JPS59164614A - Manufacture of monosilane - Google Patents

Manufacture of monosilane

Info

Publication number
JPS59164614A
JPS59164614A JP3724083A JP3724083A JPS59164614A JP S59164614 A JPS59164614 A JP S59164614A JP 3724083 A JP3724083 A JP 3724083A JP 3724083 A JP3724083 A JP 3724083A JP S59164614 A JPS59164614 A JP S59164614A
Authority
JP
Japan
Prior art keywords
monosilane
sulfonic acid
perfluorocarbon
acid groups
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3724083A
Other languages
Japanese (ja)
Inventor
Yasutaka Ozaki
尾崎 康隆
Hidemasa Matsui
松井 英正
Takeyuki Hirashima
平島 偉行
Yuji Fujii
裕二 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3724083A priority Critical patent/JPS59164614A/en
Publication of JPS59164614A publication Critical patent/JPS59164614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To manufacture monosilane in a high yield by bringing a silicon halide into contact with a perfluorocarbon-base cation exchange body having sulfonic acid groups at a specified temp. CONSTITUTION:Vapor of a silicon halide such as tetrachlorosilane, trichlorosilane, dichlorosilane or monochlorosilane is passed through a reaction system packed with an insoluble polymer having sulfonic acid groups and fluorine atoms bonded to carbon atoms at 150-240 deg.C to cause a reaction. The insoluble polymer is a cation exchange body having a skeleton of perfluorocarbon and sulfonic acid groups bonded to the side chain. The resulting monosilane contains other product and the unreacted gas, so only monosilane is separated by distillation or other method by making use of the difference in b.p.

Description

【発明の詳細な説明】 本発明はモノシランの製造方法に関し、詳しくは、)・
ログン化珪素から収率よくモノシランを製造する方法に
関する。
[Detailed Description of the Invention] The present invention relates to a method for producing monosilane.
The present invention relates to a method for producing monosilane from silicon rogonide in good yield.

モノシランは特に高純度の半導体級シリフンあるいはア
モルファス太陽電池用のシリコン析出原料として、また
エピタキシャル用原料などとして半導体工業においては
有用な物質であり、今後さらKlfllNの増大が見込
まれている。したがって、より優れたかつ安価なモノシ
ランの製造方法の開発が望まれる。
Monosilane is a useful substance in the semiconductor industry, especially as a high-purity semiconductor-grade silane or a raw material for silicon precipitation for amorphous solar cells, and as a raw material for epitaxial use, and further increases in KlfllN are expected in the future. Therefore, it is desired to develop a better and cheaper method for producing monosilane.

従来、知られているモノシランの製造方法としては (1)  マグネシウムシリサイドを液体アンモニア中
で塩化アンモニウムと作用させる方法M、9.81+4
NH4Ct−+ SiH,+2M、9C7,+4NH8
(2)  テトラクロルシランをエーテル中でLiAt
H,によって還元する方法 5iCt、+LiAtH4→SiH,+AtCt8+C
1Ct(3)トリクロルシランを第3級アミンの陰イオ
ン交換樹脂を用いて不均化反応する方法4H81C48
= 81H,+3SiH。
Conventionally known methods for producing monosilane include (1) Method M in which magnesium silicide is reacted with ammonium chloride in liquid ammonia, 9.81+4;
NH4Ct-+ SiH, +2M, 9C7, +4NH8
(2) Tetrachlorosilane in ether with LiAt
Method of reduction by H, 5iCt, +LiAtH4→SiH, +AtCt8+C
Method of disproportionation reaction of 1Ct(3) trichlorosilane using tertiary amine anion exchange resin 4H81C48
= 81H, +3SiH.

上記(1)は工業的に実用化されているが、極く低温度
による反応が必要であるため設備費が高くなる。(2)
はLiAtH4が極めて高価な還元剤であるため実用化
に乏しい。また(3)は陥イオン交換樹脂の耐熱温度が
低いため、反応速度論的にも不利であり、モノシランの
収率が低い。
Although the method (1) above has been put into practical use industrially, the equipment cost is high because it requires reaction at extremely low temperatures. (2)
Since LiAtH4 is an extremely expensive reducing agent, it is difficult to put it into practical use. Moreover, since the heat resistance temperature of the fallen ion exchange resin is low, the method (3) is disadvantageous in terms of reaction kinetics, and the yield of monosilane is low.

本発明者らは、ハロゲン化珪素からモノシランを安価に
かつ簡便に製造する方法について鋭意研究を重ねた。そ
の結果、ハロゲン化珪素を、スルホン酸基を有するパー
フルオロカーボン系の陽イオン交換体と接触させること
によって、モノシランが極めて収率よく得られることを
見出し、本発明を提案するに至ったものである。
The present inventors have conducted extensive research on a method for manufacturing monosilane from silicon halide at low cost and easily. As a result, the inventors discovered that monosilane can be obtained in extremely high yield by bringing silicon halide into contact with a perfluorocarbon-based cation exchanger having a sulfonic acid group, which led them to propose the present invention. .

本発明において、ノ飄μゲン化珪素からモノシランが収
率よく得られる理由は明確でないが、該ハロゲン化珪素
と接触させる陽イオン交換体のスルホン酸基が超強酸で
あると共にパーフルオロカーボン系であるため極めて高
く反応温度を設定できることから、それらが相互に作用
して予想以上の効果を発揮し得るものと推測される。
In the present invention, the reason why monosilane can be obtained in high yield from oxidized silicon halide is not clear, but the reason is that the sulfonic acid group of the cation exchanger brought into contact with the silicon halide is a super strong acid and is perfluorocarbon type. Therefore, since the reaction temperature can be set extremely high, it is presumed that these factors interact with each other to produce more effects than expected.

本発明に用いられるノ10ゲン化珪素は、一般にテトラ
クロルシラン、トリクロルシラン。
The silicon 10genide used in the present invention is generally tetrachlorosilane or trichlorosilane.

ジクロルシラン、モノクpルシランカ好適テあるが、そ
のほか四弗化珪素、四臭化珪素。
Dichlorosilane and monochlorosilane are suitable, but silicon tetrafluoride and silicon tetrabromide are also suitable.

国法化珪素なども使用可能である。Nationally approved silicon can also be used.

本発明のスルホン酸基を有するパーフルオロカーボン系
の陽イオン交換体とは、炭素原子にスルホン酸基とフッ
素原子を結合した不溶性の高分子化合物であり、特にス
ルホン酸基からα位の炭素にフッ素原子を結合した状態
の高分子体が好ましい。具体的には、パーフルオロカー
ボンを骨格とし側鎖にスルホン酸基を結合した陽イオン
交換体であり、例えばデュポン社のナフィオン(商品名
)として知られるテトラフルオ戸エチレンとパーフルオ
ロ(フルキルエーテルスルボニルフルオライド)を共電
合して、加水分解したものが好適である。また、本発明
の陽イ′:1ン交換体はハロゲン化珪素と接触させて有
効な触媒的形態に維持することが望ましい。したがって
、かかる陽イオン交換体の形状は一般に粒状が好ましい
が、そのほか必要に応じて粉状、繊維状、管状などにE
記したパーフルオロカーボン系の高分子体から適宜製造
すればよい、。
The perfluorocarbon cation exchanger having a sulfonic acid group of the present invention is an insoluble polymer compound in which a sulfonic acid group and a fluorine atom are bonded to a carbon atom. A polymer in which atoms are bonded is preferred. Specifically, it is a cation exchanger with a perfluorocarbon skeleton and a sulfonic acid group bonded to the side chain, such as tetrafluoroethylene and perfluoro(furkyl ether sulfonylfluorocarbon) known as DuPont's Nafion (trade name). It is preferable to co-electrolyze and hydrolyze a compound (Ride). It is also desirable to maintain the cation':1 exchanger of the present invention in an effective catalytic form by contacting it with a silicon halide. Therefore, the shape of the cation exchanger is generally preferably granular, but it can also be shaped into powder, fiber, tube, etc. as needed.
It may be manufactured as appropriate from the perfluorocarbon-based polymer described above.

本発明において、ハロゲン化珪素とスルホン酸基を有す
るパーフルオロカーボン系陽イオン交換体との接触方法
は特に制限されないが、一般に該陽イオン交換体を充填
1−た反応系にハロゲン化珪素の蒸気を供給して、流通
する方法が採用される。
In the present invention, the method of contacting the silicon halide with the perfluorocarbon cation exchanger having a sulfonic acid group is not particularly limited, but in general, vapor of the silicon halide is introduced into a reaction system filled with the cation exchanger. A method of supplying and distributing is adopted.

本発明における反応温度は高くするけど生成するモノシ
ランの収率な向上でき、特に150℃以上において著し
いが、300℃以上では陽イオン交換体の耐久性が劣る
。したがつ【、本発明の反応温度は一般に50〜250
℃、好ましくは150〜230℃である。また、本発明
におけるノへログン化珪素と陽イオン交換体との接触時
間は、上記の反応温度など他の条件を勘案して適宜決定
されるが、一般に短時間で十分である。
Although the reaction temperature in the present invention is raised, the yield of the monosilane produced can be improved, particularly at temperatures above 150°C, but at temperatures above 300°C the durability of the cation exchanger is poor. However, the reaction temperature of the present invention is generally 50 to 250
℃, preferably 150 to 230℃. Further, the contact time of the cation exchanger with the silicon noerogonide in the present invention is appropriately determined in consideration of other conditions such as the above-mentioned reaction temperature, but generally a short time is sufficient.

(5) 本発明により得られる反応生成ガスは、目的とするモノ
シランを他の生成物および未反応ガスとの沸点を利用し
て蒸留などにより容易に分離することが出来る。
(5) From the reaction product gas obtained by the present invention, the target monosilane can be easily separated by distillation or the like using the boiling point of the monosilane from other products and unreacted gas.

υ下、実施例を挙げるが、本発明はこれらに制限される
ものでない。
Examples are given below, but the present invention is not limited thereto.

実施例 1 スルホン酸型のパーフルオロカーボン系陽イオン交換樹
脂であるデュポン社のNafion501(商品名)1
0gを、予めメタノール二濃塩酸=1:1の溶液中で光
分に攪拌処理。
Example 1 DuPont's Nafion 501 (trade name) 1, which is a sulfonic acid type perfluorocarbon cation exchange resin
0g was preliminarily stirred in a solution of methanol and diconcentrated hydrochloric acid = 1:1.

水洗、真空乾燥した後、内径30賎戸の石英ガラス製反
応器に充填したっ仄いで、原料のハロゲン化珪素として
テトラクロルシラン。
After washing with water and drying in vacuum, it was filled into a quartz glass reactor with an inner diameter of 30 mm, and tetrachlorosilane was used as the raw material silicon halide.

トリクロルシランおよびジクロルシランをそれぞれ0.
15 t / mの流電で連続的に供給して、反応温度
を180℃に維持した。
Trichlorosilane and dichlorosilane were each 0.
The reaction temperature was maintained at 180 °C by continuously feeding with a current of 15 t/m.

それぞれ反応が定常になる3時間後の反応生成ガスを、
ガスサンプラーを用いてガスクルマドグラフで分析した
。その結果を第1表(6) に示す。
The reaction product gas after 3 hours when the reaction becomes steady is
It was analyzed using a gas chromatogram using a gas sampler. The results are shown in Table 1 (6).

第    1    表 実施例 2 スルホン酸型のパーフルオロカーボン系陽イオン交換m
8’ftとして、デュポン社のNa −fion−51
1(Mt品名)5gを用いて、実施例1と同様にしてト
リクロルシランおよびジクロルシランをそれぞれ0.5
t/mmの流速および反応温度220℃で実施した。そ
の結果を第2表に示す。
Table 1 Example 2 Sulfonic acid type perfluorocarbon cation exchange m
As 8'ft, DuPont Na-fion-51
1 (Mt product name), 0.5 g of trichlorosilane and dichlorosilane each in the same manner as in Example 1.
The reaction was carried out at a flow rate of t/mm and a reaction temperature of 220°C. The results are shown in Table 2.

第    2    表 実施例 3,4 スルホン酸型のパーフルオロカーボン系陽イオン交換樹
脂として、デュポン社のN a −fion 501 
(商品名)10IIを用い、実施例1と同様にしてテF
ラクロルシランラトリクρルシランおよびジクロルシラ
ンをそれぞれo、tsz/=の流量および反応温度80
℃。
Table 2 Examples 3 and 4 As a sulfonic acid type perfluorocarbon cation exchange resin, DuPont's Na-fion 501
(Product name) 10II and in the same manner as in Example 1.
Lachlorsilane latrique ρrusilane and dichlorosilane were respectively o, tsz/= flow rate and reaction temperature 80
℃.

130℃で実施した。その結果を第3表に示す。It was carried out at 130°C. The results are shown in Table 3.

(l) (9) (8) 比較例 第31i&アミン型の陰イオン交換樹脂である7ンバー
リストA−21(ハースアンドーーム社製、商品名)を
10pを予めメタノール溶液で処理し、水洗、乾燥後、
実施例1と同様にして、テトラクルルシラン、トリクロ
ルシラン及びジクロルシランをそれぞれ0.1st/m
の流量で連続的に供給して、反応温度を80℃に維持し
た。その結果を第4表に示す。
(l) (9) (8) Comparative Example 10 parts of No. 31i & amine-type anion exchange resin 7 Number List A-21 (manufactured by Haas Andohm, trade name) were treated in advance with a methanol solution and washed with water. , after drying,
In the same manner as in Example 1, tetrachlorsilane, trichlorosilane and dichlorosilane were each added at 0.1st/m.
The reaction temperature was maintained at 80°C. The results are shown in Table 4.

(1G)(1G)

Claims (1)

【特許請求の範囲】[Claims] (1)ハpゲン化珪素を、スルホン酸基を有するパーフ
ルオロカーボン系の陽イオン交換体と接触させることを
特徴とするモノシランの製造方法 +21150〜240℃の温度で接触させる特許請求の
範囲第1項記載の製造方法 (31−・ロゲン化珪素がテトラクロルシランラトリク
pルシラン、ジクロルシランまたはモノクロルシランで
ある特許請求の範囲第1項記載の製造方法
(1) A method for producing monosilane characterized by contacting halogenated silicon with a perfluorocarbon cation exchanger having a sulfonic acid group at a temperature of +21150 to 240°C Claim 1 The manufacturing method according to claim 1 (31-) The manufacturing method according to claim 1, wherein the silicon halogenide is tetrachlorosilane latric prusilane, dichlorosilane or monochlorosilane.
JP3724083A 1983-03-09 1983-03-09 Manufacture of monosilane Pending JPS59164614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3724083A JPS59164614A (en) 1983-03-09 1983-03-09 Manufacture of monosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3724083A JPS59164614A (en) 1983-03-09 1983-03-09 Manufacture of monosilane

Publications (1)

Publication Number Publication Date
JPS59164614A true JPS59164614A (en) 1984-09-17

Family

ID=12492085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3724083A Pending JPS59164614A (en) 1983-03-09 1983-03-09 Manufacture of monosilane

Country Status (1)

Country Link
JP (1) JPS59164614A (en)

Similar Documents

Publication Publication Date Title
KR101819262B1 (en) Process for selective cleavage of higher silanes
JP2009062211A (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
JPS63233007A (en) Production of chloropolysilane
CN109384233B (en) Method for treating silicon polymers
JPS59164614A (en) Manufacture of monosilane
JP4256998B2 (en) Method for producing disproportionation reaction product of silane compound
JPH0829929B2 (en) Method for producing hydrohalogenated silane
JPS6060915A (en) Manufacture of slightly halogenated silane or monosilane
EP0471370B1 (en) Silane products from reaction of silicon monoxide with hydrogen halides
JPH01317114A (en) Simple process for production of monosilane
JPH01278411A (en) Production of hexachlorodisilane and octachlorotrisilane
EP0030516B1 (en) Process for preparing primary alkyl chlorides
KR20040096628A (en) Preparation of Mixed-Halogen Halo-Silanes
JPS6246913A (en) Disproportionation method for silanes
JPS616116A (en) Manufacture of silane
JPH04338393A (en) Production of alkoxysilane
US2615054A (en) Vinyl chloride preparation
JPS59156907A (en) Manufacture of silane
JP3915872B2 (en) Method for producing tetrakis (trimethylsilyl) silane and tris (trimethylsilyl) silane
JPS6246915A (en) Disproportionation method for silanes
JPH0341405B2 (en)
JPS63151611A (en) Production of halogenated silanes
JPS60212231A (en) Chlorosilane disproportionation catalyst and disproportionation method
JPS6357592A (en) Production of tert-butyldimethylchlorosilane
JPS59174515A (en) Manufacture of monosilane