JPS59164886A - Heat exchanger of shell and tube type - Google Patents

Heat exchanger of shell and tube type

Info

Publication number
JPS59164886A
JPS59164886A JP3815683A JP3815683A JPS59164886A JP S59164886 A JPS59164886 A JP S59164886A JP 3815683 A JP3815683 A JP 3815683A JP 3815683 A JP3815683 A JP 3815683A JP S59164886 A JPS59164886 A JP S59164886A
Authority
JP
Japan
Prior art keywords
shell
outlet
tube
inner shell
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3815683A
Other languages
Japanese (ja)
Inventor
Tetsuo Fujimoto
藤本 哲郎
Tamotsu Sano
佐野 保
Teruyuki Kiyokawa
清川 輝行
Yoshito Abe
義人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3815683A priority Critical patent/JPS59164886A/en
Publication of JPS59164886A publication Critical patent/JPS59164886A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube

Abstract

PURPOSE:To improve the heat exchanging performance by providing annular partition members which are close to the lower end of an inlet nozzle and the lower part of an upper inlet opening, and are movable relative to a fixed shell and an inner barrel. CONSTITUTION:Annular partition members 14, 15 are provided which are close to the lower end of an inlet nozzle 1b and the lower end of an upper inlet 2a of a shell and tube type heat exchanger, and are movable relative to a fixed shell 1 and an inner barrel 2. The heat exchanger has a funnel like partition which encloses a lower plate 2d and a lower outlet 2b of the inner barrel 2 from outside, and sealing members 17, 18 which are interposed between the open end of the partition member 16 and the outlet nozzle. The thermo-siphon flow inside an annular space 3 is prevented by the sealing members 17, 18 and the annular partition members 14, 15, resulting in an improvement of the heat exchanging performance.

Description

【発明の詳細な説明】 本発明はシェルアンドチューブ型熱交換器の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in shell-and-tube heat exchangers.

従来のシェルアンドチューブ型熱交換器を第1.2図に
より説明すると、第1図の(1)が上部フランジ(1a
)を介して垂下支持された整置シェル、(1b)(IC
)が同堅骸シェル(1)の側壁上部及び底部に設けられ
た加熱流体用入口ノズル及び出口ノズル、(2)が内胴
、(4)が上部管板、(5)が下部管板、(9)が伝熱
管で、これら(2)(4)(5!(9+が一体に絹付け
られて、上[[(41が整置シェル(1)の7ランジ(
1α)上に載架されている。また(6)が上部管板(4
)の上方に形成された被加熱流体の出口ブレナム、(7
)が下部有板(5)の下方にパス族された被加熱流体の
反転ブレナム、(8)が上部管板(イ)及び下部管板(
5)を貫いて下端部付近が下部管板(5)に固定された
被加熱流体用導入管、0αが被加熱流体用導出管、(2
a)が竪型シェル(1)の加熱流体用ノズル(1b)の
近(の内胴(2) fil! %に設けられた複数の加
熱流体用流入口、  (2b)  が下部管板(5)の
近(の内11!i!(2+側壁に設けらねた次数の加熱
流体用流出口、(1C)が堅置シェル(1)の底部に設
けた加熱流体用出口ノズル、(印がはローズ、(121
(I3)が堅置シェル(1)の内面と内111i’!(
2)の外面とに枡方向で対向するように固定した環状部
層で、加熱流体を実f9矢印のように入口ノズル(1h
)→流入口(2α)→内胴(2)内→流出口(2k)直
;て出口ノズル(IC)へ通過さl七る一方、被加熱流
体を点線矢印のように導入管(8)→反転ブレナム(7
)−伝熱管(9)内→出ロズレナ1−(61を経て導出
管(1(1Hへ通過させて、熱交換を行なうようになっ
ている。
To explain a conventional shell-and-tube heat exchanger with reference to Fig. 1.2, (1) in Fig. 1 is an upper flange (1a).
), (1b) (IC
) are the heating fluid inlet and outlet nozzles provided at the top and bottom of the side wall of the rigid shell (1), (2) is the inner shell, (4) is the upper tube sheet, (5) is the lower tube sheet, (9) is a heat exchanger tube, these (2) (4) (5!
1α) It is placed on a shelf. Also, (6) is the upper tube plate (4
) is formed above the heated fluid outlet blennium, (7
) is an inverted blenheim for the heated fluid passed below the lower plate (5), (8) is the upper tube plate (A) and the lower tube plate (A).
5), the lower end portion is fixed to the lower tube plate (5), the heated fluid inlet pipe is fixed to the lower tube plate (5), 0α is the heated fluid outlet pipe, (2
a) is a plurality of heated fluid inlets provided near the heated fluid nozzle (1b) of the vertical shell (1), (2b) is a lower tube plate (5); ) near (11!i!(2+) is the outlet for the heated fluid provided on the side wall, (1C) is the outlet nozzle for the heated fluid provided on the bottom of the fixed shell (1), (marked is Rose, (121
(I3) is the inner surface of the fixed shell (1) and the inner surface 111i'! (
2) The annular layer is fixed so as to face the outer surface of
) → Inlet (2α) → Inside the inner shell (2) → Outlet (2k) Directly; and pass through to the outlet nozzle (IC).On the other hand, the heated fluid is passed through the inlet pipe (8) as shown by the dotted arrow. → Inverted Blenheim (7
) - Inside the heat exchanger tube (9) -> Exit Loserena 1 - Pass through the outlet pipe (1 (1H) via 61 to perform heat exchange.

前記シェルアンドチューブ型熱交換器では、堅j首シェ
ル(1)以外の部分な照面シェル(1)から引抜(こと
を前桿に12ている。そのため、堅Mシェル(1)と内
胴(2)との間の環状部層θ2i(13)を切り離して
おり。
In the shell-and-tube heat exchanger, parts other than the hard neck shell (1) are pulled out from the front shell (12).Therefore, the hard M shell (1) and the inner shell ( 2) and the annular layer θ2i (13) is separated.

このことから仄に述べる不具合を生じている。This gives rise to the problems that will be briefly described.

(I)  入口ノズル(1b)から堅置シェル(1)内
に入った加熱流体は、その一部が内胴(2)内を通らず
に玖;1フζ部月02川3)の間を出口ノズル(IC)
へバイパス流として流れて、シェルアンドチューブ型熱
交換器の熱交換性能を低下させろ。そこで環状部材02
)031にシール機構を設ける必要があるが、内部構造
物と整向シェル(1)とは軸方−向に熱変形差を生じる
ために、締結式のシール機構を採用しに(い。一方、ピ
ストン・リング式のシール機構にするKは。
(I) A part of the heated fluid that enters the fixed shell (1) from the inlet nozzle (1b) does not pass through the inner shell (2) and flows between The outlet nozzle (IC)
flow as a bypass flow to the shell-and-tube heat exchanger, reducing the heat exchange performance of the shell-and-tube heat exchanger. Therefore, the annular member 02
) 031, but since there is a difference in thermal deformation in the axial direction between the internal structure and the orientation shell (1), a fastening-type sealing mechanism is not required. , K is for a piston-ring type seal mechanism.

径が太きすぎて硬しく、かつ、高温流体による熱変形に
よって梗々の障害を生じる。このため、止むを得ず第1
.2図に示すシール・リング方式などを採用しているが
、この方式では、上述のようにシール性あまり良くない
。なおシール機構は比較的精密に加工する必要があるか
ら、これを入口ノズル(1b)伺近にお(と、加熱流体
の温度変動により熱応力・熱変形を生じる等の理由から
、入口ノズル(1”)と出口ノズル(IC)とのほぼ中
間に設けている。
The diameter is too large and hard, and thermal deformation caused by high-temperature fluid can cause serious damage. For this reason, we had no choice but to
.. A seal ring system such as shown in Fig. 2 is used, but as mentioned above, this system does not have very good sealing performance. Note that the seal mechanism needs to be machined relatively precisely, so it should be placed close to the inlet nozzle (1b). 1") and the outlet nozzle (IC).

(I)  照面シェル(1)は比較的似温、内胴(2)
は比較的高調なので、互い(11(2+の曲に形成され
た環状空間(3)内のノ2イパス流は、それぞれの壁面
に沿った上昇、下降の力1流を生じる。この対流に基く
循環流をサーモサイホンと称している。この対流効果は
強いので、内胴(2)の軸方向及び内周方向の温度分布
を不均一にして内胴(2)に不必要な熱応力を発生させ
る。また、第1.2図に示す閃交換器では、加熱流体が
入口ノズル(1b)から流入口(2α)を経て内1]I
M’(2)内に入る際に、内周方向全域から均一な流−
・で内胴(2)内に入るように、内111t=l (2
)の上部に複数の流入口(2a、)を設けているが、上
記サーモサイホンが生じると、その流れが加熱流体の主
流の流れを乱■7、内胴(2)内での温度分布が不均一
になって、好ましくプ、【い。
(I) The illuminated shell (1) has a relatively similar temperature, and the inner shell (2)
are relatively high-pitched, so the two-path flow in the annular space (3) formed in the curvature of (11 (2+) produces one flow of upward and downward force along each wall surface. Based on this convection, The circulating flow is called a thermosiphon.This convection effect is strong, so it makes the temperature distribution uneven in the axial direction and inner circumferential direction of the inner shell (2) and generates unnecessary thermal stress in the inner shell (2). In addition, in the flash exchanger shown in Fig. 1.2, the heated fluid flows from the inlet nozzle (1b) through the inlet (2α) to
When entering M'(2), a uniform flow is generated from the entire inner circumferential direction.
・So that it enters the inner body (2), inner 111t=l (2
) are provided at the upper part of the inner shell (2a), but when the thermosiphon occurs, the flow disturbs the mainstream flow of the heating fluid (7), and the temperature distribution inside the inner shell (2) changes. It becomes uneven, and it is preferable.

011)  原子炉出口の加熱流体温度が急変した場合
011) When the temperature of the heated fluid at the reactor outlet suddenly changes.

熱交換器においても熱過渡状態となる。即ち、加熱流体
が急に降温した場合(コールドショックと称する)、入
口ノズル(1h)から堅置シェル(1)内に入ったイ氏
湛流体は、環状空間(3)に密度差により進入する。こ
のため、環状空間(3)では、非定常的な高・低渦流体
の対流を生じ、部分的に熱衝撃ないし繰返し熱応力を受
けろことがある。さらに低湿流体がシール機構より上の
環セ゛空間(3)に角速溜子と、シール機構を填として
内胴(2)の上下に温度差を生じて、境界部に熱応力が
生じる。また以上とは逆に加熱流体が急に昇沢した場合
(ホットショックと称する)には、内部j伐)の下部流
出口(2b)から出口ノズル(IC)に向う高潟流が浮
力により、シール機構より下の環状空間(31に進入す
るので。
A thermal transient state also occurs in the heat exchanger. That is, when the temperature of the heated fluid suddenly drops (referred to as cold shock), the fluid that enters the fixed shell (1) from the inlet nozzle (1h) enters the annular space (3) due to the density difference. . Therefore, in the annular space (3), unsteady convection of high and low vortex fluid occurs, and parts of the annular space (3) may be subject to thermal shock or repeated thermal stress. Furthermore, the low-humidity fluid fills the angular velocity reservoir in the annular space (3) above the sealing mechanism and the sealing mechanism, creating a temperature difference between the upper and lower portions of the inner shell (2), and thermal stress is generated at the boundary. Conversely, when the heated fluid suddenly rises (referred to as hot shock), the Takagata flow from the lower outlet (2b) of the internal tube toward the outlet nozzle (IC) is caused by buoyancy. Since it enters the annular space below the sealing mechanism (31).

この部分で上述のコール′ドショック時と同様の現象を
生じる。
In this part, a phenomenon similar to the above-mentioned cold shock occurs.

0■  加熱流体中には、原子炉内で放射された金属微
粒子、放射性元素等が含まれており、これらは−次系内
に輸送されて各所に堆積する。熱交換器内でも、上向き
凹み部や71診れの淀゛む水平(上向き)面に堆積し易
く、このためにプラントを停止して点検・保守を行う際
に、機器伺近の放射線別率が高く1作業員が接近し得な
(なることがある。
0) The heated fluid contains fine metal particles, radioactive elements, etc. emitted within the nuclear reactor, and these are transported into the -order system and deposited at various locations. Even within the heat exchanger, it tends to accumulate on upward concave parts and horizontal (upwards) surfaces where 71-diagnosis stagnates, and for this reason, when the plant is stopped for inspection and maintenance, it is necessary to check the radiation classification rate near the equipment. may be so high that one worker cannot approach it.

第1図の例では、シール機構から上の環状空間(3)が
大きな淀みとなっているので、この部分に上記堆積が起
り易い。
In the example shown in FIG. 1, since the annular space (3) above the sealing mechanism is a large stagnation area, the above-mentioned accumulation is likely to occur in this area.

本発明は前記の問題点に対処するもので、上部フランジ
を介して垂下支持され且つ側壁上部に加熱流体用入口ノ
ズルを底部に加熱流体用出口ノズルをそれぞれ具えた整
置シェル、同堅面シェル内にはy同心状に垂下支持され
て同装置シェルとの間に環状空間を形成した内胴、同内
胴の内部上方及び内部下方にそねぞれ設けられ且つ上方
被加熱流体の出口ブレナムを下方に反転プレナムをそれ
ぞれ形成する上部管板及び下部管板、同各管板及び出口
ブレナムを貫いて反転ブレナムに開口した被加熱流体用
漕入管、同被加熱流体導入管を取り囲んで上下方向に延
び且つ両端がそれぞれ上部管板及び下部管板に固定され
て両ブレナムに開口した複数の伝熱管、前記上部管板及
び下部管板にそれぞれ近接して前記内胴のllj部に形
成された複数の上部流入口及び下部流出口、前記入口ノ
ズルのエルと内胴との間に設けられた相対移動可能な環
状仕切部材、前記内胴の下部鏡板及び前記下部流出口を
外方から取り囲んで開口端が前記出口ノズルの中に延び
た漏斗状仕切部材、及び同漏斗状仕切部材の開口端と前
記出口ノズルとの間に介装されたシール部材とよりなる
ことを特徴としたシェルアンドチューブ型熱交換器に係
り、その目的とする処は、前記従来の不具合を解消でき
る改良されたシェルアンドチューブ型熱交換器を供する
点にある。
The present invention addresses the above-mentioned problems, and consists of a fixed shell, which is supported depending through an upper flange and is provided with an inlet nozzle for heating fluid at the top of the side wall and an outlet nozzle for heating fluid at the bottom, respectively; There is an inner shell which is suspended and supported concentrically to form an annular space between it and the shell of the device, and an outlet blennium for the upper heated fluid provided above and below the inner shell, respectively. An upper tube sheet and a lower tube sheet forming an inverted plenum below, an inlet pipe for heated fluid that passes through each tube sheet and the outlet plenum and opens into the inverted plenum, and an inlet pipe for heated fluid surrounding the heated fluid inlet pipe in the vertical direction. a plurality of heat exchanger tubes extending into the upper tube sheet and the lower tube sheet and having both ends fixed to the upper tube sheet and the lower tube sheet, respectively, and opening into both blenheims, formed in the llj section of the inner shell in proximity to the upper tube sheet and the lower tube sheet, respectively; a plurality of upper inlets and lower outlet ports, a relatively movable annular partition member provided between the L of the inlet nozzle and the inner shell, a lower end plate of the inner shell and the lower outlet surrounding the outer shell; A shell and tube comprising a funnel-shaped partition member whose open end extends into the outlet nozzle, and a seal member interposed between the open end of the funnel-shaped partition member and the outlet nozzle. The object of the present invention is to provide an improved shell-and-tube heat exchanger that can eliminate the above-mentioned problems of the conventional heat exchanger.

次に本発明のシェルアンドチューブ型熱交換器を第3.
4.5図に示す一災友c例により説明すると、(1)が
整置シェル、  (112)が同堅魚シェル(1)を垂
下支持する上戸、フランジ、(1h)が同装置シェル(
1)の側壁上部に設けた加熱流体用入口ノズル、(IC
)が同装置シェル(1)の底部に設けた加熱流体用出口
ノズル(2)が同装置シェル(1)内にほぼ同心状に垂
下支持されて同装置シェル(I)との間に環状空間(3
)を形成する内胴、(4)が同内胴(2)の内部上方に
設けられてその上方に出口ブレナム(6)を形成する上
部管板、(5)が同内胴(2)の内部下方に設けられて
その下方に反転プレナム(7)を形成する下部管板、(
8)が上記谷管板f4)(5!及び出口ブレナム(6)
を貝いて反転プレナム(7)に開口した初加熱流体用導
入管、(9)が同導入管(8)を取り囲んで上下方向に
延び且つ両端がそれぞれ上部管板(4)及び下部管板(
5)に固定されて両ゾレナム(61(71に開口した複
数の伝熱管。
Next, the shell-and-tube heat exchanger of the present invention was used as the third.
To explain using the example shown in Figure 4.5, (1) is the arrangement shell, (112) is the upper door and flange that hangs and supports the shell (1), and (1h) is the device shell (
1) Inlet nozzle for heated fluid provided on the upper side wall of (IC
) is provided at the bottom of the device shell (1), and the heated fluid outlet nozzle (2) is suspended and supported almost concentrically within the device shell (1), creating an annular space between it and the device shell (I). (3
), an upper tube plate (4) is provided inside and above the inner shell (2) and forms an outlet blemish (6) thereabove, and (5) is an upper tube plate of the inner shell (2). a lower tube plate provided internally and below forming an inverted plenum (7);
8) is the above-mentioned valley tube plate f4) (5! and exit blennium (6)
An inlet pipe (9) for the initial heated fluid opens into the inverted plenum (7) by opening the inverting plenum (7), and extends vertically surrounding the inlet pipe (8), with both ends connected to the upper tube plate (4) and the lower tube plate (4), respectively.
A plurality of heat exchanger tubes fixed to the solenum (61 (71)

(2α)が上部管板(4)の近(の内胴(2)側部に設
けられた複数の加熱流体用上部流入口、(2h)が下部
管板(5)の近くの内胴(2111111部に設けられ
た複数の加熱流体用下部流出口、00が被加熱流体用導
出管、C11)がはローズ−(+4)(15)が入口ノ
ズル(1b)の下端及び上部流入口(2a)の下端に近
接して整置シェル(1)と内用(2)との間に設けられ
た相対移動可能な環状仕切部材、 (IQjが内胴(2
)の下部鏡板(2d) (なお(2C)は内胴(2)の
上部鋳板)及び下部流出口(2h)を外方から取り囲ん
で開口端が整置シェル(1)の出口ノズル(IC)の中
に延びた漏斗状封切部材、07)08)が同漏斗状仕切
部材N(16+の開口端と上記出口ノズル(IC)とσ
)間に弁装されたシール部材で、上記環状仕切部材(1
4)Q■も上記シール部材α7)(18!も微小な間隙
を隔てて対向している。
(2α) is a plurality of upper inlet ports for heating fluid provided on the side of the inner shell (2) near the upper tube plate (4), and (2h) is the inner shell (near the lower tube plate (5)). 2111111 section, 00 is the outlet pipe for heated fluid, C11) is Rose-(+4) (15) is the lower end of the inlet nozzle (1b) and the upper inlet (2a) ) a relatively movable annular partition member provided between the alignment shell (1) and the inner shell (2) near the lower end of the inner shell (2);
) of the lower end plate (2d) (note that (2C) is the upper cast plate of the inner shell (2)) and the lower outlet (2h) are surrounded from the outside, and the open end is the outlet nozzle (IC) of the alignment shell (1). ), the funnel-shaped sealing members 07) and 08) are connected to the opening end of the funnel-shaped partition member N (16+) and the outlet nozzle (IC) and σ
) is a sealing member fitted between the annular partition member (1).
4) Q■ and the seal member α7) (18!) face each other with a small gap in between.

次に前記シェルアンドチューブ型熱交換器の作用効果を
説明する。環状仕切部材(14)(+5) ki、加熱
流体が入口ノズル(1h)から堅はシェル(1)内に入
り。
Next, the effects of the shell-and-tube heat exchanger will be explained. The heating fluid enters the shell (1) from the annular partition member (14) (+5) through the inlet nozzle (1h).

さらに内胴(2)の流入口(2a)から内胴(2)内に
流入する経路(主流路)と、整置シェル(1)及び内1
11ii1(21間の環状空間(3)とを粗に遮断する
ものである。こねによって。
Furthermore, there is a path (main flow path) flowing into the inner shell (2) from the inlet (2a) of the inner shell (2), an alignment shell (1) and the inner shell (1).
11ii1 (to roughly block the annular space (3) between 21. By kneading.

(1)環状空間(3)内でサーモサイホン流が生じるこ
とがあっても、その流れが主流路内の流体に影響を与え
ることが殆んどないので、加熱流体が内胴(2)内へ均
一な流量分布で流入する、(1)加熱流体温度が急激に
低温となって流入する。
(1) Even if a thermosiphon flow occurs in the annular space (3), the flow has almost no effect on the fluid in the main channel, so the heated fluid will not flow inside the inner shell (2). (1) The temperature of the heated fluid suddenly becomes low and the heated fluid flows in with a uniform flow distribution.

黙過#(コールドショック)時に、低温流はこの環状仕
切部材(+4i(151の隙間から環状空間(3)へ少
量流入するのみであって、環状空間(3)内に殆んど影
響を与えない。このため、この部分にjD大熟熱応力生
じろことがない。
During silent # (cold shock), the low temperature flow only flows into the annular space (3) in a small amount through the gap of this annular partition member (+4i (151), and has almost no effect on the inside of the annular space (3). Therefore, no jD large thermal stress occurs in this part.

(+++>  主流路から環状空間(3)への於食生成
物等の進人をほぼ防止できる。さらに環状仕切部材(1
4)(15)自体へのg食生放物等の堆枦も9粒子の溜
りに(い形υ′になっているため、生じにくい。
(+++> It is possible to almost prevent the invasion of eclipse products etc. from the main flow path into the annular space (3). Furthermore, the annular partition member (1)
4) (15) The accumulation of g-eating parabolites on itself is difficult to occur because it is in the shape of υ' in the pool of 9 particles.

(1v)ノ2イパス流知対しても一応のシール性をモッ
ている。
(1v) It also has a certain degree of sealing performance even if it is against the flow of the 2nd pass.

以上は上部に設けた環状仕切部材(4:1(15)につ
いてであるが、下部(F設けたシール部材(171(1
8)については次の通りである。
The above is about the annular partition member (4:1 (15)) provided in the upper part, but the seal member (171 (171 (15)) provided in the lower part (F) is
8) is as follows.

(1)同下部に設けたシール部拐(+ 7+(J l’
(lは、第1図の炉1合に(らべて小型であるから、2
個のシール・リングの間のチワ状隙ド)1面稍も小さい
。したがってバイパス流゛肪もシール・リング径にほぼ
比例して減少することにt(す、熱交捜性能の向」−に
効果がある。な第5ツノ目熱流f本出ロノズル(1c)
音]4にシール]!!口j1′を設けることは、どの様
な構造のものを採用しても必ず小ハ゛、1で済む7jめ
、比較的精密な方式(たとえばピストン・リング方式、
ベローズ方式など)を使ってシール性のIスいものにす
ることができる利点がある。
(1) Seal part provided at the bottom (+7+(J l'
(L is smaller compared to the furnace 1 in Figure 1, so 2
The wrinkle-shaped gap between the seal rings (d) is also small. Therefore, the bypass flow fat is also reduced in approximately proportion to the seal ring diameter, which has an effect on improving heat exchange performance.The fifth horn heat flow main output nozzle (1c)
Sound] Seal on 4]! ! No matter what structure is used, the provision of the opening j1' is always a relatively precise method (e.g. piston ring method,
It has the advantage that it can be made into a sealing material using a bellows method (such as a bellows method).

(11)下RF 2’ii出[1(2A)から−次出ロ
ノズル(1c)に至る加熱流体の主流路と環状空間(3
)内のバイノξス流路とが漏斗状仕切部材(l[ilに
よって隔離される。
(11) The main flow path and annular space (3
) is separated from the binose flow path by a funnel-shaped partition member (l[il).

運転中に加熱流体が急激に高温になって器内に流入する
(ホット・ショック)場合、第1図のように隔離がされ
ていない構造では、高温流体が流出口(2z)から流出
する際に、環状空間(3)内の流体は未だ低温であるか
ら、高温流体は環状空間(3)を急速に上昇して、不安
定な対流を起す。そのため、環状空間(3)内の整向シ
ェル(1)佃各所に熱衝撃ないし繰返し熱応力を生じて
1強度上好ましくない。しかるに本熱交枦器では、上記
隔離が行なわれているので、上記現象が生じることがな
(、機器の健全性を確保できる。なおシール部材α7)
(1町丁第6図の(α)部に設けてもよい。
When the heated fluid suddenly becomes high temperature and flows into the vessel during operation (hot shock), in a structure without isolation as shown in Figure 1, when the high temperature fluid flows out from the outlet (2z), In addition, since the fluid in the annular space (3) is still at a low temperature, the high-temperature fluid rapidly rises through the annular space (3), causing unstable convection. Therefore, thermal shock or repeated thermal stress occurs in various parts of the orienting shell (1) within the annular space (3), which is unfavorable in terms of strength. However, in this heat exchanger, since the above-mentioned isolation is performed, the above-mentioned phenomenon does not occur (and the integrity of the equipment can be ensured. Note that sealing member α7)
(It may be provided in part (α) of 1-cho-cho Figure 6.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではな(、本発
明Ω精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments (and that various design changes may be made without departing from the spirit of the present invention). be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシェルアンドチューブ型熱交換器を示す
縦断10!1面図、第2図は第1図の矢印■部分の拡大
図、笹ろ図は本発明に係るシェルアンドチューブ型熱交
換器の一実施例を示す縦断側面図、第4図は@3図の矢
印■部分の拡大図、@5図は第6図の矢印V部分の拡大
図である。 oi−−一装置シエル、(1α)−m−上部フランジ、
(1j5)−’−−加熱流体用入ロノズル、<1c>−
−一加熱流体用出ロノズル、(21−一内胴、(2α)
−−−−上部流入口、 (2”) −−一下部流出口、
(2d)−一一下部鏡板、 (3) −−一坪状空間、
(4)−−一上部管板、(51−−一下部管板、(6)
−−一出ロプレナム、(7)−−一反転ブ1/ナム、 
(81−−一被加熱流出導入管、(91−m−伝熱管、
 Q4j(15) −−−m状仕切部材。 (+61−−一内漏斗状仕切部材、 (17)(+81
−−−シール部層。 作代理人 弁理士開本重文 外2名
Figure 1 is a longitudinal cross-sectional view showing a conventional shell-and-tube heat exchanger, Figure 2 is an enlarged view of the arrow ■ in Figure 1, and Sasaro is a shell-and-tube heat exchanger according to the present invention. A vertical side view showing one embodiment of the exchanger, FIG. 4 is an enlarged view of the arrow ■ section in FIG. 3, and FIG. oi--device shell, (1α)-m-upper flange,
(1j5)-'--Heating fluid nozzle, <1c>-
-1 Heating fluid outlet nozzle, (21-1 Inner shell, (2α)
-----Upper inlet, (2") ---One lower outlet,
(2d) - 11 lower end plate, (3) - 1 tsubo-shaped space,
(4)--One upper tube sheet, (51--One lower tube sheet, (6)
--One out loplenum, (7) --One inversion B1/num,
(81--1 heated outflow introduction pipe, (91-m-heat exchanger tube,
Q4j (15) ---m-shaped partition member. (+61--inner funnel-shaped partition member, (17) (+81
---Seal layer. Author's agent: 2 patent attorneys and non-Kaihon important cultural documents

Claims (1)

【特許請求の範囲】[Claims] 上部7ランジを介して垂下支持され且つ側壁上部に加熱
流体用入口ノズルを底部に加熱流体用出口ノズルをそれ
ぞれ具えた整置シェル、同装置シェル内にはg同心状に
垂下支持されて同装置シェルとの間に環状空間を形成し
た内胴、同内胴の内部上方及び内部下方にそれぞれ設け
られ、且つ上方杉′加熱流体の出口ブレナムを下方に反
転ブレナムをそれぞれ形成する上部管板及び下部管板、
同各管板及び出口ブレナムを貫いて反転ゾレナムに開口
した被加熱流体用導入管、同被加熱流体導入管を取り囲
んで上下方向に延び且つ両端がそれぞれ上部管板及び下
f′It管板に固定されて両ズレナムに15j’j口し
た次数の伝熱管、前記上部置板及び下部管板にそれぞれ
近接して前記内胴の側部に形成された検数の上部流入口
及び下部流出口、前記入口ノズルの下端及び前記上部流
入口の下端に近接して整置シェルと内胴との間に設けら
れた相対移動可能な環状仕切部材、前記内部jσ)下部
鏡板及び前記下部流出口を外方から取り囲んで開口端力
;前記出口ノズルの中に延びた漏斗状仕切部材、及び同
漏斗状仕切部材の開口I>Qjとl′iI前記出ロノズ
ルとσ)間に介装されたシール部制とより大ぐることを
特徴としたシェルアンドチューブ型熱交換器。
An arrangement shell that is suspended and supported via an upper 7 flange and has an inlet nozzle for heating fluid at the top of the side wall and an outlet nozzle for heating fluid at the bottom; An inner shell forming an annular space between the inner shell and the inner shell; an upper tube plate and a lower tube plate provided at the upper and lower parts of the inner shell, respectively, and forming an inverted blennium with the outlet blemish of the upper cedar heating fluid turned downward; tube sheet,
An inlet pipe for heated fluid penetrates through each tube sheet and the outlet blennium and opens into the inverted solenum, and extends vertically surrounding the heated fluid inlet pipe, and has both ends connected to the upper tube sheet and the lower f'It tube sheet, respectively. a fixed heat exchanger tube having an order of 15j'j openings in both sliding numerals; an upper inlet and a lower outlet of a number formed on the side of the inner body in proximity to the upper placing plate and the lower tube plate, respectively; A relatively movable annular partition member provided between the alignment shell and the inner shell near the lower end of the inlet nozzle and the lower end of the upper inlet; a funnel-shaped partition member extending into the outlet nozzle; and a seal portion interposed between the opening I>Qj and l'iI of the funnel-shaped partition member and the outlet nozzle and σ); A shell-and-tube type heat exchanger that is characterized by high control and greater flexibility.
JP3815683A 1983-03-10 1983-03-10 Heat exchanger of shell and tube type Pending JPS59164886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3815683A JPS59164886A (en) 1983-03-10 1983-03-10 Heat exchanger of shell and tube type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3815683A JPS59164886A (en) 1983-03-10 1983-03-10 Heat exchanger of shell and tube type

Publications (1)

Publication Number Publication Date
JPS59164886A true JPS59164886A (en) 1984-09-18

Family

ID=12517542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3815683A Pending JPS59164886A (en) 1983-03-10 1983-03-10 Heat exchanger of shell and tube type

Country Status (1)

Country Link
JP (1) JPS59164886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651082A (en) * 2016-02-29 2016-06-08 四川大学 Series combining method for siphoning type pasty material heat exchangers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651082A (en) * 2016-02-29 2016-06-08 四川大学 Series combining method for siphoning type pasty material heat exchangers

Similar Documents

Publication Publication Date Title
JPS59164886A (en) Heat exchanger of shell and tube type
US4713214A (en) Device for purifying liquid metal coolant for a fast neutron nuclear reactor
JPH0239000A (en) Attenuation tank
JPS61237083A (en) Tank type fast breeder reactor
JPH0338558B2 (en)
JPS631517B2 (en)
JPS6048714B2 (en) nuclear fuel assembly
JPH10293189A (en) Reactor wall cooling protection structure of fast reactor
JPH01245192A (en) Core upper mechanism of fast breeder
JPH031629B2 (en)
JPS5811892A (en) Reactor container
JPS62273495A (en) Heat exchanger for tank type fast breeder reactor
JPH08240686A (en) Reactor core cooling mechanism of fast breeder reactor
JPS61210993A (en) Heat exchanger for removing decay heat of core
JPS59176692A (en) Fast breeder reactor
JPS6284298A (en) Baffle plate structure of heat exchanger
JPS5929799B2 (en) Heat exchanger
JPS5852594A (en) Upper core mechanism of fast breeder core
JPH02143192A (en) Tank type fast breeder
JPS6196489A (en) Reactor-vessel protective device
JPS58184582A (en) Upper core mechanism for fast reactor
JPS60113184A (en) Core support structure for fast breeder reactor
JPS63284489A (en) Tank type fast breeder
JPS63121793A (en) Fast breeder reactor
JPS61130797A (en) Intermediate heat exchanger