JPS5916341A - Manufacture of substrate for integrated circuit - Google Patents

Manufacture of substrate for integrated circuit

Info

Publication number
JPS5916341A
JPS5916341A JP12554282A JP12554282A JPS5916341A JP S5916341 A JPS5916341 A JP S5916341A JP 12554282 A JP12554282 A JP 12554282A JP 12554282 A JP12554282 A JP 12554282A JP S5916341 A JPS5916341 A JP S5916341A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
substrate
oxide film
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12554282A
Other languages
Japanese (ja)
Other versions
JPS6244412B2 (en
Inventor
Akinobu Satou
佐藤 倬暢
Seiji Kato
誠司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI
Original Assignee
JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI filed Critical JIDO KEISOKU GIJUTSU KENKIYUUKUMIAI
Priority to JP12554282A priority Critical patent/JPS5916341A/en
Publication of JPS5916341A publication Critical patent/JPS5916341A/en
Publication of JPS6244412B2 publication Critical patent/JPS6244412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/7627Vertical isolation by full isolation by porous oxide silicon, i.e. FIPOS techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76281Lateral isolation by selective oxidation of silicon

Abstract

PURPOSE:To obtain a substrate for an integrate circuit of small floating capacity by a method wherein single crystal Si is partially oxidized, and a part of an insulation layer due to an oxide film is melted, resulting in the formation of cavities. CONSTITUTION:The single crystalline Si 10 is partially changed into P type one, and the single crystal Si 10 is anodically formed in hydrogen fluoride HF in the state that the part except for the converted part is covered with an Si nitride film 14. This anodic formation changes the P type single crystal Si regions 15 into porous Si. When anodic formation is continued over the time enough to anodically form the P type regions, the HF comes to melt the Si oxide film 11 at the bottom. Then, cavities are formed in the Si oxide film 11 at the part wherein the HF penetrates. Next, the single crystal Si 15 turned porous is changed into an Si oxide 16 by oxidation. This Si oxide 16 serves as an insulation isolation region which surrounds the island of single crystal Si.

Description

【発明の詳細な説明】 本発明は、誘電体絶縁分離による集積回路用基板の製造
方法に係るもので、特に、シリコン酸化物によって絶縁
分離領域が形成される集積回路用基板の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an integrated circuit substrate using dielectric isolation, and more particularly to a method for manufacturing an integrated circuit substrate in which an isolation region is formed using silicon oxide. It is.

半導体集積回路における素子の分離の方法には種々ある
が、最も一般的に用いられているものはpn接合分離で
ある。しかし、近時、誘電体絶縁分離が、耐圧、容量、
スピード、リークなどの特性の面においてP)J接合よ
りも優れているので、その利用が考えられている。しか
し、この誘電体絶縁分離においては、工数が多くなるこ
と、歩留が低下すること、などが実用化の上で大きな問
題となっている。
Although there are various methods for isolating elements in semiconductor integrated circuits, the most commonly used method is pn junction isolation. However, in recent years, dielectric isolation has improved
Since it is superior to the P)J junction in terms of characteristics such as speed and leakage, its use is being considered. However, in this dielectric insulation separation, there are major problems in practical use, such as an increase in the number of man-hours and a decrease in yield.

最も多く利用されている誘電体絶縁分離の方法は、単結
晶シリコン基板にeを形成し、その上に酸化膜を形成し
た後に多結晶シリコンを1200℃近い温度で約400
μm堆積させるものである。
The most commonly used dielectric isolation method is to form a dielectric layer on a single-crystal silicon substrate, form an oxide film on it, and then heat polycrystalline silicon to about 400℃ at a temperature close to 1200℃.
It is used to deposit micrometers.

このときの熱によってウェハが反ったり、損傷したシす
る問題があり、まだそのために、シリコン基板全研磨し
たときに単結晶シリコンの島が設計通りにできず、削り
過ぎと外ったり、完全に分離されなかったりしてしまう
ことが多い。
There is a problem that the wafer may warp or be damaged due to the heat generated at this time, and as a result, when the silicon substrate is completely polished, islands of single crystal silicon cannot be formed as designed, and may come off due to excessive polishing, or may not be completely removed. Often they are not separated.

上記のような誘屯体絶縁分離技術における問題を解決す
る方法についても種々前えら1tでいる。
There are various methods to solve the problems in the dielectric isolation technology as described above.

その一つに、溝を形成せずに、単結晶シリコンを部分的
に絶縁物に変換して絶縁分離領域を形成する方法がある
One method is to partially convert single crystal silicon into an insulator to form an isolation region without forming a trench.

上記の絶縁分離領域の形成方法の改良てついて、本発明
者はすでに行頭11i’357−67474において陽
極化成を利用して単結晶シリコンの島の側面を囲む誘1
1体絶縁分離領域を形成し、底面の絶縁層と接続するこ
とによって単結晶シリコンの島を分離する方法を提業し
ている。
Regarding the improvement of the above-mentioned method of forming an insulating isolation region, the present inventor has already proposed a method for forming an insulating layer surrounding the side surface of a monocrystalline silicon island by using anodization at the beginning of the article 11i'357-67474.
The company proposes a method for isolating single-crystal silicon islands by forming monolithic isolation regions and connecting them to the bottom insulating layer.

本発明は、この単結晶シリコン全7ijL分的に酸化す
ることによって絶縁分離領域を形成する集積回路用基板
の製造方法の改良に係るもので、浮遊容量の小さな集積
回路用基板を得ることを目的とする。
The present invention relates to an improvement in a method for manufacturing an integrated circuit substrate in which an insulating isolation region is formed by oxidizing the entire 7ijL of single crystal silicon, and its purpose is to obtain an integrated circuit substrate with small stray capacitance. shall be.

本発明忙よる集積回路用基板の製造方法は、単結晶シリ
コンを部分的に酸化するとともだ酸化膜による絶縁層の
一部を溶かして空洞を形成することによって、上記の目
的を達成するものである。
The method of manufacturing an integrated circuit substrate according to the present invention achieves the above object by partially oxidizing single crystal silicon and melting a portion of the insulating layer formed by the oxide film to form a cavity. be.

以下、図面に従って、本発明の実施例につき説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の実施例を示す正面断面図である。N
型の導電性を有する単結晶シリコン基板100表面を研
磨して平坦とする(a)、単結晶シリコン基板10はN
型に限られず、P型であってもはy同様な工程を経て集
積回路用基板が得られる。
FIG. 1 is a front sectional view showing an embodiment of the present invention. N
The surface of a single crystal silicon substrate 100 having type conductivity is polished to make it flat (a), the single crystal silicon substrate 10 is made of N
It is not limited to the type, but even if it is P type, an integrated circuit substrate can be obtained through the same process.

単結晶シリコン基板100表面に5iOzから成るシリ
コン酸化膜11を形成する(b)。このシリコン酸化膜
は、単結晶シリコン基板1oと後に形成される多結晶シ
リコンとを絶縁し分離する層となる。
A silicon oxide film 11 of 5 iOz is formed on the surface of the single crystal silicon substrate 100 (b). This silicon oxide film becomes a layer that insulates and separates the single crystal silicon substrate 1o from the polycrystalline silicon that will be formed later.

シリコン酸化膜11の上にIl]1sN4のシリコン窒
化膜12を形成しておく(c)。とのシリコン窒化膜は
シリコン酸化膜11とともに絶縁層となるだけでなく、
後の工程において多結晶シリコンがフッ化水素に侵され
るのを防止する役割を果たす。但゛シ、このシリコン窒
化膜は必ずも形成する必要はない。
A silicon nitride film 12 of Il]1sN4 is formed on the silicon oxide film 11 (c). The silicon nitride film not only serves as an insulating layer together with the silicon oxide film 11, but also
It plays a role in preventing polycrystalline silicon from being attacked by hydrogen fluoride in later steps. However, it is not always necessary to form this silicon nitride film.

シリコン窒化膜120表面にシリコンを気相成長させて
、多結晶シリコン13f1:形成する。多結晶シリコン
13はシリコンウェハを支持するのに十分な厚み、例え
ば3インチウェハの場合には約400μmとなるように
形成される(a0単結晶シリコン基板10を裏面から研
磨して県債回路素子を形成するのに適した厚みとする。
Silicon is vapor-phase grown on the surface of the silicon nitride film 120 to form polycrystalline silicon 13f1. The polycrystalline silicon 13 is formed to have a thickness sufficient to support a silicon wafer, for example, approximately 400 μm in the case of a 3-inch wafer (the a0 single crystal silicon substrate 10 is polished from the back side to form a circuit element). The thickness is suitable for forming.

この単結晶シリコンは通常5〜5oμmの厚みとされる
(e)。
This single crystal silicon usually has a thickness of 5 to 5 μm (e).

単結晶シリコン1oの表面を5iBN4のシリコン窒化
膜14で覆い、分離領域となる部分のみをエツチングし
て除去する(ト)。この場合、窒化シリコン膜14の窓
は、分離領域の面積よりも小さくしておく。
The surface of the single crystal silicon 1o is covered with a silicon nitride film 14 of 5iBN4, and only the portion that will become the isolation region is removed by etching (T). In this case, the window of the silicon nitride film 14 is made smaller than the area of the isolation region.

Nm基板を用いた場合には、陽極化成を容易にするだめ
に、窒化シリコン膜14をマスクとしてP型の不純物を
単結晶シリコン1oに拡散または注入して、表面からシ
リコン酸化膜11に達するP型領域15を形成しておく
(ω。基板がP型である場合には、との工程は省略する
ととができる。
When a Nm substrate is used, in order to facilitate anodization, P-type impurities are diffused or implanted into the single crystal silicon 1o using the silicon nitride film 14 as a mask, and P-type impurities reach the silicon oxide film 11 from the surface. A mold region 15 is formed (ω). If the substrate is of P type, steps of and can be omitted.

単結晶シリコン10が部分的にP型に変換され、それ以
外の部分がシリコン窒化膜14で覆われた状態で、単結
晶シリコン1Ot−フッ化水素(H7)中で陽極化成す
る(→。この陽極化酸洗よって、P型の単結晶シリコン
領域15は多孔質シリコンとなる。P型の領域を陽極化
成するのに十分な時間以上に陽極化成を続けると、フッ
化水素は底面の酸化シリコン膜11を溶かすようになる
。そしてフッ化水素の浸透した部分の酸化シリコン模1
1には空洞が形成されることに2よる。
With the single crystal silicon 10 partially converted to P type and the other parts covered with the silicon nitride film 14, the single crystal silicon 10 is anodized in 1Ot-hydrogen fluoride (H7) (→. This By anodizing and pickling, the P-type single-crystal silicon region 15 becomes porous silicon.If anodization is continued for a period longer than sufficient to anodize the P-type region, the hydrogen fluoride will dissolve into the silicon oxide on the bottom surface. It begins to dissolve the film 11.Then, the silicon oxide model 1 in the area where hydrogen fluoride has penetrated
It is based on 2 that a cavity is formed in 1.

次に多孔質化した単結晶シリコン15を酸化してシリコ
ン酸化物゛16とする(5.)。このシリコン酸化物1
6が単ザ1吉晶シリコンの島を囲む絶縁分離領域となる
Next, the porous single crystal silicon 15 is oxidized to form silicon oxide 16 (5.). This silicon oxide 1
6 is an insulating isolation region surrounding the island of single crystal silicon.

上記のようにして、単結晶シリコンの島が、側面はシリ
コン酸化物により、底面は空洞を有するシリコン酸化膜
によL・、囲まれて形成され誘電体によって絶縁され、
分離された、イも積回路用基板が得られる。
As described above, an island of single crystal silicon is formed surrounded by silicon oxide on the side surfaces and a silicon oxide film having a cavity on the bottom surface, and is insulated by a dielectric material,
A separated integrated circuit board is obtained.

本発明による集積回路用基板の製造方法(d前記の例に
限られず、種々の実施例が考えられる。以下、それらの
うちの主要なものについてR1?1明しておく。
The method for manufacturing an integrated circuit board according to the present invention (d) is not limited to the above-mentioned example, and various embodiments can be considered.The main ones among them will be explained below.

第2図は、本発明の他の実施例の正面断面図であるが、
これはシリコン酸化膜の両側にシリコン窒化膜を形成す
る場合を示しだものである。すなわち、単結晶シリコン
基板20を予めシリコン窒化膜22で覆い、絶縁領域の
形成パターンに従って窓を形成して分く(8)。次にシ
リコン酸化j漠21を形成しく1〕)、その上をシリコ
ン窒化膜22′で覆う。この後のプロセスは第1図の場
合と同じである。このようにして得られる#4.積回路
用基板では、シリコン酸化j漠21が二つのシリコン窒
化膜によって挾まれ、しかも、空洞が形成される構造と
なる(1)。これによって、底面の絶縁層が多層となる
とともに、多孔質シリコンの酸化の際に単結晶シリコン
の底面が酸化されることを防止できる。
FIG. 2 is a front sectional view of another embodiment of the present invention,
This shows the case where silicon nitride films are formed on both sides of a silicon oxide film. That is, the single-crystal silicon substrate 20 is covered in advance with a silicon nitride film 22, and windows are formed and separated according to the formation pattern of the insulating regions (8). Next, a silicon oxide layer 21 is formed (1), and the silicon nitride layer 22' is covered thereon. The subsequent process is the same as in FIG. #4 obtained in this way. The integrated circuit board has a structure in which a silicon oxide film 21 is sandwiched between two silicon nitride films, and a cavity is formed (1). As a result, the insulating layer on the bottom surface becomes multilayered, and the bottom surface of the single crystal silicon can be prevented from being oxidized during oxidation of the porous silicon.

本発明によれば、底面の分離領域が8102ではなく、
空洞をもったシリコン酸化膜によって形成されるので、
浮遊容量を大j111+;に低下さぜることができる。
According to the present invention, the separation area on the bottom surface is not 8102,
It is formed from a silicon oxide film with cavities, so
The stray capacitance can be reduced to a large value j111+;.

すかわち、容量CはC−λ−で表わされる(εけ誘α率
、8は面積、dは距1’!iA )が、シリコンの誘眠
率12.5i02の誘電率3.8に対して空気の誘電率
は1であるので、空洞を形成することによって容量Oを
大1清に低減することができる。空洞を理想的に形成す
れば、PH接合分離の!シ)倉の1/12、従来の誘j
(1体分離の1/3.sとすることができる。
In other words, the capacitance C is expressed as C-λ- (ε and α constant, 8 is the area, and d is the distance 1'!iA), whereas the dielectric constant of silicon is 12.5i02 and the dielectric constant is 3.8. Since the dielectric constant of air is 1, the capacitance O can be reduced by a factor of 1 by forming a cavity. If the cavity is formed ideally, PH junction separation can be achieved! C) 1/12 of the warehouse, conventional kidnapping
(It can be 1/3.s of one body separation.

また、シリコン酸1ヒ膜をシリコン窒化膜で挾まれ、か
つ空洞どなるようにtJtば、絶縁層(誘醍体層)が多
層となって容1:11をより小さくする効果もあり、ま
た、酸化の際に空洞が51o2が成長して埋められるこ
とを防止できる利点もめる。
In addition, if the silicon oxide film is sandwiched between silicon nitride films and the cavity is tJt, the insulating layer (dielectric layer) becomes multilayered, which has the effect of making the capacitance 1:11 smaller. It also has the advantage of preventing cavities from being filled by 51o2 growth during oxidation.

更に、本発明においてVよ、空洞を形成するための工程
を特別に付加する必要もなく、陽極化成の工程において
同時にできるので、特別の装置R,を必要としない。
Furthermore, in the present invention, there is no need to add a special process for forming cavities, and since the process can be performed simultaneously with the anodization process, no special equipment R is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す正ffi?断面
凹である。 in、20・・・・・・gl、 H1晶シリコン。 11.21・・・・・・シリコン酸化膜。 12.14.22・・・・・・シリコン窒化膜。 15・・・・・・多孔質シリコン。 16・・・・・・シリコン酸化物 特:Fl’出願人  自動耐測技術研究組合代哩人 弁
理士  大 1)  優 第  1 図
FIGS. 1 and 2 show an embodiment of the present invention. It has a concave cross section. in, 20...gl, H1 crystal silicon. 11.21...Silicon oxide film. 12.14.22...Silicon nitride film. 15...Porous silicon. 16...Silicon oxide special: Fl' Applicant, Representative of Automatic Testing Technology Research Association, Patent Attorney, University 1) Yu No. 1

Claims (1)

【特許請求の範囲】[Claims] 単結晶シリコン基板の一表面にシリコン酸化膜を形成1
〜、該シリコン酸化膜上に多結晶シリコン層を形成し、
該単結晶シリコン基板t−裏面から研磨して所定のj厚
さとし、該研磨された単結晶シリコン基板の表面の一部
をシリコン窒化膜でヤ荒い、該シリコン窒化膜をマスク
としてフッ化水素中で該単結晶シリコンを陽極化成して
、該シリコン窒化膜に覆われない部分とその下の領域を
多孔質化するとともに該シリコン酸化膜の一部をフッ化
水素で溶かして単結晶シリコン基板と多結晶シリコン層
の間に空洞を形成し、蚊多孔質化された単結晶シリコン
を酸化してシリコン酸化物を形成することによって、該
シリコン酸化物と少なくとも一部が空洞とΔつだシリコ
ン酸化膜によって分離された単結晶シリコンの島を形成
することを特徴とする集積回路用基板の一製造方法。
Forming a silicon oxide film on one surface of a single crystal silicon substrate 1
~, forming a polycrystalline silicon layer on the silicon oxide film,
The single-crystal silicon substrate is polished from the back side to a predetermined thickness, a part of the surface of the polished single-crystal silicon substrate is roughened with a silicon nitride film, and the silicon nitride film is used as a mask in hydrogen fluoride. Then, the single crystal silicon is anodized to make the portion not covered with the silicon nitride film and the area below it porous, and a part of the silicon oxide film is dissolved with hydrogen fluoride to form a single crystal silicon substrate. By forming a cavity between the polycrystalline silicon layers and oxidizing the porous single crystal silicon to form silicon oxide, the silicon oxide is formed such that at least a portion of the silicon oxide has a Δ-contact with the cavity. A method of manufacturing a substrate for an integrated circuit, characterized by forming islands of single crystal silicon separated by a membrane.
JP12554282A 1982-07-19 1982-07-19 Manufacture of substrate for integrated circuit Granted JPS5916341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12554282A JPS5916341A (en) 1982-07-19 1982-07-19 Manufacture of substrate for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12554282A JPS5916341A (en) 1982-07-19 1982-07-19 Manufacture of substrate for integrated circuit

Publications (2)

Publication Number Publication Date
JPS5916341A true JPS5916341A (en) 1984-01-27
JPS6244412B2 JPS6244412B2 (en) 1987-09-21

Family

ID=14912768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12554282A Granted JPS5916341A (en) 1982-07-19 1982-07-19 Manufacture of substrate for integrated circuit

Country Status (1)

Country Link
JP (1) JPS5916341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829971B2 (en) 2007-12-14 2010-11-09 Denso Corporation Semiconductor apparatus
US8148809B2 (en) 2009-01-15 2012-04-03 Denso Corporation Semiconductor device, method for manufacturing the same, and multilayer substrate having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829971B2 (en) 2007-12-14 2010-11-09 Denso Corporation Semiconductor apparatus
US8148809B2 (en) 2009-01-15 2012-04-03 Denso Corporation Semiconductor device, method for manufacturing the same, and multilayer substrate having the same

Also Published As

Publication number Publication date
JPS6244412B2 (en) 1987-09-21

Similar Documents

Publication Publication Date Title
US4888300A (en) Submerged wall isolation of silicon islands
US4097890A (en) Low parasitic capacitance and resistance beamlead semiconductor component and method of manufacture
JPS6052037A (en) Manufacture of semiconductor device
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
EP0071205B1 (en) Method for forming high density dielectric isolation
JP3176072B2 (en) Method of forming semiconductor substrate
JPH07118505B2 (en) Method for manufacturing dielectric isolation substrate
US4193836A (en) Method for making semiconductor structure
JPH0799295A (en) Fabrication of semiconductor substrate, and semiconductor substrate
JPS615544A (en) Manufacture of semiconductor device
JP2699359B2 (en) Semiconductor substrate manufacturing method
US3974006A (en) Method of obtaining high temperature resistant assemblies comprising isolated silicon islands bonded to a substrate
JPS5916341A (en) Manufacture of substrate for integrated circuit
JPS6155252B2 (en)
JP2750163B2 (en) Method of manufacturing dielectric separated semiconductor device
US4411060A (en) Method of manufacturing dielectrically-isolated single-crystal semiconductor substrates
JPS5939044A (en) Manufacture of substrate for insulating isolation integrated circuit
JPS58197740A (en) Manufacture of substrate for integrated circuit
JPS61144036A (en) Semiconductor device and manufacture thereof
JPS6244415B2 (en)
JPS5918657A (en) Manufacture of substrate for integrated circuit
JPS5963738A (en) Manufacture of dielectric isolation substrate
JPS6244413B2 (en)
JPS5918656A (en) Manufacture of substrate for integrated circuit
JPS6221269B2 (en)