JPS59163724A - Conducting and interrupting device near zero potential of accurrent - Google Patents

Conducting and interrupting device near zero potential of accurrent

Info

Publication number
JPS59163724A
JPS59163724A JP3880883A JP3880883A JPS59163724A JP S59163724 A JPS59163724 A JP S59163724A JP 3880883 A JP3880883 A JP 3880883A JP 3880883 A JP3880883 A JP 3880883A JP S59163724 A JPS59163724 A JP S59163724A
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
switch
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3880883A
Other languages
Japanese (ja)
Other versions
JPH059962B2 (en
Inventor
政木 和三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3880883A priority Critical patent/JPS59163724A/en
Publication of JPS59163724A publication Critical patent/JPS59163724A/en
Publication of JPH059962B2 publication Critical patent/JPH059962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Electronic Switches (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、交流電流の導通・遮断を無火花的に制御す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling conduction and interruption of alternating current without sparking.

交流電源をスイッチを介して負荷である電気器具に接続
している場合、その負荷に対して瞬時に流入する電流は
、スイッチを開閉するタイミングによって大きく変化す
る。即ち、交流における波の高電位値の瞬間にスイッチ
がオンとなれば、負荷に対して平常電流の10倍もの電
流が流れることになる。一方、交流の零電位の説7間に
スイッチがオンとなれば、無電流の状態で負荷に接続さ
れる。
When an AC power source is connected to an electrical appliance as a load via a switch, the current instantaneously flowing into the load changes greatly depending on the timing of opening and closing of the switch. That is, if the switch is turned on at the instant of a high potential value of an AC wave, a current ten times the normal current will flow to the load. On the other hand, if the switch is turned on during the zero potential of alternating current, it is connected to the load in a no-current state.

しかしながら、そのスイッチオンする瞬間を人為的に選
択することは困難なことである。
However, it is difficult to artificially select the moment at which the switch is turned on.

そこで、本発明は、どのようなタイミングにスイッチを
作動しても必ず交流の零電位からの立上りの瞬間にスイ
ッチオンとなり、スイッチオフの場合は必ず交流電流の
零電位附近にて遮断する装置を提供するものである。
Therefore, the present invention provides a device that no matter what timing the switch is operated, the switch is always turned on at the moment of rising from the zero potential of the alternating current, and when the switch is turned off, the device is always cut off near the zero potential of the alternating current. This is what we provide.

即ち、本発明は、交流の零電位からの立上りの瞬間に制
御整流素子が導通状態となシ、電路を遮断するときは必
ず交流電圧の立下りから零電位に達したとき不導通状態
となり、電流の過渡的ショックを減少させようとするも
のである。
That is, in the present invention, the control rectifying element is not in a conductive state at the moment when the alternating current voltage rises from zero potential, and is always in a non-conductive state when the alternating current voltage reaches zero potential from the fall of the alternating current voltage when cutting off the electric circuit. The purpose is to reduce transient shocks of current.

次に、本発明を図示実施例に従って説明する。Next, the present invention will be explained according to illustrated embodiments.

第1図に示すように、制御される交流電流を発生する交
流電源ACの一端は、スイッチSを介してシリコン制御
整流素子SCBなどの制御整流素子の陽極Aに接続され
ると共に、逆相信号を発生させるための変圧器Hの一次
巻線Pに接続されている。変圧器Hの二次巻線Qは、ダ
イオードDからなる半波整流回路、および抵抗R1コン
デンサCからなる積分回路を介してシリコン制御整流素
子SCRのゲートGに接続されている。なお、符号には
、シリコン制御整流素子SCRの陰極であり、符号2は
、例えばランプなどの負荷を示している。
As shown in FIG. 1, one end of an AC power supply AC that generates a controlled alternating current is connected to an anode A of a controlled rectifying element such as a silicon controlled rectifying element SCB via a switch S, and is also connected to an anode A of a controlled rectifying element such as a silicon controlled rectifying element SCB. It is connected to the primary winding P of a transformer H for generating . The secondary winding Q of the transformer H is connected to the gate G of the silicon-controlled rectifier SCR via a half-wave rectifier circuit consisting of a diode D and an integrating circuit consisting of a resistor R1 and a capacitor C. Note that the reference numeral 2 indicates the cathode of the silicon-controlled rectifying element SCR, and the reference numeral 2 indicates a load such as a lamp.

このような状態において、変圧器■]の二次側にダイオ
ードD1抵抗R1コンデンサCのない場合を考えてみる
と、シリコン制御整流素子SCRの陽極Aに印加される
電圧と、ゲートGに印加される電圧とは、第2図(a)
 、(b)にそれぞれ示されるように、位相が1800
ずれており、シリコン制御整流素子8CRは導通状態と
はならない。
In such a state, if we consider the case where there is no diode D1, resistor R1, and capacitor C on the secondary side of the transformer, the voltage applied to the anode A of the silicon-controlled rectifying element SCR and the voltage applied to the gate G. The voltage shown in Figure 2 (a)
, (b), when the phase is 1800
As a result, the silicon controlled rectifying element 8CR does not become conductive.

ところが、第1図に示すように、ダイオードD1抵抗R
1コンデンサCが変圧器Hの二次側に接続された場合に
は、二次巻線Qに現われる電流は、ダイオードDによっ
て半波整流された後、抵抗Rを介してコンデンサCを充
電する。そのときのコンデンサCの両端に現われる電圧
は第2図(qに示すようになる。同図において、符号J
、に、L。
However, as shown in FIG.
1 When a capacitor C is connected to the secondary side of a transformer H, the current appearing in the secondary winding Q charges the capacitor C via a resistor R after being half-wave rectified by a diode D. The voltage appearing across the capacitor C at that time is as shown in Figure 2 (q).
, to L.

MlNlo、Pは、何れも交流信号の位相位置を示し、
符号TOはシリコン制御整流素子SCRのゲートトリガ
ー電圧を示す。また、符号VM、V1+、■0は、それ
ぞれ位相位置M1N、0において、第1図におけるスイ
ッチSをオンした時のコンデンサC′の電圧変化を示し
ており、他の位相位置J1に、L、Pにおいてスイッチ
Sをオンした場合にはVMと同じになる。
MlNlo, P both indicate the phase position of the AC signal,
The symbol TO indicates the gate trigger voltage of the silicon controlled rectifier SCR. Further, symbols VM, V1+, and ■0 indicate voltage changes of capacitor C' when switch S in FIG. 1 is turned on at phase positions M1N and 0, respectively, and at other phase positions J1, L, When the switch S is turned on at P, it becomes the same as VM.

ここで、抵抗R1コンデンサCの大きさによって積分時
定数を適当に定めると、電圧VM、VNは、比較的すみ
やかにゲートトリガー電圧TOを越えシリコン制御整流
素子SCRを導通可能な状態にするので、シリコン制御
整流素子SCRの陽極Aに印加される電圧が正側に立上
ると同時にシリコン制御整流素子SCRは導通し負荷2
に電流が流れる。また、電圧■0は、次の半周期を待っ
てゲートトリガー電圧TGを越え、同じくシリコン制御
整流素子SCRの陽極Aに印加される電圧が正側に立上
ると同時にシリコン制御整流素子SCRは導通する。
Here, if the integration time constant is appropriately determined depending on the size of the resistor R1 and the capacitor C, the voltages VM and VN will relatively quickly exceed the gate trigger voltage TO and make the silicon-controlled rectifier SCR conductive. At the same time as the voltage applied to the anode A of the silicon-controlled rectifier SCR rises to the positive side, the silicon-controlled rectifier SCR conducts and the load 2
A current flows through. In addition, the voltage 0 exceeds the gate trigger voltage TG after waiting for the next half cycle, and at the same time the voltage applied to the anode A of the silicon-controlled rectifier SCR rises to the positive side, the silicon-controlled rectifier SCR becomes conductive. do.

このように、第1図におけるスイッチSを交流信号のど
の位相位置においてオンしても、交流電圧の正側への立
上りと同時にシリコン制御整流素子SCRが導通状態と
なるので、交流電圧の零電位からの立上りの瞬間に電源
と負荷とが接続されることになる。
In this way, no matter what phase position of the AC signal the switch S in FIG. The power supply and load are connected at the moment of rise from .

なお、コンデンサCの放電時定数は、コンデンサCの容
量とシリコン制御整流素子SCRのゲートGにおける内
部抵抗によって定まる。
Note that the discharge time constant of the capacitor C is determined by the capacitance of the capacitor C and the internal resistance at the gate G of the silicon-controlled rectifier SCR.

第3図は、他の実施例を示し、シリコン制御整流素子S
CRとダイオードDとをブリッヂ結線とする両波整流回
路を用いた例であって、負荷2には、必ず交流電圧の零
電位からの立上り附近から交流電源の電流が流れるよう
になっている。
FIG. 3 shows another embodiment, in which silicon-controlled rectifier S
This is an example using a double-wave rectifier circuit in which a CR and a diode D are connected in a bridge connection, and the current of the AC power supply always flows through the load 2 from the vicinity of the rise of the AC voltage from zero potential.

第4図は、交流電流をそのまま負荷Zへ流す場合の実施
例を示しており、シリコン制御整流素子S CR1から
負荷Zを通してダイオードD4から帰線へ通電し、次の
半サイクルはシリコン制御整流素子S CR2から負荷
Zを通してダイオードD3に通電し、交流の全サイクル
を負荷乙に供給するものである。
Fig. 4 shows an example in which the alternating current is passed directly to the load Z, and the current is passed from the silicon-controlled rectifier SCR1 to the return line from the diode D4 through the load Z, and in the next half cycle, the current is passed through the silicon-controlled rectifier SCR1 to the return wire. The diode D3 is energized from the SCR2 through the load Z, and the entire cycle of alternating current is supplied to the load B.

その波形は、第5図に示す。即ち、波形(1)は、シリ
コン制御整流素子SCR+から負荷Zを通9ダイオード
D4を経て帰路へ流れた電流であり、波形(2)は、シ
リコン制御整流素子5CR2から負荷2を通りダイオー
ドD3を通って流れた電流である。第6図は、双方向導
通サイリスタSCRを利用した場合の実施例であって、
最低電位のトリガーモードを持つようにトリガー電圧を
供給するものセある。
The waveform is shown in FIG. That is, waveform (1) is the current that flows from silicon-controlled rectifier SCR+ through load Z to the return path via nine diodes D4, and waveform (2) is the current that flows from silicon-controlled rectifier 5CR2 through load 2 and diode D3. This is the current that flowed through it. FIG. 6 shows an embodiment using a bidirectional conduction thyristor SCR,
There are some that supply the trigger voltage to have the lowest potential trigger mode.

なお、以上の実施例では、半波整流素子としてダイオー
ドを用いだが、半波整流作用を有するものであればダイ
オードに限らないことは勿論である。また、積分回路に
おいても、抵抗とコンデンサの組合せに限らず、種々の
変形が可能である。
In the above embodiments, a diode is used as the half-wave rectifying element, but it is needless to say that it is not limited to a diode as long as it has a half-wave rectifying effect. Furthermore, the integration circuit is not limited to the combination of resistors and capacitors, and various modifications are possible.

さらに、制御整流素子としてもシリコン制御整流素子以
外に、一定レベル以上の制御信号によって特定方向への
導通が制御される素子であれば、自由に選択使用し得る
ことは勿論である。
Furthermore, it goes without saying that the controlled rectifying element may be any element other than the silicon controlled rectifying element, as long as the conduction in a specific direction is controlled by a control signal of a certain level or higher.

上記はスイッチ投入の場合であるが、次はスイッチ遮断
の場合である。
The above is the case when the switch is turned on, but the following is the case when the switch is turned off.

交流電流回路を遮断する場合、その遮断した瞬間が交流
のピーク値附近であれば大電流遮断となり、火花放電等
によシ周辺機器に損傷を写えるものである。
When interrupting an alternating current circuit, if the moment of interruption is near the peak value of the alternating current, a large current will be interrupted, and damage to peripheral equipment may occur due to spark discharge or the like.

第7図は、交流の零電位附近の遮断用回路の説明図であ
る。いまスイッチS】は閉じられ、容量CとSCRのゲ
ート内部抵抗による時定数を持つ積分回路に、アノード
と逆相の半波整流の逆相電圧が第8図Cの波形のように
印加され、SCRは導通である。電流を遮断するには、
ゲート制御用電圧供給スイッチS+を開くことによって
積分回路の蓄積電圧が第8図Cのように減少する。ゲー
ト電圧がトリガー電圧TG以下になると通電中の半サイ
クルだけでSCRは通電を終了し、次の立上りからは不
導通となる為に、SCRの電流は第8図Eの斜線部の波
形のように零電位附近で電流遮断となる。
FIG. 7 is an explanatory diagram of a circuit for interrupting AC near zero potential. Now, the switch S] is closed, and a half-wave rectified half-wave rectified voltage of opposite phase to the anode is applied to the integration circuit having a time constant determined by the capacitance C and the internal resistance of the gate of the SCR, as shown in the waveform shown in Figure 8C. SCR is conductive. To interrupt the current,
By opening the gate control voltage supply switch S+, the accumulated voltage of the integrating circuit is reduced as shown in FIG. 8C. When the gate voltage becomes lower than the trigger voltage TG, the SCR stops energizing after only half a cycle, and becomes non-conducting from the next rising edge. Therefore, the SCR current has a waveform as shown in the shaded area in Figure 8E. The current is cut off near zero potential.

第8図Aの波形は、S’CRアノードAの交流電圧、B
の波形はゲート駆動用逆相電圧、Cは積分回路の整流電
圧波形である。
The waveforms in FIG. 8A are the AC voltage of S'CR anode A, B
The waveform C is the reverse phase voltage for gate driving, and C is the rectified voltage waveform of the integrating circuit.

第9図は、電流幹線に制御整流素子8CR・1とSCR
,2を逆向きに2個接続し、全波交流を通電するように
した回路である。
Figure 9 shows the control rectifier 8CR/1 and SCR on the current main line.
, 2 are connected in opposite directions to supply full-wave alternating current.

スイッチS1を閉じ、次にSを閉じるとゲート用電源ト
ランスHに電流が供給され、ダイオードD1によ、すC
1に充電され、5CRIは導通となる。次の瞬間にダイ
オードD2によりコンデンサC2が充電され、S CR
2も導通状態となり、第10図の波形のように全交流が
流れる。
When the switch S1 is closed and then S is closed, current is supplied to the gate power transformer H, and the current is supplied to the gate power transformer H through the diode D1.
It is charged to 1 and 5CRI becomes conductive. At the next instant, capacitor C2 is charged by diode D2, and S CR
2 also becomes conductive, and all alternating current flows as shown in the waveform of FIG.

電流遮断のときは、ゲート制御用電源トランスHのスイ
ッチS1を開くと、コンデンサC1、C2の電荷放電に
よってゲートの非トリガー電圧以下となる為にサイリス
タは不導通となる。
When the current is cut off, when the switch S1 of the power transformer H for gate control is opened, the thyristor becomes non-conductive because the voltage becomes lower than the non-trigger voltage of the gate due to the charge discharge of the capacitors C1 and C2.

すなわち、交流電流の立下り零点で通電は終了し、電流
は遮断されたこととなる。第10図の波形のF点におい
て電流は遮断されることになる。
That is, energization ends at the falling zero point of the alternating current, and the current is cut off. The current is cut off at point F of the waveform in FIG.

第11図は三相モーターに利用したものであって、3つ
の幹線にそれぞれSCR制御素子を利用したものであり
、幹線電路は閉じたままで制御ゲート用電源の開閉だけ
によって三相モーターの運転、停止を電流の立上り点か
ら行うものである。
Figure 11 shows an example of a three-phase motor that uses SCR control elements for each of the three main lines.The main circuit remains closed and the three-phase motor can be operated by simply opening and closing the power supply for the control gate. The stop is performed from the rising point of the current.

以上述べたように、本発明の導通と遮断装置によれば、
数アンペアから致方アンペアの犬゛醒流を交流の立上り
直後にスイッチオンとして負荷に供給することが可能と
なるのである。また電流を遮断するときは制御用ゲート
電源を遮断することによって電流の立下りの零電位附近
で本電流が遮断されることになり火花の発生がない。従
って、本発明による時には、従来使用されていた大容量
の受電装置を必要とせず、装置が簡単となると共に、ス
イッチオンに際して徐々に電圧を上げる必要もなく、操
作も簡単である実益を有し、しかも電流を流す製品に過
大な電流が流れる恐れもないので、その製品の寿命を延
長することができる実益を有する。
As described above, according to the conduction and disconnection device of the present invention,
This makes it possible to supply a current of several amperes to a maximum of amperes to the load by turning on the switch immediately after the start-up of the alternating current. Further, when cutting off the current, by cutting off the control gate power supply, the main current is cut off near zero potential at the fall of the current, and no sparks are generated. Therefore, according to the present invention, there is no need for a conventionally used large-capacity power receiving device, the device is simple, there is no need to gradually increase the voltage when switching on, and the operation is simple. Moreover, since there is no fear that an excessive current will flow through the product, it has the practical benefit of extending the life of the product.

このようなことから、本発明の導通と遮断装置は、発電
所、変電所を始めとする大容量の電流を必要とする工場
、コンピューター設備などにおける各種装置、或は各種
競技場、公園、遊園地などにおける大電流を必要とする
大型照明装置、さらには、冷蔵庫、冷暖房装置、空調装
置などのようにスイッチが自動的に作動して電流が常に
断続的に供給される各種電気装置などに使用すれば極め
て効果的である。
For this reason, the conduction and disconnection device of the present invention can be used in various devices such as power plants, substations, factories that require large amounts of current, computer equipment, etc., as well as various stadiums, parks, and amusement parks. Used in large lighting equipment that requires large currents such as in the ground, as well as various electrical equipment such as refrigerators, air conditioning equipment, air conditioners, etc., where switches operate automatically and current is constantly supplied intermittently. If you do, it will be extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の実施例を示し、第1図は基本回路図、第
2図(a)は交流波形とスイッチを入れる時間との関係
を示す図、第2図(b)は変圧器の二次巻線に現われる
波形図、第2図(C)はコンデンサの電圧波形図、第3
図は制御整流素子をブリッヂに組んだ場合の回路図、第
4図は負荷に交流を直接供給する場合の回路図、第5図
は第4図の回路図における場合の出力波形図、第6図は
双方向導通サイリスタを利用した場合の回路図である。 第7図は遮断の説明図、第8図は遮断時の波形を示す。 第9図は交流全波通流用スイッチ回路、第10図はその
出力波形、第11図は三相モーターのスイッチ回路に利
用した図である。 図中の符号を説明すれば、次の通シである。 ACは交流電源   Sはスイッチ SCRは制御整流素子  Hは変圧器 Pは変圧器−次巻線  Qは変圧器二次巻線りはダイオ
ード   Rは抵 抗 Cはコンデンサ   2は負 荷 特許出願人 り3rgI 寺 4 @ Δ 才5 図 芽ItJ!g 手続補正書 昭和58年8月18日 特許庁長官若杉和夫殿 1 事件の表示 昭和58年特許願第38808号 2 発明の名称 交流電流の零電位附近の導通・遮断装置3、補正をする
者 事件との関係   特許出願人 4、補正の対象 願書及び明細書全文 5 補正の内容 手続補正書 1 事件の表示 昭和58年特許願第38808号 2、発明の名゛椋 交流電流の零電位附近の導通・遮断装置3 補正をする
者 4、補正の対象 図       面 5 補正の内容
The figures show an embodiment of the present invention, in which Figure 1 is a basic circuit diagram, Figure 2 (a) is a diagram showing the relationship between AC waveform and switch-on time, and Figure 2 (b) is a diagram of a transformer. The waveform diagram appearing in the secondary winding, Figure 2 (C) is the voltage waveform diagram of the capacitor, and Figure 3
The figure shows a circuit diagram when a controlled rectifier is assembled into a bridge, Figure 4 is a circuit diagram when alternating current is directly supplied to a load, Figure 5 is an output waveform diagram when the circuit diagram in Figure 4 is used, and Figure 6 is a circuit diagram when a control rectifier is assembled into a bridge. The figure is a circuit diagram when a bidirectional conduction thyristor is used. FIG. 7 is an explanatory diagram of the shutoff, and FIG. 8 shows the waveform at the time of shutoff. FIG. 9 shows a switch circuit for full-wave AC current flow, FIG. 10 shows its output waveform, and FIG. 11 shows a switch circuit used in a three-phase motor. The symbols in the figure are explained as follows. AC is an alternating current power source S is a switch SCR is a controlled rectifier element H is a transformer P is a transformer-secondary winding Q is a diode in the secondary winding of the transformer R is a resistor C is a capacitor 2 is a load Patent applicant 3rgI Temple 4 @ Δ Sai 5 Zume ItJ! g Procedural amendment dated August 18, 1980 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1 Indication of the case Patent Application No. 38808 of 1988 2 Name of the invention Conduction/interruption device for alternating current near zero potential 3 Person making the amendment Relationship to the case Patent applicant 4, Application subject to amendment and full text of specification 5 Contents of amendment Procedural amendment 1 Indication of case Patent Application No. 38808 filed in 1982 2 Name of the invention Continuity/interruption device 3 Person making the correction 4, drawing to be corrected 5 Contents of the correction

Claims (1)

【特許請求の範囲】[Claims] 電流回路に設けた制御整流素子の陽極電圧と逆相の電圧
を制御電極へ半波整流回路と積分回路を介して供給し、
閉回路の一定時間後に、制御電極用電圧がトリガー電圧
に達し、次の立上り電圧から導通状態となり、制御整流
素子が導通状態時において前記半波整流回路と積分回路
への電力供給を遮断することによって、一定時間後に制
御電圧が非トリガー電位以下となり、制御整流素子の陽
極電圧の立下りの零点に達しだとき非導通状態となるよ
うにした交流電流の零電位附近の導通・遮断装置。′
A voltage of the opposite phase to the anode voltage of the control rectifier provided in the current circuit is supplied to the control electrode via a half-wave rectifier circuit and an integrating circuit,
After a certain period of time in the closed circuit, the voltage for the control electrode reaches the trigger voltage and becomes conductive from the next rising voltage, and when the control rectifier is in the conductive state, the power supply to the half-wave rectifier circuit and the integrating circuit is cut off. A conduction/cutoff device for alternating current near zero potential, which becomes non-conductive when the control voltage becomes below the non-trigger potential after a certain period of time and reaches the zero point of the fall of the anode voltage of the control rectifier. ′
JP3880883A 1983-03-08 1983-03-08 Conducting and interrupting device near zero potential of accurrent Granted JPS59163724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3880883A JPS59163724A (en) 1983-03-08 1983-03-08 Conducting and interrupting device near zero potential of accurrent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3880883A JPS59163724A (en) 1983-03-08 1983-03-08 Conducting and interrupting device near zero potential of accurrent

Publications (2)

Publication Number Publication Date
JPS59163724A true JPS59163724A (en) 1984-09-14
JPH059962B2 JPH059962B2 (en) 1993-02-08

Family

ID=12535584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3880883A Granted JPS59163724A (en) 1983-03-08 1983-03-08 Conducting and interrupting device near zero potential of accurrent

Country Status (1)

Country Link
JP (1) JPS59163724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203393A (en) * 1986-03-04 1987-09-08 Citizen Watch Co Ltd Laser diode optical output stabilizing circuit
JPH04101334U (en) * 1991-02-18 1992-09-01 日新電機株式会社 Synchronous control device for switchgear
JPH05174675A (en) * 1991-12-18 1993-07-13 Aichi Electric Co Ltd Ac load switching device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130168A (en) * 1973-04-11 1974-12-13
JPS50735A (en) * 1973-05-02 1975-01-07
JPS5017572A (en) * 1973-06-14 1975-02-24
JPS534754U (en) * 1976-06-30 1978-01-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130168A (en) * 1973-04-11 1974-12-13
JPS50735A (en) * 1973-05-02 1975-01-07
JPS5017572A (en) * 1973-06-14 1975-02-24
JPS534754U (en) * 1976-06-30 1978-01-17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203393A (en) * 1986-03-04 1987-09-08 Citizen Watch Co Ltd Laser diode optical output stabilizing circuit
JPH04101334U (en) * 1991-02-18 1992-09-01 日新電機株式会社 Synchronous control device for switchgear
JPH05174675A (en) * 1991-12-18 1993-07-13 Aichi Electric Co Ltd Ac load switching device

Also Published As

Publication number Publication date
JPH059962B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
JPH01202170A (en) Power saving circuit
US5124875A (en) Overcurrent protection apparatus
CN100405729C (en) Power supply with surge voltage control functions
JP3871345B2 (en) Power circuit
JPH1197747A (en) Lighting circuit for ac light emitting diode
JPS59163724A (en) Conducting and interrupting device near zero potential of accurrent
MXPA96004162A (en) Low power power supply, with phase control out of li
US6522106B2 (en) Automatic voltage regulating system for engine generator
JP2686121B2 (en) Earth leakage breaker
JPH0662577A (en) Power device
JPH0452896Y2 (en)
JP3615052B2 (en) Power circuit
JPS59157725A (en) Conduction phase controller of ac signal
JP3096236B2 (en) Power supply
JP2941513B2 (en) Undervoltage trip device
KR200257920Y1 (en) Rectifying circuit
JPS5842994B2 (en) Horizontal oscillation circuit power supply
JPS6091862A (en) Constant-current preventing circuit of switching regulator
JP3281052B2 (en) Power circuit
SU1381647A1 (en) Device for limiting the switching current inrush of single-phase transformer
JP3605970B2 (en) Magneto ignition device
SU943902A2 (en) Device for turning-on switch
JPH11285253A (en) Power supply
SU978270A1 (en) Device for excitation protecting of substations with voltage dividers
JP2792023B2 (en) Contactless ignition device for internal combustion engine