it is known that when a semiconductor acid or dielectric is irradiated with a strong laser beam (laser annealing), periodic damage is formed on the irradiated surface. In other words, for a linearly polarized single laser beam oscillated by a YAG laser or the like, if the wavelength of the laser beam is λ and the angle of incidence of the laser beam on the substrate surface is θ, then the electric field of the laser beam is parallel to the laser incidence plane. If P
- In the case of polarized light, two types of fringes with different periods given by A±=λ/(1±sinθ) are observed in the direction substantially perpendicular to the electric field direction of the laser beam, while on the other hand, when the electric field of the laser beam In the case of perpendicular to the laser incidence plane, that is, in the case of S-polarized light, the period of damage is given by Ao=λ/, osθ.

上述の如く、半導体表面が溶けるような強力なレーザ光
を用いて周期構造を作成する方法では半導体の組成や結
晶性が損なわれ実用的ではない。更に、ガリウム砒素や
インジウム燐等の化合物半導体の場合、その構成元素の
蒸気圧がかなり異なるため、強力なレーザ光の照射によ
り蒸気圧の高い元素が蒸発してしまい、蒸気圧の低い元
素が表面に残9、例えばガリウム砒素化合物半導体の場
合、砒素が蒸発し、ガリウムだけが残るため、完全外周
期構造が得られなかった。
As mentioned above, the method of creating a periodic structure using a powerful laser beam that melts the semiconductor surface is impractical because the composition and crystallinity of the semiconductor are impaired. Furthermore, in the case of compound semiconductors such as gallium arsenide and indium phosphide, the vapor pressures of their constituent elements vary considerably, so irradiation with powerful laser light evaporates elements with high vapor pressure, while elements with low vapor pressure evaporate on the surface. In the case of a gallium arsenide compound semiconductor, for example, the arsenic evaporates and only gallium remains, so a completely outer periodic structure cannot be obtained.

この発明の目的は上記の如き周期構造を半導体の組成及
び結晶性を損うことなく半導体表面に形成し、回折格子
とする方法を提供することにある。
An object of the present invention is to provide a method for forming a periodic structure as described above on a semiconductor surface without impairing the composition and crystallinity of the semiconductor to form a diffraction grating.

上記の目的を達成するため、この発明による回折格子の
製造方法は直線偏光単一レーザ光をフォトケミカルエツ
チング溶液中の半導体表面に照射して、該半導体表面に
平行な多数の凹凸条を形成することを特徴とする。
In order to achieve the above object, the method for manufacturing a diffraction grating according to the present invention includes irradiating a semiconductor surface in a photochemical etching solution with a single linearly polarized laser beam to form a large number of uneven stripes parallel to the semiconductor surface. It is characterized by

この発明を添付の図面に基き説明すると、直線単一レー
ザ光/をフォトケミカルエツチング溶液3中の半導体基
板2へ照射することによって、基板表面上に入射光とこ
れによシ半導体表面に誘起された表面電磁波の干渉に基
く回折格子状パターンが形成し、半導体表面の電界の強
い部分は電界の弱い部分に較べて早くエツチングされる
こととなシ、回折格子状パターンと同じ間隔の凹凸条模
様が形成することになる。形成する凹条の溝の深さ及び
形状は、レーザ光の出力、照射時間、エツチング液、半
導体の種類等により決定されるが、凹凸の深さは0,0
1〜1.0μ常程度であシ、形成する凹凸条の溝の間隔
は、エツチング液の屈折率をnル−ザ光の波長をλとす
ると、垂直入射の場合λ/nとたり、レーザ光の波長を
変えることにより制御することができる。tた、照射す
るレーザ光に対して半導体基板の受光する角度を変ると
、形成する凹凸条の間隔も変ることになり、回折格子の
間隔を調整することができる。
The present invention will be explained with reference to the accompanying drawings. By irradiating a single straight laser beam onto a semiconductor substrate 2 in a photochemical etching solution 3, the incident light is induced onto the substrate surface and the semiconductor surface is thereby induced. A diffraction grating pattern is formed based on the interference of surface electromagnetic waves, and areas of the semiconductor surface where the electric field is strong are etched faster than areas where the electric field is weak. will be formed. The depth and shape of the grooves to be formed are determined by the output of the laser beam, irradiation time, etching liquid, type of semiconductor, etc., but the depth of the grooves is 0.0.
The distance between the grooves of the uneven grooves to be formed is λ/n in the case of normal incidence, where n is the refractive index of the etching liquid and λ is the wavelength of the laser light. It can be controlled by changing the wavelength of light. Furthermore, if the angle at which the semiconductor substrate receives the irradiated laser light is changed, the interval between the formed uneven stripes will also be changed, and the interval between the diffraction gratings can be adjusted.

格子材料として用いる半導体としては、5ZIGo等の
■族半導体及び■−■族化合物半導体が挙げられ、特に
電子移動度が大きく、光・電子素子材料に用いられてい
る蒸気圧の異なる元素で構成されているガリウム砒素に
対しても容易に回折格子を形成することができる。
Semiconductors used as lattice materials include group III semiconductors such as 5ZIGo and group III-III compound semiconductors, which have particularly high electron mobility and are composed of elements with different vapor pressures that are used in opto-electronic device materials. Diffraction gratings can be easily formed even for gallium arsenide, which is

フォトケミカルエツチング溶液としては通常半導体のフ
ォトケミカルエツチングに用いている組成の溶液を用い
るこ°とができ、格子材料として用いる半導体により適
宜選択して用いる。
As the photochemical etching solution, a solution having a composition normally used for photochemical etching of semiconductors can be used, and the solution is selected as appropriate depending on the semiconductor used as the grating material.

また使用するレーぜとしては、直線偏光単一レーザ光を
発振するレーザ、例えばYAGレーザ、ヘリウムネオン
レーザ、アルゴンレーザ、クリプトンレーザ等が用い得
る。
Further, as the laser to be used, a laser that oscillates a single linearly polarized laser beam, such as a YAG laser, a helium neon laser, an argon laser, a krypton laser, etc., can be used.

上述の如く、フォトケミカルエツチング液中、に半導体
基板を浸漬させ、0.1〜100駒  程度の出力の直
線偏光単一レーザ光を浸漬した基板上に3〜10分照射
することにより半導体基板上にλ/n間隔で凹凸の高さ
0.1〜0.2μm程度の回折格子が形成することにな
る。
As mentioned above, a semiconductor substrate is immersed in a photochemical etching solution, and a linearly polarized single laser beam with an output of about 0.1 to 100 frames is irradiated onto the immersed substrate for 3 to 10 minutes. A diffraction grating having an uneven height of about 0.1 to 0.2 μm is formed at intervals of λ/n.

第2図は半導体基板に局部的に間隔或いは方向の異なる
複数の回折格子を形成する方法を示し、容器ダ内にはフ
ォトケミカルエツチング溶液3が入っておシ、半導体基
板コは回転支持軸!によシエッチング溶液3中を上下動
及び回転し得るように支持されている。容器ダの一側面
には透明の窓6が設けられ、その外側には1/2波長板
7が回転できるように設けられている。
FIG. 2 shows a method of forming a plurality of diffraction gratings with locally different spacing or directions on a semiconductor substrate, in which a photochemical etching solution 3 is contained in a container, and the semiconductor substrate is mounted on a rotating support shaft! It is supported so that it can move up and down and rotate in the etching solution 3. A transparent window 6 is provided on one side of the container, and a 1/2 wavelength plate 7 is rotatably provided outside the window 6.

レーザよシのレーザ光lはレンズgによシ特定の大きさ
に調整された後、波長板り、窓6を通って、エツチング
溶液3中の半導体基板−を照射する。半導体基板コは予
じめ回転支持軸Sを駆動して回折格子を形成する位置に
上記のレーザ光を照射させるように位置させ、所定の時
間固定して、レーザ光を照射して回折格子が形成したら
、レーザ光の照射を停止して、半導体基板を移動させて
、次に回折格子を形成する位置にレーザ光を照射させる
ようにする。このとき、半導体基板のレーザ光の受光す
る角度を変えることによって形成する回折格子の間隔を
制御することができる。
The laser beam l from the laser is adjusted to a specific size by a lens g, passes through a wavelength plate and a window 6, and irradiates the semiconductor substrate in the etching solution 3. The semiconductor substrate is positioned in advance by driving the rotation support shaft S so that the position where the diffraction grating is to be formed is irradiated with the above laser beam, and is fixed for a predetermined period of time. Once formed, the laser beam irradiation is stopped, the semiconductor substrate is moved, and the next position where the diffraction grating is to be formed is irradiated with the laser beam. At this time, the interval between the formed diffraction gratings can be controlled by changing the angle at which the semiconductor substrate receives the laser beam.

また、窓乙の外側圧設けられた波長板7を45°回転さ
せると、半導体基板に形成する回折格子の方向が90°
変ることとなる。従って、波長板の回転により回折格子
の形成する方向を任意に設定することができ、一つの半
導体基板内の任意の位置に寸法、間隔、方向の異なる複
数の回折格子を容易に形成するととができ、ガリウム砒
素の如き、蒸発し易い砒素成分を含む化金物半導体に回
折格子を形成する場合に於ても、溶液中にて非常に弱い
レーザ光を照射して製造するので、砒素の蒸発を防ぐこ
とができ、成分比の変らない回折格子を形成した半導体
を得ることができる。
Furthermore, when the wave plate 7 provided with the outside pressure of the window A is rotated by 45 degrees, the direction of the diffraction grating formed on the semiconductor substrate is changed by 90 degrees.
That will change. Therefore, by rotating the wave plate, the direction in which the diffraction grating is formed can be set arbitrarily, and it is possible to easily form multiple diffraction gratings with different dimensions, intervals, and directions at any position within one semiconductor substrate. Even when forming a diffraction grating on a compound semiconductor containing an arsenic component that easily evaporates, such as gallium arsenide, it is manufactured by irradiating a very weak laser beam in a solution, so it is difficult to evaporate the arsenic. It is possible to obtain a semiconductor in which a diffraction grating is formed in which the component ratio does not change.

この発明は上記の説明で明らかなように、マスクを用い
ることなく、半導体表面の任意の位置に間隔、方向の異
なる回折格子を形成することができ、光集積回路の構成
に著しく貢献することとなる。
As is clear from the above description, the present invention makes it possible to form diffraction gratings with different spacing and directions at arbitrary positions on the semiconductor surface without using a mask, and makes a significant contribution to the construction of optical integrated circuits. Become.

次にこの発明の実施例を述べる。Hp 804 ’ &
 Ox:H,0が1 : 1 : 50の組成のフォト
ケミカル溶液JCGaAt (5mn X 3 sw 
)を浸漬し、上部よp YAGレーザよりのレーザ光(
波長o、55μm)を1岑−の出力で10分間照射した
結果、半導体表面全体にQ、4 PLの等間隔で、高さ
0.02μ情の凹凸条が形成し、形成した凹凸条は回折
格子として使用することができた。
Next, embodiments of this invention will be described. Hp 804'&
Photochemical solution JCGaAt (5 mn x 3 sw) with a composition of 1:1:50 Ox:H,
), and the upper part is exposed to laser light from a YAG laser (
As a result of irradiation with a wavelength of 55 μm for 10 minutes at an output of 1 cm, uneven lines with a height of 0.02 μm were formed on the entire semiconductor surface at equal intervals of Q, 4 PL, and the formed uneven lines were diffracted. It could be used as a grid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による回折格子の製造方法の一例を示す
斜面図、第2図は本発明による回折格子の製造方法の他
の例を示す断面図である。 図中、/はレーザ光、−は半導体基板、3はフォトケミ
カルエツチング溶液を示す。 特許出願人  工 業 技 術 院 長石板誠−
FIG. 1 is a perspective view showing an example of the method for manufacturing a diffraction grating according to the present invention, and FIG. 2 is a sectional view showing another example of the method for manufacturing a diffraction grating according to the invention. In the figure, / indicates a laser beam, - indicates a semiconductor substrate, and 3 indicates a photochemical etching solution. Patent applicant: Makoto Nagaishiita, Institute of Industrial Technology

Claims (2)

【特許請求の範囲】[Claims] (1)直線偏光単一レーザ光をフォトケミカルエツチン
グ溶液中の半導体表面に照射し、該半導体表面に平行な
多数の凹凸条を形成することを特徴とする回折格子の製
造方法。
(1) A method for manufacturing a diffraction grating, which comprises irradiating a semiconductor surface in a photochemical etching solution with a single linearly polarized laser beam to form a large number of uneven lines parallel to the semiconductor surface.
(2)半導体がガリウム砒素である特許請求の範囲第1
項記載の回折格子の製造方法。
(2) Claim 1 in which the semiconductor is gallium arsenide
Method for manufacturing the diffraction grating described in Section 1.
JP58038322A 1983-03-10 1983-03-10 Manufacture of diffraction grating Granted JPS59165428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038322A JPS59165428A (en) 1983-03-10 1983-03-10 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038322A JPS59165428A (en) 1983-03-10 1983-03-10 Manufacture of diffraction grating

Publications (2)

Publication Number Publication Date
JPS59165428A true JPS59165428A (en) 1984-09-18
JPH0126529B2 JPH0126529B2 (en) 1989-05-24

Family

ID=12522040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038322A Granted JPS59165428A (en) 1983-03-10 1983-03-10 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPS59165428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242027A (en) * 1985-04-19 1986-10-28 シ−メンス、アクチエンゲゼルシヤフト Molding of surface lattice with specified lattice constant on surface of crystal substrate
JPH04253583A (en) * 1991-01-29 1992-09-09 Osaka Prefecture Laser beam processing method and device for metallic surface
EP1586405A1 (en) * 2002-09-27 2005-10-19 NEC Machinery Corporation Cyclic structure formation method and surface treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242027A (en) * 1985-04-19 1986-10-28 シ−メンス、アクチエンゲゼルシヤフト Molding of surface lattice with specified lattice constant on surface of crystal substrate
JPH04253583A (en) * 1991-01-29 1992-09-09 Osaka Prefecture Laser beam processing method and device for metallic surface
EP1586405A1 (en) * 2002-09-27 2005-10-19 NEC Machinery Corporation Cyclic structure formation method and surface treatment method
EP1586405A4 (en) * 2002-09-27 2008-09-10 Canon Machinery Inc Cyclic structure formation method and surface treatment method
US7875414B2 (en) 2002-09-27 2011-01-25 Canon Machinery Inc. Cyclic structure formation method and surface treatment method

Also Published As

Publication number Publication date
JPH0126529B2 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US4402571A (en) Method for producing a surface relief pattern
EP0188919B1 (en) A method for the formation of a diffraction grating
JP3293136B2 (en) Laser processing apparatus and laser processing method
Indutnyi et al. Holographic optical element fabrication using chalcogenide layers
US8681315B2 (en) Tunable two-mirror interference lithography system
JP4269295B2 (en) Manufacturing method of fine structure
US7939782B2 (en) Processing method and processing apparatus using interfered laser beams
US8420305B2 (en) Method and apparatus for generating periodic patterns by step-and-align interference lithography
JPS62108209A (en) Making of grating structure having phase shift on substrate surface
CA2395070A1 (en) Method for making an integrated optical circuit
JPWO2005096037A1 (en) Optical member and manufacturing method thereof
US10983389B2 (en) Wire grid polarizer manufacturing method
JPH1059746A (en) Production of optical element
US6368775B1 (en) 3-D photo-patterning of refractive index structures in photosensitive thin film materials
JPS59165428A (en) Manufacture of diffraction grating
JP3371304B2 (en) Laser processing apparatus, laser processing method, and liquid crystal panel
US20090197210A1 (en) Method for preparing photonic crystal slab waveguides
JPS6033504A (en) Production of blazed grating
JPS5947282B2 (en) Manufacturing method of Esieret lattice
JPH0456284B2 (en)
KR101669645B1 (en) The Equipment forming 3 Dimensional Microstructure and Micropattern by Light exposure of 3 Dimensional to Photosensitive glass, and The Method Using thereof
JPH0225803A (en) Polarized beam splitter
JPS58154285A (en) Manufacture of diffraction grating
JP3173803B2 (en) How to make a diffraction grating
JP2006098489A (en) Method for manufacturing optical element having minute pattern