JPH0126529B2 - - Google Patents

Info

Publication number
JPH0126529B2
JPH0126529B2 JP58038322A JP3832283A JPH0126529B2 JP H0126529 B2 JPH0126529 B2 JP H0126529B2 JP 58038322 A JP58038322 A JP 58038322A JP 3832283 A JP3832283 A JP 3832283A JP H0126529 B2 JPH0126529 B2 JP H0126529B2
Authority
JP
Japan
Prior art keywords
diffraction grating
semiconductor
laser beam
laser
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58038322A
Other languages
Japanese (ja)
Other versions
JPS59165428A (en
Inventor
Noriaki Tsukada
Sumio Sugata
Akira Mita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58038322A priority Critical patent/JPS59165428A/en
Publication of JPS59165428A publication Critical patent/JPS59165428A/en
Publication of JPH0126529B2 publication Critical patent/JPH0126529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 この発明は半導体表面に回折格子を製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a diffraction grating on a semiconductor surface.

回折格子は光を回折させてスペクトルを得るの
に用いられており、これまで、高精度の送り機構
で格子材料を一定間隔づつ移動させながらダイヤ
モンドバイトにより溝を細かく刻んで作られてい
たが、最近ではレーザ光の回折と干渉とホトリソ
グラフイを利用したホログラフイツク回折格子が
開発され、分布帰還(DFB)レーザ、グレーテ
イングレンズやレーザと導波路の結合に使用さ
れ、今後、光集積回路の製造、開発に寄与される
ことになる。
Diffraction gratings are used to obtain spectra by diffracting light, and up until now, they were made by moving the grating material at regular intervals using a high-precision feeding mechanism and carving fine grooves with a diamond cutting tool. Recently, holographic diffraction gratings that utilize laser light diffraction and interference and photolithography have been developed, and are used for distributed feedback (DFB) lasers, grating lenses, and laser-waveguide coupling, and will be used in optical integrated circuits in the future. It will contribute to manufacturing and development.

しかるにこのホトリソグラフイを利用した回折
格子の製造方法ではフオトレジストによるマスク
作成過程が不可決で、回折格子を作成後このフオ
トレジストマスクを取除く必要がある。格子材料
として半導体表面に上述の如くフオトレジスト塗
布、ベーキング、エツチング、フオトレジスト除
去を行うと、半導体表面の組成、結晶性等に響を
与えるので、上述の方法により作成した回折格子
上に再び高品質の結晶を行うのは困難である。
However, in this method of manufacturing a diffraction grating using photolithography, the process of creating a mask using photoresist is unreliable, and the photoresist mask must be removed after the diffraction grating is created. Applying photoresist to the semiconductor surface as a grating material, baking, etching, and removing the photoresist as described above will affect the composition, crystallinity, etc. of the semiconductor surface. Quality crystallization is difficult to do.

このようにホトリソグラフイを利用した回折格
子の製造方法は多くのプロセスを要するため経済
的でなく、更に得られた製品についても問題があ
つた。
As described above, the method of manufacturing a diffraction grating using photolithography is not economical because it requires many processes, and there are also problems with the obtained product.

更に半導体或るいは誘電体に強力なレーザ光を
照射すると(レーザアニール)、その照射表面に
周期的な損傷が形成されることが知られている。
即ち、YAGレーザ等より発振される直線偏光単
一レーザ光はレーザ光の波長をλとし、レーザ光
の基板表面への入射角をθとすると、レーザ光の
電界がレーザ入射面に平行の場合、即ちP―偏光
の場合には上記レーザ光の電界方向にほぼ垂直方
向に周期がΛ±=λ/(1±sinθ)で与えられる
周期の異なる2種類の縞が観察され、一方、レー
ザ光の電界がレーザ入射面に垂直な場合、即ち、
S―偏光の場合には損傷の周期がΛ0=λ/cosθ
で与えられる。
Furthermore, it is known that when a semiconductor or dielectric material is irradiated with powerful laser light (laser annealing), periodic damage is formed on the irradiated surface.
In other words, for a linearly polarized single laser beam emitted by a YAG laser, etc., the wavelength of the laser beam is λ, and the angle of incidence of the laser beam on the substrate surface is θ.If the electric field of the laser beam is parallel to the laser incidence plane, then In other words, in the case of P-polarized light, two types of fringes with different periods given by Λ±=λ/(1±sinθ) are observed in a direction substantially perpendicular to the electric field direction of the laser beam. When the electric field is perpendicular to the laser incidence plane, i.e.
In the case of S-polarized light, the damage period is Λ 0 = λ/cosθ
is given by

上述の如く、半導体表面が溶けるような強力な
レーザ光を用いて周期構造を作成する方法では半
導体の組成や結晶性が損なわれ実用的ではない。
更に、ガリウム砒素やインジウム燐等の化合物半
導体の場合、その構成元素の蒸気圧がかなり異な
るため、強力なレーザ光の照射により蒸気圧の高
い元素が蒸発してしまい、蒸気圧の低い元素が表
面に残り、例えばガリウム砒素化合物半導体の場
合、砒素が蒸発し、ガリウムだけが残るため、完
全な周期構造が得られなかつた。
As mentioned above, the method of creating a periodic structure using a powerful laser beam that melts the semiconductor surface is impractical because the composition and crystallinity of the semiconductor are impaired.
Furthermore, in the case of compound semiconductors such as gallium arsenide and indium phosphide, the vapor pressures of their constituent elements vary considerably, so irradiation with powerful laser light evaporates elements with high vapor pressure, while elements with low vapor pressure evaporate on the surface. For example, in the case of a gallium arsenide compound semiconductor, arsenic evaporates and only gallium remains, making it impossible to obtain a perfect periodic structure.

この発明の目的は上記の如き周期構造を半導体
の組成及び結晶性を損うことなく半導体表面に形
成し、回折格子とする方法を提供することにあ
る。
An object of the present invention is to provide a method for forming a periodic structure as described above on a semiconductor surface without impairing the composition and crystallinity of the semiconductor to form a diffraction grating.

上記の目的を達成するため、この発明による回
折格子の製造方法は直線偏光単一レーザ光をフオ
トケミカルエツチング溶液中の半導体表面に照射
して、該半導体表面に平行な多数の凹凸条を形成
することを特徴する。
In order to achieve the above object, the method for manufacturing a diffraction grating according to the present invention includes irradiating a semiconductor surface in a photochemical etching solution with a single linearly polarized laser beam to form a large number of uneven stripes parallel to the semiconductor surface. It is characterized by

この発明を添付の図面に基き説明すると、直線
単一レーザ光1をフオトケミカルエツチング溶液
3中の半導体基板2へ照射することによつて、基
板表面上に入射光とこれにより半導体表面に誘起
された表面電磁波の干渉に基く回折格子状パター
ンが形成し、半導体表面の電界の強い部分は電界
の弱い部分に較べて早くエツチングされることと
なり、回折格子状パターンと同じ間隔の凹凸条模
様が形成することになる。形成する凹条の溝の深
さ及び形状は、レーザ光の出力、照射時間、エツ
チング液、半導体の種類等により決定されるが、
凹凸の深さは0.01〜1.0μm程度であり、形成する
凹凸条の溝の間隔は、エツチング液の屈折率を
n、レーザ光の波長をλとすると、垂直入射の場
合λ/nとなり、レーザ光の波長を変えることに
より制御することができる。また、照射するレー
ザ光に対して半導体基板の受光する角度を変る
と、形成する凹凸条の間隔も変ることになり、回
折格子の間隔を調整することができる。
The present invention will be explained with reference to the accompanying drawings. By irradiating a single linear laser beam 1 onto a semiconductor substrate 2 in a photochemical etching solution 3, an incident light beam is induced on the semiconductor surface by the incident light on the substrate surface. A diffraction grating pattern is formed based on the interference of surface electromagnetic waves, and areas of the semiconductor surface where the electric field is strong are etched more quickly than areas where the electric field is weaker, forming an uneven striped pattern with the same spacing as the diffraction grating pattern. I will do it. The depth and shape of the grooves to be formed are determined by the output of the laser beam, the irradiation time, the etching liquid, the type of semiconductor, etc.
The depth of the unevenness is approximately 0.01 to 1.0 μm, and the interval between the grooves of the formed unevenness is λ/n in the case of vertical incidence, where n is the refractive index of the etching liquid and λ is the wavelength of the laser beam. It can be controlled by changing the wavelength of light. Further, if the angle at which the semiconductor substrate receives the irradiated laser light is changed, the interval between the uneven grooves to be formed also changes, and the interval between the diffraction gratings can be adjusted.

格子材料として用いる半導体としては、Si、
Ge等の族半導体及び―族化合物半導体が
挙げられ、特に電子移動度が大きく、光・電子素
子材料に用いられている蒸気圧の異なる元素で構
成されているガリウム砒素に対しても容易に回折
格子を形成することができる。
Semiconductors used as lattice materials include Si,
These include group semiconductors such as Ge and -group compound semiconductors, which have particularly high electron mobility and are easily diffracted against gallium arsenide, which is composed of elements with different vapor pressures and is used in optical and electronic device materials. A grid can be formed.

フオトケミカルエツチング溶液としては通常半
導体のフオトケミカルエツチングに用いている組
成の溶液を用いることができ、格子材料として用
いる半導体により適宜選択して用いる。また使用
するレーザとしては、直線偏光単一レーザ光を発
振するレーザ、例えばYAGレーザ、ヘリウムネ
オンレーザ、アルゴンレーザ、クリプトンレーザ
等が用い得る。
As the photochemical etching solution, a solution having a composition normally used for photochemical etching of semiconductors can be used, and the solution is selected as appropriate depending on the semiconductor used as the grating material. The laser used may be a laser that emits a single linearly polarized laser beam, such as a YAG laser, a helium neon laser, an argon laser, or a krypton laser.

上述の如く、フオトケミカルエツチング液中に
半導体基板を浸漬させ、0.1〜100W/cm2程度の出
力の直線偏光単一レーザ光を浸漬した基板上に3
〜10分照射することにより半導体基板上にλ/n
間隔で凹凸の高さ0.1〜0.2μm程度の回折格子が形
成することになる。
As mentioned above, a semiconductor substrate is immersed in a photochemical etching solution, and a linearly polarized single laser beam with an output of about 0.1 to 100 W/cm 2 is applied to the substrate.
λ/n on the semiconductor substrate by irradiating for ~10 minutes
A diffraction grating with a height of about 0.1 to 0.2 μm is formed with unevenness at intervals.

第2図は半導体基板に局部的に間隔或いは方向
の異なる複数の回折格子を形成する方法を示し、
容器4内にはフオトケミカルエツチング溶液3が
入つており、半導体基板2は回転支持軸5により
エツチング溶液3中を上下動及び回転し得るよう
に支持されている。容器4の一側面には透明の窓
6が設けられ、その外側には1/2波長板7が回転
できるように設けられている。
FIG. 2 shows a method of forming a plurality of diffraction gratings with locally different spacing or directions on a semiconductor substrate,
A photochemical etching solution 3 is contained in the container 4, and the semiconductor substrate 2 is supported by a rotating support shaft 5 so as to be able to move up and down and rotate in the etching solution 3. A transparent window 6 is provided on one side of the container 4, and a 1/2 wavelength plate 7 is rotatably provided outside the window 6.

レーザよりのレーザ光1はレンズ8により特定
の大きさに調整された後、波長板7、窓6を通つ
て、エツチング溶液3中の半導体基板2を照射す
る。半導体基板2は予じめ回転支持軸5を駆動し
て回折格子を形成する位置に上記のレーザ光を照
射させるように位置させ、所定の時間固定して、
レーザ光を照射して回折格子が形成したら、レー
ザ光の照射を停止して、半導体基板を移動させ
て、次に回折格子を形成する位置にレーザ光を照
射させるようにする。このとき、半導体基板のレ
ーザ光の受光する角度を変えることによつて形成
する回折格子の間隔を制御することができる。
A laser beam 1 from a laser is adjusted to a specific size by a lens 8, and then passes through a wavelength plate 7 and a window 6 to irradiate the semiconductor substrate 2 in an etching solution 3. The semiconductor substrate 2 is positioned in advance by driving the rotary support shaft 5 so that the position where the diffraction grating is to be formed is irradiated with the laser beam, and is fixed for a predetermined period of time.
After the diffraction grating is formed by irradiating the laser beam, the irradiation of the laser beam is stopped, the semiconductor substrate is moved, and the next position where the diffraction grating is to be formed is irradiated with the laser beam. At this time, the interval between the formed diffraction gratings can be controlled by changing the angle at which the semiconductor substrate receives the laser beam.

また、窓6の外側に設けられた波長板7を45゜
回転させると、半導体基板に形成する回折格子の
方向が90゜変ることとなる。従つて、波長板の回
転により回折格子の形成する方向を任意に設定す
ることができ、一つの半導体基板内の任意の位置
に寸法、間隔、方向の異なる複数の回折格子を容
易に形成することができ、ガリウム砒素の如き、
蒸発し易い砒素成分を含む化合物半導体に回折格
子を形成する場合に於ても、溶液中にて非常に弱
いレーザ光を照射して製造するので、砒素の蒸発
を防ぐことができ、成分比の変らない回折格子を
形成した半導体を得ることができる。
Furthermore, if the wave plate 7 provided outside the window 6 is rotated by 45 degrees, the direction of the diffraction grating formed on the semiconductor substrate will change by 90 degrees. Therefore, the direction in which the diffraction grating is formed can be arbitrarily set by rotating the wave plate, and a plurality of diffraction gratings with different sizes, intervals, and directions can be easily formed at any position within one semiconductor substrate. can be produced, such as gallium arsenide,
Even when forming a diffraction grating on a compound semiconductor containing an arsenic component that easily evaporates, it is manufactured by irradiating a very weak laser beam in a solution, which prevents evaporation of arsenic and reduces the component ratio. A semiconductor with an unchanging diffraction grating can be obtained.

この発明は上記の説明で明らかなように、マス
クを用いることなく、半導体表面の任意の位置に
間隔、方向の異なる回折格子を形成することがで
き、光集積回路の構成に著しく貢献することとな
る。
As is clear from the above description, the present invention makes it possible to form diffraction gratings with different spacing and directions at arbitrary positions on the semiconductor surface without using a mask, and makes a significant contribution to the construction of optical integrated circuits. Become.

次にこの発明の実施例を述べる。H2SO4
H2O2:H2Oが1:1:30の組成のフオトケミカ
ル溶液にGaAs(3mm×3mm)を浸漬し、上部よ
りYAGレーザよりのレーザ光(波長0.53μm)を
1W/cm2の出力で10分間照射した結果、半導体表
面全体に0.4μmの等間隔で、高さ0.02μmの凹凸条
が形成し、形成した凹凸条は回折格子として使用
することができた。
Next, embodiments of this invention will be described. H2SO4 :
GaAs (3 mm x 3 mm) is immersed in a photochemical solution with a composition of H 2 O 2 :H 2 O of 1:1:30, and laser light (wavelength 0.53 μm) from a YAG laser is irradiated from above.
As a result of irradiation for 10 minutes at an output of 1 W/cm 2 , uneven lines with a height of 0.02 μm were formed at equal intervals of 0.4 μm over the entire semiconductor surface, and the formed uneven lines could be used as a diffraction grating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による回折格子の製造方法の一
例を示す斜面図、第2図は本発明による回折格子
の製造方法の他の例を示す断面図である。 図中、1はレーザ光、2は半導体基板、3はフ
オトケミカルエツチング溶液を示す。
FIG. 1 is a perspective view showing an example of the method for manufacturing a diffraction grating according to the present invention, and FIG. 2 is a sectional view showing another example of the method for manufacturing a diffraction grating according to the invention. In the figure, 1 is a laser beam, 2 is a semiconductor substrate, and 3 is a photochemical etching solution.

Claims (1)

【特許請求の範囲】 1 直線偏光単一レーザ光をフオトケミカルエツ
チング溶液中の半導体表面に照射し、該半導体表
面に平行な多数の凹凸条を形成することを特徴と
する回折格子の製造方法。 2 半導体がガリウム砒素である特許請求の範囲
第1項記載の回折格子の製造方法。
[Scope of Claims] 1. A method for manufacturing a diffraction grating, which comprises irradiating a semiconductor surface in a photochemical etching solution with a single linearly polarized laser beam to form a large number of uneven lines parallel to the semiconductor surface. 2. The method for manufacturing a diffraction grating according to claim 1, wherein the semiconductor is gallium arsenide.
JP58038322A 1983-03-10 1983-03-10 Manufacture of diffraction grating Granted JPS59165428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038322A JPS59165428A (en) 1983-03-10 1983-03-10 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038322A JPS59165428A (en) 1983-03-10 1983-03-10 Manufacture of diffraction grating

Publications (2)

Publication Number Publication Date
JPS59165428A JPS59165428A (en) 1984-09-18
JPH0126529B2 true JPH0126529B2 (en) 1989-05-24

Family

ID=12522040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038322A Granted JPS59165428A (en) 1983-03-10 1983-03-10 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPS59165428A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198199B1 (en) * 1985-04-19 1992-06-17 Siemens Aktiengesellschaft Wet etching process for making a surface grating having a specified operating constant on the surface of a substrate of a semiconductor material
JP2815240B2 (en) * 1991-01-29 1998-10-27 大阪府 Laser processing method for metal surface
EP1586405B1 (en) * 2002-09-27 2012-10-24 Canon Machinery Inc. Method of forming a periodic structure on a material surface

Also Published As

Publication number Publication date
JPS59165428A (en) 1984-09-18

Similar Documents

Publication Publication Date Title
Indutnyi et al. Holographic optical element fabrication using chalcogenide layers
JP3293136B2 (en) Laser processing apparatus and laser processing method
US5018164A (en) Excimer laser ablation method and apparatus for microcircuit fabrication
US8681315B2 (en) Tunable two-mirror interference lithography system
JPS62108209A (en) Making of grating structure having phase shift on substrate surface
US5221422A (en) Lithographic technique using laser scanning for fabrication of electronic components and the like
US20100301025A1 (en) Processing method and processing apparatus using interfered laser beams
JP2008203553A (en) Manufacturing method of fine structure
US9904176B2 (en) Interference lithography device
JPH07283119A (en) Aligner and exposure method
JPH0126529B2 (en)
JP3371304B2 (en) Laser processing apparatus, laser processing method, and liquid crystal panel
US20090197210A1 (en) Method for preparing photonic crystal slab waveguides
JPH10113780A (en) Laser beam machine, laser beam machining method and diffraction grating
US20110255064A1 (en) Photolithography method and device
JP2000147228A (en) Production of optical diffraction element
JPH0225803A (en) Polarized beam splitter
KR101669645B1 (en) The Equipment forming 3 Dimensional Microstructure and Micropattern by Light exposure of 3 Dimensional to Photosensitive glass, and The Method Using thereof
JPH07508593A (en) Manufacturing of grating structures
JP2002196347A (en) Liquid crystal panel and method for producing liquid crystal panel
JPH0456284B2 (en)
JP2017054006A (en) Light irradiation method, manufacturing method of on-substrate structure, and on-substrate structure
JPS58154285A (en) Manufacture of diffraction grating
JP2003154478A (en) Laser beam machining device and method, and liquid crystal panel
JP2751954B2 (en) Method for forming compound semiconductor fine pattern