JPS59162615A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPS59162615A
JPS59162615A JP3762883A JP3762883A JPS59162615A JP S59162615 A JPS59162615 A JP S59162615A JP 3762883 A JP3762883 A JP 3762883A JP 3762883 A JP3762883 A JP 3762883A JP S59162615 A JPS59162615 A JP S59162615A
Authority
JP
Japan
Prior art keywords
grooves
magnetization
antiferromagnetic material
magnetic field
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3762883A
Other languages
Japanese (ja)
Other versions
JPH048845B2 (en
Inventor
Nobuyuki Hayama
信幸 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3762883A priority Critical patent/JPS59162615A/en
Publication of JPS59162615A publication Critical patent/JPS59162615A/en
Publication of JPH048845B2 publication Critical patent/JPH048845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/399Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To extend a region accompanied with magnetizing rotation without requiring the working of minute grooves by providing parallel and linear projecting parts or recessed parts on the surface of a substrate constituting a ferromagnetic magneto- resistance effect element (MR element) or the surface of an antiferromagnetic material which is brought into contact with the MR element. CONSTITUTION:Grooves 3 are formed in parallel on the surface of a substrate 2, and an MR element 1' is formed on the substrate 2. An antiferromagnetic material 4 which performs of direct exchanging action with the MR device is laminated on the element 1'. Consequently, if an axis E.A of easy magnetization of the element 1' is set to the direction of grooves 3, the direction of magnetization of an atom layer, which forms an interface with the MR device, of the antiferromagnetic material 4 is set to the direction of grooves 3. An angle made by the direction of a length l of the element 1' and the direction of grooves 3 is set to a prescribed value theta. Consequently, a sense current I forms the angle theta with grooves 3. Because of the existence of grooves 3, the element 1' is magnetically divided to stripe-shaped MR devices 6 and 7. Consequently, when an external signal magnetic field is applied to the element 1', magnetization M of devices 6 and 7 is rotated smoothly from the start point theta in accordance with the intensity of the external signal magnetic field, and the action of the unstable magnetization M is suppressed.

Description

【発明の詳細な説明】 本発明は磁気記憶媒体に書き込まれた磁気的情報を、い
わゆる磁気抵抗効果を利用して読み出しを行う強磁性磁
気抵抗効果素子(以下、MR素素子子称す)を備えた磁
気抵抗効果ヘッド(以下、MRヘッドと称す)に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a ferromagnetic magnetoresistive element (hereinafter referred to as an MR element) that reads magnetic information written on a magnetic storage medium using a so-called magnetoresistive effect. The present invention relates to a magnetoresistive head (hereinafter referred to as an MR head).

MRヘッドは、磁気記録における記録密度の向上に大き
く貢献するものとして注目されている。
MR heads are attracting attention as a device that greatly contributes to improving recording density in magnetic recording.

しかし、周知の如く、MR氷子を磁気記憶媒体に書き込
まれた磁気的情報に対して、線形応答を呈する高効率の
再生用ヘッドとして用いる場合には、第1図に示す様に
、MR累子1に流すセンス電流■とMR素子の磁化Mの
成す角度を(ρとすると、前記−を略45′に設定する
)(イアス手段を具備しなければならない。
However, as is well known, when an MR ice is used as a highly efficient reproducing head that exhibits a linear response to magnetic information written on a magnetic storage medium, the MR cumulative If the angle formed by the sense current (2) flowing through the element 1 and the magnetization M of the MR element is (rho), the above-mentioned - is set to approximately 45' (earth means must be provided).

従来、前述のバイアス手段を呈する具体的方法に、MR
素子に近接対向(或いは接触)させて、磁気的にノ・−
ドな磁性体、又は電気的良導体を配置し、これらの磁性
体、又は電気的良導体に流す電流から生ずる磁界をバイ
アス磁界としてMR水素子磁化Mの角度6をセンス電流
工と略4.5°に設定する方法が知られている。しかし
、これ等のバイアス方法は比較的大きな磁界を必要とし
、この大きな磁界が磁気記憶媒体上の情報を変化させる
恐れがあった。特に前者の磁気的にハードな磁性体をM
R水素子近接対向(或いは接触)させた場合は、角度6
を厳密に45度に設定するのが困難であり、又、後者め
電気的良導体をMR水素子近接対向(或いは接触)させ
た場合は電気的良導体に比較的大電流を流す必要があり
、従って、M几素子の電気抵抗が熱的ドリフトを起し、
かつ 熱雑音の原因にもなっていた。
Conventionally, a specific method for providing the bias means described above includes MR.
Place it close to (or in contact with) the element and magnetically
A strong magnetic material or a good electrical conductor is placed, and the magnetic field generated by the current flowing through the magnetic material or the good electrical conductor is used as a bias magnetic field, and the angle 6 of the MR hydrogen magnetization M is the sense current angle of approximately 4.5°. There are known ways to set it. However, these biasing methods require relatively large magnetic fields, which can alter the information on the magnetic storage medium. In particular, the former magnetically hard magnetic material is M
When the R hydrogen atoms are closely opposed (or in contact), the angle is 6.
It is difficult to set the angle exactly at 45 degrees, and if the latter electrically conductive material is placed close to (or in contact with) MR hydrogen atoms, it is necessary to flow a relatively large current through the electrically good conductor. , the electrical resistance of the M element causes thermal drift,
It also caused thermal noise.

又、他の公知例として、前述した外部磁界によるバイア
ス法と対照的に、第2図に示す如り、MR水素子長手方
向に流すセンス電流Iに対して、始めからh4R素子の
磁化容易軸EAを略45度に設定する手法がある。この
方法は外部から、バイアス磁界を印加するためのMR水
素子付属するバイができる等の利点がある。この手法を
具体的に実現するには、磁場中蒸着時に生じる誘導磁気
異方性や斜め蒸着法によって生ずる磁気異方性を′fF
ll用して、磁化容易軸E−AをMR水素子長手方向、
RI]ちセンス電流工の流れる方向に対して略45度に
設定せしめる方法が取られている。
In addition, as another known example, in contrast to the bias method using an external magnetic field described above, as shown in FIG. There is a method of setting the EA to approximately 45 degrees. This method has advantages such as the ability to externally attach an MR hydrogen element for applying a bias magnetic field. In order to specifically realize this method, it is necessary to reduce the induced magnetic anisotropy that occurs during deposition in a magnetic field and the magnetic anisotropy that occurs during oblique evaporation to ′fF.
ll, the easy axis of magnetization E-A is the longitudinal direction of the MR hydrogen element,
[RI] A method is adopted in which the sense current is set at approximately 45 degrees with respect to the direction in which the current flows.

しかし通常のこの種のMR水素子表面の清ら25蔦な絶
縁性基板上に、例えば、80 qbN 120 % F
 e(ウェイトパーセント)付近の組成のノく−マロイ
を200及至600;、程度の膜厚tMをもって、長さ
が数10及至100μm1幅Wが数μm及至10μm程
度のパターンに加工されるため、その形状による反磁界
1(d牛4πM5tM/Wは数10zルステッド程度に
巌する。但し、ここでHd&よ膜幅方向への反磁界であ
シ、M、は飽和磁化で8O−N1−20%Fe では約
800e−m−u程度の値をもつ。
However, for example, 80 qbN 120% F
No-Malloy with a composition around e (weight percentage) is processed into a pattern with a film thickness tM of about 200 to 600 mm and a length of several tens to 100 μm and a width W of several μm to 10 μm. Demagnetizing field 1 due to the shape (d4πM5tM/W is about several tens of Rusteds. However, here, Hd is the demagnetizing field in the film width direction, and M is the saturation magnetization of 8O-N1-20%Fe. It has a value of about 800 e-mu.

この場合、磁場中蒸着によって得られる異方性磁界Hk
は数エルステッドのオーダであり、従ってHk<< H
dであるためMR,素子の磁化方向はその目的とすると
ころとは違って、センス電流工と略平行となシ、バイア
ス手段としての効果は認められないものであった。
In this case, the anisotropic magnetic field Hk obtained by deposition in a magnetic field
is of the order of a few Oersteds, so Hk<<H
d, the magnetization direction of the MR element was substantially parallel to the sense current, contrary to its intended purpose, and its effect as a biasing means was not recognized.

又、斜め蒸着法による異方性磁界は数lOエルステッド
の値が得られ、MR水素子磁化容易軸をセンス電流Iの
方向と略45度に設定せしめ得る場合もあるが、異方性
磁界及び磁化容易方向の制御が困難で再現性良くバイア
スできず、又、同時に作製したM几素子間の特性にバラ
ツキが生じ易く、生産性の点で不都合であった。
In addition, the anisotropic magnetic field obtained by the oblique evaporation method has a value of several lO Oersted, and in some cases the MR hydrogen easy magnetization axis can be set at approximately 45 degrees with respect to the direction of the sense current I, but the anisotropic magnetic field and It was difficult to control the direction of easy magnetization, making it impossible to bias with good reproducibility, and variations in characteristics were likely to occur between M-type devices fabricated at the same time, which was disadvantageous in terms of productivity.

−万、前述した諾欠点を解決した、Δ(R素子の長手方
向に流すセンス電流■に対して、始めからMR水素子磁
化容易軸g−A  を略45度に設定せしめる他の手法
として本出願人による「ジョッグMR素子」が特願昭5
7−050586に開示されている。ジョッグMR素子
は1個又は複数個の相互に平行で直線状の凸部又は四部
が設けられた基板上にMR水素子設け、前記凸部又は凹
部によって生ずる形状反磁界を利用し、Mル菓子の磁化
Mとセンス電流工とのなす角θを制御するものである。
- 10,000, this book describes another method of setting the MR hydrogen easy magnetization axis g-A at approximately 45 degrees from the beginning with respect to the sense current flowing in the longitudinal direction of the Δ(R element), which solves the above-mentioned bias defect. The applicant's "Jog MR element" was granted a patent application in 1973.
No. 7-050586. The jog MR element has an MR hydrogen element provided on a substrate having one or more mutually parallel linear convex parts or four parts, and utilizes the shape demagnetizing field generated by the convex parts or concave parts to produce MR confectionery. This is to control the angle θ formed between the magnetization M and the sense current.

かかる構成のMR水素子隣9合う凸部又は凹部のピッチ
が極めて小さい場合、例えば、ピッチが1μm以下の溝
を形成した場合には、磁化Mとセンス電流工の成す角を
略45度に設定できる。しかし、前述の極めて小さなピ
ッチを有する凸部又は凹部の加工にはレーザホログラフ
ィ又Fi電、子線露光等の特殊な技術及び装置が必要と
なり多大な工数が安来されるので、歩留シの劣化、製作
時間が長くなる等の欠点を有し、その結果、MRヘッド
は高価にならざるを得なかった。
When the pitch between the nine adjacent convex portions or concave portions of the MR hydrogen element in such a configuration is extremely small, for example, when grooves with a pitch of 1 μm or less are formed, the angle formed by the magnetization M and the sense electric current is set to approximately 45 degrees. can. However, processing the above-mentioned convex or concave portions with extremely small pitches requires special techniques and equipment such as laser holography, Fi electron beam exposure, etc., and requires a large number of man-hours, resulting in a decrease in yield. However, the MR head has drawbacks such as a long manufacturing time, and as a result, the MR head has to be expensive.

又、上記ピッチを通常のツメトリ2ノグラフイ技術で達
成可能な数μmのオーダにすると、磁化Mとセンス電流
Iの成す角はある程度制御できるものの十分ではなく、
外部からの信号磁界に対して、線形応答する領域が狭く
なp、また〕くルクノ・ワゼンノイズ等が発生するので
、MRヘッドの磁を変換特性にはなはだ不都合な結果を
もたらす傾向がありた0 本発明の目的は、前記従来の欠点を解決した磁気抵抗効
果ヘッドを提供することである。
Furthermore, if the above-mentioned pitch is set to the order of several μm, which is achievable with ordinary nail graphography technology, the angle formed by the magnetization M and the sense current I can be controlled to some extent, but it is not sufficient.
Since the region of linear response to an external signal magnetic field is narrow, and noise such as noise is generated, this tends to bring about extremely unfavorable results in the magnetic conversion characteristics of the MR head. An object of the invention is to provide a magnetoresistive head that solves the above-mentioned conventional drawbacks.

本発明によれば、強磁性磁気抵抗効果素子が、これと磁
気的交換結合を行い得る反強磁性体とで積層された磁気
抵抗効果ヘッドにおいて、前記強磁性磁気抵抗効果素子
を形成する基板の表面、もしくけ前記反強磁性体の前記
強磁性磁気抵抗効果素子と接触する表面が1個又は複数
個の相互に平行で直線状の凸部又は凹部を有することを
特徴とする磁気抵抗効果ヘッドが提供できる。
According to the present invention, in a magnetoresistive head in which a ferromagnetic magnetoresistive element is laminated with an antiferromagnetic material capable of performing magnetic exchange coupling, a substrate forming the ferromagnetic magnetoresistive element is A magnetoresistive head characterized in that a surface of the antiferromagnetic material that comes into contact with the ferromagnetic magnetoresistive element has one or more mutually parallel linear convex portions or concave portions. can be provided.

即ち、本発明は、基板上に設けられた凸部又は凹部によ
って生ずるMR,素子の形状反磁界を利用し、MR素子
の磁化Mとセンス′tIL流工の成す角を所定の値θに
設定せしめ、かつ、前記・βの外部信号磁界に伴う変化
を反強磁性体とMR素子とに生ずる磁気的交換相互作用
を利用してスムーズに行うものである。
That is, the present invention utilizes the shape demagnetizing field of the MR element generated by the convex or concave portions provided on the substrate, and sets the angle formed by the magnetization M of the MR element and the sense 'tIL flow to a predetermined value θ. In addition, the change due to the external signal magnetic field of .beta. is smoothly performed by utilizing the magnetic exchange interaction that occurs between the antiferromagnetic material and the MR element.

以下、本発明の実施例を図面を用いて、詳細に説明する
。第3図は本発明のMRヘッドの主要構成要素である?
VIFL素子部分を示す実施例である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 3 shows the main components of the MR head of the present invention.
This is an example showing a VIFL element portion.

他の構成部分、例えば磁気シールド等は説明を簡単にす
るため省略した。
Other components, such as magnetic shields, have been omitted to simplify the explanation.

ガラス、フェツイト、セラミックス等から成る絶縁性基
板材20表面がフォトレジスト及びエツチング液又はイ
オンミリング等の方法により幅lを有し7ビツチJ41
の値で多数の直線的な溝3がそれぞれ略平行となるよう
に形成されている。ついで、この溝3を覆うよシに、強
磁性体からなるMR,素子(例えばFe−Ni合金、N
i−Co合金等)1′がスパック、蒸着等の手法によp
形球されている。更に前記MR素子1の上にf′iMR
素子と直接交換相互作用を行う反強磁性体4がスパッタ
、蒸着等の手法によす積層されている。ここで言う直接
交換相互作用2は周知の如く、反強磁性体4とMR素子
との界面で反強磁性体4の原子層の磁化の向きとMR累
子1の磁化の向きが、同一方向に揃う効果である。従っ
て、MR素子1′の磁化容易軸E−A  を同図に示す
如く、溝3の直線刃内圧設定すれば、その彼に形成され
た反強磁性体4のMR素子と界面をなす原子層の磁化の
向きは満3の直線方向に設定される。前記MR素子1′
及び反強磁性体4け、フォトレジスト及びエツチング液
又はイオンミリング等によりMR素子1′及び反強磁性
体4は長さL1幅Wの大きさに加工される。この時、M
R素子1′及び反強磁性体4の長さ方向と溝3の直線方
向のなす角は所定の値θに設定されている。又、M几素
子1及び反強磁性体4の長さ方向の両端はM1’L素子
1′にセンス電流工を導入するための2つの電気端子5
が接続されている。従って、電気端子5から導入される
センス電流Iは溝3の直線方向とθの角度を成すことに
なる。
The surface of the insulating substrate material 20 made of glass, fezite, ceramics, etc. has a width l formed by a method such as photoresist and etching solution or ion milling, and is 7-bit J41.
A large number of linear grooves 3 are formed so as to be substantially parallel to each other. Then, to cover this groove 3, an MR element made of a ferromagnetic material (for example, Fe-Ni alloy, N
i-Co alloy, etc.) 1' is p
It is shaped like a sphere. Furthermore, f'iMR is placed on the MR element 1.
An antiferromagnetic material 4 that has direct exchange interaction with the element is laminated by sputtering, vapor deposition, or the like. As is well known, the direct exchange interaction 2 referred to here means that at the interface between the antiferromagnetic material 4 and the MR element, the direction of magnetization of the atomic layer of the antiferromagnetic material 4 and the direction of magnetization of the MR crystal 1 are in the same direction. This is an effect that is consistent with . Therefore, if the axis of easy magnetization E-A of the MR element 1' is set as shown in the same figure, if the internal pressure of the linear blade of the groove 3 is set, the atomic layer of the antiferromagnetic material 4 formed thereon which forms the interface with the MR element. The direction of magnetization is set in the full 3 linear direction. The MR element 1'
Then, the MR element 1' and the antiferromagnetic material 4 are processed to have a length L1 and a width W using four antiferromagnetic materials, a photoresist, an etching solution, or ion milling. At this time, M
The angle formed between the longitudinal direction of the R element 1' and the antiferromagnetic material 4 and the linear direction of the groove 3 is set to a predetermined value θ. Furthermore, both longitudinal ends of the M element 1 and the antiferromagnetic material 4 are connected to two electrical terminals 5 for introducing a sense current into the M1'L element 1'.
is connected. Therefore, the sense current I introduced from the electric terminal 5 forms an angle θ with the linear direction of the groove 3.

上述の多数の溝3の存在によシMR素子1′は多数の幅
l及びEを有する短冊状MR素子6及び7に磁気的に分
割されることKなる。この結果、短器状MR素子6及び
7の長手方向の長さけ− の9nθ 値を有することになる。この時前記特願昭57−050
586 K開示された如く、反強磁性体4が無い、即ち
MR素子1′単独で存在する場合には短冊状MR素子6
及び7の長さW が幅l及びl′よりsinθ 充分大きければ、反強磁性体4が積層されなくとも自ら
の形状異方性によって短冊状MR素子6及び7の長手方
向に、磁化Mは向き易く、かつ安定となり、更に、溝3
の存在はMR素子1′の電気的分割に何等寄与せず、従
って、センス電流■の方向は短冊状MR素子6及び7に
おいても連続である。つまシ短冊状MR素子6及び7の
磁化MとMR素子1′のセンス電流工は溝3によって決
定されるある値θ(望ましくは45度)をなすことKな
る。しかし、実際に、−>>I<又は/’)を条sin
θ 件を満たすためには、例えばW=XOμm θ−45゜
に設定(即ち、Wキ14μm)した場合には19nθ (又はJ’)は1μm 以下が適切である。この様な微
小な幅を有する溝3を基板2上に形成するKは、前述し
た如く、レーザホログラフィ<電子線露光等の特殊な技
術及び装置が必要となる。又、J。
Due to the presence of the plurality of grooves 3 mentioned above, the MR element 1' is magnetically divided into strip-shaped MR elements 6 and 7 having a plurality of widths l and E. As a result, the length of the truncated MR elements 6 and 7 in the longitudinal direction is 9nθ. At this time, the said patent application No. 57-050
586K As disclosed, when there is no antiferromagnetic material 4, that is, when the MR element 1' is present alone, the strip-shaped MR element 6
If length W of It is easy to face and stable, and the groove 3
does not contribute to the electrical division of the MR element 1'; therefore, the direction of the sense current (2) is continuous even in the strip-shaped MR elements 6 and 7. The magnetization M of the strip-shaped MR elements 6 and 7 and the sense current of the MR element 1' form a certain value θ (preferably 45 degrees) determined by the groove 3. However, in reality ->>I<or/')
In order to satisfy the θ condition, for example, when W=XO μm θ−45° (ie, W = 14 μm), 19nθ (or J′) is suitably 1 μm or less. As mentioned above, forming the groove 3 having such a small width on the substrate 2 requires special techniques and equipment such as laser holography <electron beam exposure. Also, J.

とl(又は!′)が同等の大きさの場合には、例えば、
上記の数値例でlt(又はl′)が数μmの大きさでは
、溝3は通常のフォトリングラフィ技術を用いて加工で
きるものの、短冊状MW素子6又は7の長さ方向の反磁
界の影響が大きくなり、磁化Mとセンス電流工とのなす
角はθに設定できず、又、磁化Mは外部信号磁界に対し
て不安定な挙動を示す。この結果バルクハウゼンノイズ
が生ずるという欠点をもたらす。
For example, if and l (or !') are of equal size,
In the above numerical example, when lt (or l') is several μm, the groove 3 can be formed using ordinary photolithography technology, but the demagnetizing field in the length direction of the strip-shaped MW element 6 or 7 is The influence becomes large, and the angle between the magnetization M and the sense current cannot be set to θ, and the magnetization M exhibits unstable behavior with respect to the external signal magnetic field. This results in the disadvantage of Barkhausen noise.

しかし、第3図に示す如<、MR素子1′と直接交換相
互作用を行う反強磁性体4−が積層さに場合は、a と
l(又はl)が同等の大きさであって本、短冊状MR素
子6及び7を含めたMR素子1の磁化Mは反強磁性体4
のMR素子lと接する原子層の持つ磁化の方向に一致す
るため、反強磁性体4の磁化を溝3の直線方向と略平行
となる様に設定すれば短冊状MFL素子6及び7の磁化
Mを溝3の直線方向と略平行に設定できる。
However, as shown in FIG. 3, when the antiferromagnetic material 4- which has direct exchange interaction with the MR element 1' is laminated, a and l (or l) are of equal size and the real , the magnetization M of the MR element 1 including the strip-shaped MR elements 6 and 7 is the antiferromagnetic material 4.
Since the magnetization direction of the atomic layer in contact with the MR element 1 corresponds to the direction of magnetization, if the magnetization of the antiferromagnetic material 4 is set to be approximately parallel to the linear direction of the groove 3, the magnetization of the strip-shaped MFL elements 6 and 7 will be M can be set substantially parallel to the linear direction of the groove 3.

従って、本発明のMR素子1に外部信号磁界が印加され
ると、反強磁性体4の磁化は常に溝3のに応じて滑らか
な回転をし、突成な磁化反転及び磁壁の移動等の不安定
な磁化Mの挙動(すなわちバルクハウゼンノイズ)が抑
制される。このように従来技術の難点であるところの微
小な溝加工を必要とせず、しかも、磁化回転を伴う領域
、即ち外部信号磁界に対して線形な抵抗変化を示す領域
、l:<1.?、バルクハウゼンノイズも消滅する。
Therefore, when an external signal magnetic field is applied to the MR element 1 of the present invention, the magnetization of the antiferromagnetic material 4 always rotates smoothly in accordance with the groove 3, resulting in sudden magnetization reversal, domain wall movement, etc. The unstable behavior of magnetization M (ie Barkhausen noise) is suppressed. In this way, there is no need for minute groove machining, which is a drawback of the prior art, and moreover, the region with magnetization rotation, that is, the region where the resistance changes linearly with respect to the external signal magnetic field, l:<1. ? , Barkhausen noise also disappears.

更に1本発明では、MR素子1′が多数の短冊状MR素
子6及び7に磁気的に分割されているため、MR素子1
の幅方向の両端における反磁界は溝3が存在しない場合
に比して、極めて小さくなるので、反強磁性体4の均一
なバイアス磁界によってMR素子10幅方向の全領域に
わたって磁化Mとセンス電流Iを所定の角度に設定でき
る。従って、溝3が存在しない場合に比して、MR,素
子1′の幅方向の両端付近での検出感度が大きく向上す
る。
Furthermore, in the present invention, since the MR element 1' is magnetically divided into a large number of strip-shaped MR elements 6 and 7, the MR element 1'
Since the demagnetizing field at both ends in the width direction of the MR element 10 is extremely small compared to the case where the groove 3 does not exist, the uniform bias magnetic field of the antiferromagnetic material 4 increases the magnetization M and the sense current over the entire region in the width direction of the MR element 10. I can be set to a predetermined angle. Therefore, compared to the case where the groove 3 does not exist, the detection sensitivity near both ends of the MR element 1' in the width direction is greatly improved.

以上、述べた様に1本発明のMR素子は、基板材に形成
された多数の直線状の溝によって、千の上に形成された
MR素子は多数の短冊状に分割され、MR素子の幅方向
の反磁界を実質的に軽減させ、MR素子の磁化Mは直線
状の溝方向に向き易くなっている。従ってM几素子の上
に形成され九反強磁性体による直接交換相互作用を介し
てのバイアス磁界によって、MR素子の幅方向に対して
、はぼ全領域で磁化Mけセンス電流上と任意の角度(望
ましくは45度)に設定できる。しかも、多数の直線状
の溝のピッチは通常のフォトリソグラmで加工できる数
μmオーダでよいので従来の溝加工に伴う技術的困難さ
や、犬がかシな装置の必要性を解消することができる。
As described above, in the MR element of the present invention, the MR element formed on the top is divided into many strips by the many linear grooves formed in the substrate material, and the width of the MR element is divided into many strips. The demagnetizing field in the direction is substantially reduced, and the magnetization M of the MR element is easily oriented in the direction of the linear groove. Therefore, due to the bias magnetic field formed on the MR element through the direct exchange interaction by the nine antiferromagnets, the magnetization on the M sense current over almost the entire width direction of the MR element and the arbitrary It can be set at an angle (preferably 45 degrees). Moreover, the pitch of the many linear grooves can be processed on the order of several μm using ordinary photolithography, which eliminates the technical difficulties associated with conventional groove processing and the need for bulky equipment. can.

。 更に本発明は、反強磁性体として鬼気的導電体を用いる
と好適である。導電性の反強磁性体は、例えばMh−F
、合金が好適である。Al6−J’3合金とMR素子、
特にNi−Fe合金のΔ4R素子の直接交換相互作用に
関しては既に、IEgETransactionon 
Magnetics 1978年、第14巻、521−
523ページに記載のRlD 、H’amp s t 
e a d 氏等による論文” Unidirecti
onal Ar+1sotropy in N1cke
l −Iron Films I)31 Exchan
ge Coupling with、Ant目erro
magnetic Fi1ms″に報告すれている。
. Further, in the present invention, it is preferable to use a magical conductor as the antiferromagnetic material. The conductive antiferromagnetic material is, for example, Mh-F
, alloys are preferred. Al6-J'3 alloy and MR element,
In particular, regarding the direct exchange interaction of Ni-Fe alloy Δ4R elements, IEgET Transactionon
Magnetics 1978, Volume 14, 521-
RID, H'amp s t described on page 523
Paper by e a d et al.” Unidirecti
onal Ar+1sotropy in N1cke
l -Iron Films I)31 Exchange
ge Coupling with, Ant eye erro
Magnetic Fi1ms'' has been reported.

この論文では、反強磁性体としてMn50 %−Fe5
0チ合金(いずれ本重量パーセント)を用いて略30エ
ルステツドのバイアス磁界を碍ている、。
In this paper, Mn50%-Fe5 is used as the antiferromagnetic material.
A bias magnetic field of approximately 30 oersted is achieved using a 0% alloy (all weight percent).

この様な導電性反強磁性体をMFL素子と積層すること
KよjD、MR素子に供給されるセンス電流は反強磁性
体にも分流し、反強磁性体に分流した電流による磁界を
利用して、八(R素子のイ融化N1とセンス電流上のな
す角を微調できる。しかも、この場合は、前述した従来
技術の如く、大きな電流は必要とせず、従って、磁気記
憶媒体上の清報を破壊する恐れはな(、MEL素子の電
気抵抗の熱的ドリフト、及び熱雑音の発生の恐れもない
。尚反強磁性体に分流する電流の大きさid、センス電
流の大きさを変えるか、反強磁性体の膜厚を変えれば良
い。
By stacking such a conductive antiferromagnetic material with an MFL element, the sense current supplied to the MR element is also shunted to the antiferromagnetic material, and the magnetic field due to the current shunted to the antiferromagnetic material is utilized. In this way, the angle formed by the sense current and the intensification N1 of the R element can be finely adjusted.Moreover, in this case, unlike the prior art described above, a large current is not required, and therefore the cleanliness on the magnetic storage medium can be adjusted. There is no risk of destroying the information (there is no risk of thermal drift of the electrical resistance of the MEL element, or generation of thermal noise.In addition, the magnitude of the current shunted to the antiferromagnetic material, id, and the magnitude of the sense current are changed. Alternatively, you can change the thickness of the antiferromagnetic material.

更に、反強磁性体に1気的導電体と用いる他の利点は、
溝上に形成されたM It素Fは、溝の深さが大きくな
れば、電気的に切断され易く、導通が不安定な状態にな
るが、導電性反強磁性体が存在することに゛より、導電
性領域(l−1II ’G) M R,素子の厚みと、
反強磁性体の厚みの総和)が増加し、その分だけ、MR
素子は全体として電気的に安定となることである。即ち
、溝の4−Jより、MFL素子及び反強磁性体の厚みの
総和が太きければ、MFL素子はセンス電流によって切
断されることはない。
Furthermore, another advantage of using a monolithic conductor for an antiferromagnetic material is that
The MIt element F formed on the groove becomes more likely to be electrically disconnected as the depth of the groove increases, resulting in unstable conduction, but due to the presence of the conductive antiferromagnetic material, , the conductive region (l-1II'G) M R, the thickness of the element,
The total thickness of the antiferromagnetic material) increases, and the MR
The element as a whole should be electrically stable. That is, if the total thickness of the MFL element and the antiferromagnetic material is thicker than the groove 4-J, the MFL element will not be cut by the sense current.

以上、本発明を絶脈性基板4A1′こ面接溝をルJ:y
シ、その上にMI(累7と反強磁性体が形成された実施
例について述べだが、他のV:施例を第4図例示す。
As described above, the present invention has been described by forming grooves on the surface of the continuous substrate 4A1'.
Although the embodiment has been described in which MI (layer 7) and antiferromagnetic material are formed thereon, another V embodiment is illustrated in FIG.

第4図は、表面の滑らかな基板刷2に直接反強磁性体4
を形成し、前記反強砲咋4はフォトレジスト及びエツチ
ング液又はイオンミリング等の方法I/c 、1ニジ幅
11 ピッチ/+/の値を廂する多数の直線的な溝3が
それぞれ略Y・行となるように形成され、ついで、この
溝3を覆うようにNiR累子lがスパッタ、蒸着等の手
法によシ形成された構成を有する。かかる構成を取るこ
とにより、反強磁性体4が電気的絶縁体であれば、基板
材4は絶縁性である必要はなく、導電性の例えば、Si
  ウェファ−等も使用でき基板材4の選択の幅が広が
る特徴がある。
Figure 4 shows an antiferromagnetic material 4 directly applied to a substrate 2 with a smooth surface.
The anti-hard shell 4 is made of photoresist and an etching solution or ion milling method, etc., and a large number of linear grooves 3 each having a width of 11 and a pitch of /+/ are approximately Y - It has a structure in which the grooves 3 are formed in rows, and then NiR resistors 1 are formed by a method such as sputtering or vapor deposition so as to cover the grooves 3. By adopting such a configuration, if the antiferromagnetic material 4 is an electrical insulator, the substrate material 4 does not need to be insulating and may be a conductive material such as Si.
It has the feature that wafers and the like can also be used, increasing the range of choices for the substrate material 4.

以上述べた様に、本発明によれば、良好なバイアス状態
を実現したMRヘッドを提供できる。
As described above, according to the present invention, it is possible to provide an MR head that achieves a good bias state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のNR木子の構成を示す概略図
、第3図は本発明の実施例をがす概略斜視図、第4図は
本発明の他の実施例を示す概略斜視図である。 図において、1及び1′はM札素子、2は基板材、3け
溝、4は反強fM性体を示す。
Figures 1 and 2 are schematic diagrams showing the configuration of a conventional NR Kiko, Figure 3 is a schematic perspective view of an embodiment of the present invention, and Figure 4 is a schematic perspective view of another embodiment of the present invention. It is a diagram. In the figure, 1 and 1' are M tag elements, 2 is a substrate material, 3 is a groove, and 4 is an anti-strong fM material.

Claims (4)

【特許請求の範囲】[Claims] (1)強磁性磁気抵抗効果素子が、これと磁気的交換結
合を行い得る反強磁性体とで積層された磁気抵抗効果ヘ
ッドにおいて、前記強磁性磁気抵抗効果素子を形成する
基板の表面、もしくは前記反強磁性体の前記強磁性磁気
抵抗効果素子と接触する表面が1個又は複数個の相互に
平行で直線状の凸部又は凹部を有することを特徴とする
磁気抵抗効果ヘッド。
(1) In a magnetoresistive head in which a ferromagnetic magnetoresistive element is laminated with an antiferromagnetic material capable of performing magnetic exchange coupling, the surface of the substrate forming the ferromagnetic magnetoresistive element, or A magnetoresistive head characterized in that a surface of the antiferromagnetic material that comes into contact with the ferromagnetic magnetoresistive element has one or more mutually parallel linear convex portions or concave portions.
(2)反強磁性体が電気的良導体である特許請求の範囲
第1項記載の磁気抵抗効果ヘッド。
(2) The magnetoresistive head according to claim 1, wherein the antiferromagnetic material is a good electrical conductor.
(3)反強磁性体がM4  Fe合金であることを特徴
とする特許請求の範囲第1項又は第2項記載の磁気抵抗
効果ヘッド。
(3) The magnetoresistive head according to claim 1 or 2, wherein the antiferromagnetic material is an M4 Fe alloy.
(4)  強磁性磁気抵抗効果素子の磁化容易軸が前記
直線状の溝と略平行であることを特徴とする特許の範囲
第1項記載の磁気抵抗効果ヘッド、。
(4) The magnetoresistive head according to item 1 of the patent, wherein the axis of easy magnetization of the ferromagnetic magnetoresistive element is substantially parallel to the linear groove.
JP3762883A 1983-03-08 1983-03-08 Magneto-resistance effect head Granted JPS59162615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3762883A JPS59162615A (en) 1983-03-08 1983-03-08 Magneto-resistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3762883A JPS59162615A (en) 1983-03-08 1983-03-08 Magneto-resistance effect head

Publications (2)

Publication Number Publication Date
JPS59162615A true JPS59162615A (en) 1984-09-13
JPH048845B2 JPH048845B2 (en) 1992-02-18

Family

ID=12502898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3762883A Granted JPS59162615A (en) 1983-03-08 1983-03-08 Magneto-resistance effect head

Country Status (1)

Country Link
JP (1) JPS59162615A (en)

Also Published As

Publication number Publication date
JPH048845B2 (en) 1992-02-18

Similar Documents

Publication Publication Date Title
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
US6151193A (en) Thin film magnetic head
US5379172A (en) Laminated leg for thin film magnetic transducer
US4623867A (en) Permanent magnet biased narrow track magnetoresistive transducer
US6101067A (en) Thin film magnetic head with a particularly shaped magnetic pole piece and spaced relative to an MR element
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
JPH10302227A (en) Magnetoresistive head
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JPS59162615A (en) Magneto-resistance effect head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP2755186B2 (en) Magnetoresistive head
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JPH03108112A (en) Production of magneto-resistance effect head
JP3082003B2 (en) Method of manufacturing magnetoresistive head
JPS58192391A (en) Magneto-resistance effect element
JPS58111113A (en) Magnetic head
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JP2000090419A (en) Magneto-resistive element and its production
JPH0227383Y2 (en)
JPH048846B2 (en)
JPH01201812A (en) Thin-film magnetic head
JP3233115B2 (en) Magnetoresistive head and method of manufacturing the same
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
JPH07107731B2 (en) Yoke type thin film magnetic head
JPS622363B2 (en)