JPS59162487A - Neutron shielding material - Google Patents

Neutron shielding material

Info

Publication number
JPS59162487A
JPS59162487A JP3637983A JP3637983A JPS59162487A JP S59162487 A JPS59162487 A JP S59162487A JP 3637983 A JP3637983 A JP 3637983A JP 3637983 A JP3637983 A JP 3637983A JP S59162487 A JPS59162487 A JP S59162487A
Authority
JP
Japan
Prior art keywords
shielding material
neutron
shielding
alloy
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3637983A
Other languages
Japanese (ja)
Inventor
伊藤 益三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3637983A priority Critical patent/JPS59162487A/en
Priority to EP84301443A priority patent/EP0119781A1/en
Publication of JPS59162487A publication Critical patent/JPS59162487A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/327

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、耐熱性および熱良導性を併せもった中性子
遮蔽材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a neutron shielding material that has both heat resistance and good thermal conductivity.

従来、中性子遮蔽材として窒化または炭化ボロンが知ら
れており、また中性子吸収能力を助長するための減速材
として、水素を多量に含む物質、例えば水、パラフィン
、木材、樹脂、コンクリート等が有効であることも知ら
れている。しかしながら、これらの含水素材は耐熱性お
よび熱伝導性が不十分であるために、例えば発熱性放射
性物質の遮蔽材として用いる場合は、設計上遮蔽材の取
付は場所等の制限が多かった。
Conventionally, nitride or boron carbide has been known as a neutron shielding material, and substances containing large amounts of hydrogen, such as water, paraffin, wood, resin, and concrete, are effective as moderators to enhance neutron absorption ability. It is also known that there are However, since these water-containing materials have insufficient heat resistance and thermal conductivity, when used as a shielding material for exothermic radioactive substances, for example, there are many design restrictions on the installation of the shielding material, such as the location.

ところで、含水素材としては水素吸蔵合金が、従来一般
に使用されている水や樹脂、液体水素等よりも単位容積
当たりの水素原子の含有量が多いため減速材として好ま
しいが、従来の水素吸蔵合金については、吸蔵水素をい
かに低温、低圧で離脱させるかに向かイて研究がなされ
ている。従つ工、水ヵ吸蔵合金ヶ高、□え一、、min
、=t、、−1利用することは全く考えられていなかっ
た。
By the way, as a water-containing material, hydrogen storage alloys are preferable as moderators because they have a higher hydrogen atom content per unit volume than conventionally commonly used water, resin, liquid hydrogen, etc. However, regarding conventional hydrogen storage alloys, Research is being conducted on how to release stored hydrogen at low temperatures and low pressures. Substructure, water storage alloy height, □E1,, min
,=t,,-1 was not considered to be used at all.

また、ボロン含有成分は主として熱中性子領域しか有効
に遮蔽効果を発揮すず、高速中性子を主に含んでいる原
子燃料のドライタイプの輸送、貯蔵容器には減速材とし
ての水素原子成分が必要となり、ざらにこの場合水素原
子成分は耐熱性および熱伝導性が勝れていることが必要
である。従って、止むを得ず従来は耐熱性、熱良導性を
犠牲にしても水素原子を多く含む合成樹脂にアルミニウ
ムやカーボンを混合してできるだけ耐熱性を高めた形で
用いられている。
In addition, boron-containing components mainly exhibit an effective shielding effect only in the thermal neutron region, and a hydrogen atom component is required as a moderator in dry-type transportation and storage containers for nuclear fuel that mainly contains fast neutrons. Generally speaking, in this case, the hydrogen atom component must have excellent heat resistance and thermal conductivity. Therefore, conventionally, it has been unavoidable to use a synthetic resin containing many hydrogen atoms mixed with aluminum or carbon to increase heat resistance as much as possible, even at the expense of heat resistance and thermal conductivity.

この発明は、このような技術的背景のもとになされたも
のであり、減速材として水素吸蔵合金のうち耐熱性の勝
れたTi−AQ系合金を、高温雰囲気での遮蔽材として
利用するようにしたものである。Ti −Aρ系合金は
耐熱性が勝れているとともに軽量であり、また中性子と
共存することの多いガンマ−線の遮蔽効果も従来の樹脂
等より逼かに大きいので同時効果も期待でき、さらに粉
末になりやすいために原子燃料の輸送、貯蔵容器の遮蔽
材として勝れている。このTi −AΩ系合金としては
、Ti 2−An、Ti 3−An2 、Ti3−An
があるが、とくにTi3−Aρ金合金水素含有量が多く
、しかも600℃程度まで水素を保有しているために好
適である。このTi −,12系合金を減速材として他
の中性子吸収材と組合せて用いればよい。
This invention was made based on this technical background, and utilizes a Ti-AQ alloy, which has excellent heat resistance among hydrogen storage alloys, as a moderator and as a shielding material in a high-temperature atmosphere. This is how it was done. Ti-Aρ alloys have superior heat resistance and are lightweight, and their shielding effect on gamma rays, which often coexist with neutrons, is much greater than that of conventional resins, so simultaneous effects can be expected. Because it easily turns into powder, it is an excellent material for transporting nuclear fuel and as a shielding material for storage containers. This Ti-AΩ alloy includes Ti2-An, Ti3-An2, Ti3-An
However, the Ti3-Aρ gold alloy has a particularly high hydrogen content and retains hydrogen up to about 600°C, so it is suitable. This Ti-12 alloy may be used as a moderator in combination with other neutron absorbers.

上記Ti −Aρ系合金と組合せる中性子吸収材として
は、窒化または炭化ボロンが好ましい。上記輸送、貯蔵
容器としては鋳鉄、鋳鋼製または鍛鋼製のものが用いら
れるが、この容器に適用する中性子吸収材としては、窒
化または炭化ボロンは熱伝導性が勝れていて、容器の熱
放散を妨げないので好ましい。また、これらは粉末化さ
せや茗いために種々の形状に容易に成形することができ
るという利点もある。そして、これを上記Ti −Aρ
系合金と組合せて用いると、中性子吸収能力が助長され
、中性子スペクトル全域に効率の良い遮蔽効果を発揮さ
せることができ、余裕を見ても500℃程度の長期間連
続的な耐熱性を持ち、かつ熱伝導性の勝れた遮蔽材が得
られる。
As the neutron absorbing material to be combined with the Ti-Aρ alloy, nitride or boron carbide is preferable. The transport and storage containers mentioned above are made of cast iron, cast steel, or forged steel, and the neutron absorbing material used in these containers is boron nitride or boron carbide, which has excellent thermal conductivity and can dissipate heat from the container. This is preferable because it does not interfere with They also have the advantage that they can be easily molded into various shapes by powdering or solidifying them. Then, convert this to the above Ti −Aρ
When used in combination with a series alloy, the neutron absorption ability is enhanced and it is possible to exhibit an efficient shielding effect across the entire neutron spectrum, and it has continuous heat resistance of about 500℃ for a long period of time. Moreover, a shielding material with excellent thermal conductivity can be obtained.

つぎに、この遮蔽材を輸送、貯蔵容器に適用する例を図
面によって説明する。第1図および第2図において、収
納容器本体1は鋳鉄、鋳鋼または鍛鋼製によって、円筒
部2の一方に底壁20が一体に形成されてなり、円筒部
2の他方の開口部には内蓋10および外蓋11が順次取
付けられ、内蓋10および外M11の′外周には、図示
しないパツキンが配置されてシールされている。収納容
器本体1内には、放射性物質を収納したバスケット4が
収納されている。15.16は保護部材である。
Next, an example in which this shielding material is applied to a transportation and storage container will be explained with reference to the drawings. In FIGS. 1 and 2, a storage container body 1 is made of cast iron, cast steel, or forged steel, and has a bottom wall 20 integrally formed on one side of a cylindrical part 2, and has an inner opening in the other opening of the cylindrical part 2. The lid 10 and the outer lid 11 are attached in sequence, and a gasket (not shown) is placed on the outer periphery of the inner lid 10 and the outer lid M11 for sealing. A basket 4 containing radioactive materials is housed within the storage container body 1. 15 and 16 are protective members.

バスケット4は鋼板製の筒体5内に挿入され、筒体5内
のバスケット4との隙間には第1の遮蔽材6が充填され
ている。また、筒体5と円筒部2との間には第2の遮蔽
材7が充填されている。円筒部2の外周には放熱用のフ
ィン8が形成され、外周両端部付近にはトラニオン9が
形成されている。このフィン8は収納容器本体1の周方
向に配置してもよい。また、底壁20にも円筒部2と同
様に遮蔽材を配置してもよい。
The basket 4 is inserted into a cylindrical body 5 made of a steel plate, and a gap between the basket 4 and the basket 4 in the cylindrical body 5 is filled with a first shielding material 6. Further, a second shielding material 7 is filled between the cylindrical body 5 and the cylindrical portion 2. Fins 8 for heat radiation are formed on the outer periphery of the cylindrical portion 2, and trunnions 9 are formed near both ends of the outer periphery. The fins 8 may be arranged in the circumferential direction of the storage container body 1. Furthermore, a shielding material may be placed on the bottom wall 20 as well as on the cylindrical portion 2.

第3図および第4図は別の実施例を示し、円筒部2中に
は筒体5の内部に充填した第1の遮蔽材6のみを配置し
、円筒部2の外周に第2の遮蔽材7を配置して筒体71
で覆っている。このように遮蔽材を円筒部の内部と外部
とに分けて配置してもよい。
3 and 4 show another embodiment, in which only the first shielding material 6 filled inside the cylinder body 5 is arranged in the cylindrical part 2, and the second shielding material is placed on the outer periphery of the cylindrical part 2. The cylinder body 71 is arranged with the material 7
covered with In this way, the shielding material may be arranged separately inside and outside the cylindrical portion.

第1の遮蔽材6としては、Ti3−An−1−1nの粉
末と窒化または炭化ボロンの粉東とを混合して充填する
ことにより形成させれば高速中性子の減速と吸収を同時
に行い遮蔽の効果を助長することが分っているので都合
がよい。また、第2の遮蔽材7としては、窒化または炭
化ボロンの粉末を所定のスペースに充填することにより
形成する。
The first shielding material 6 can be formed by mixing and filling Ti3-An-1-1n powder and nitride or boron carbide powder to simultaneously decelerate and absorb fast neutrons and provide shielding. It is convenient because it is known to enhance the effect. The second shielding material 7 is formed by filling a predetermined space with nitride or boron carbide powder.

これは主として中性子を吸収して遮蔽効果を出す。It mainly absorbs neutrons and produces a shielding effect.

さらにこれらの遮蔽材は粉末を焼結したものを用いても
よい。
Furthermore, these shielding materials may be sintered powders.

この構成ではバスケット4から放射される中性子エネル
ギーは第1の遮蔽材6で大部分が吸収され、残る僅かの
エネルギーを第2の遮蔽材で吸収する。従って円筒部2
の厚さは比較的薄くてすみ、容器本体を軽量化すること
ができる。また、バスケット4からは熱が放散されるが
、上記遮蔽材は耐熱性a3よび熱伝導性が勝れているた
めに熱の放散を妨げることはない。
In this configuration, most of the neutron energy emitted from the basket 4 is absorbed by the first shielding material 6, and the remaining small amount of energy is absorbed by the second shielding material. Therefore, the cylindrical part 2
The thickness of the container can be relatively thin, and the weight of the container body can be reduced. Further, although heat is dissipated from the basket 4, the above-mentioned shielding material has excellent heat resistance A3 and thermal conductivity, and therefore does not hinder the dissipation of heat.

焼結体は全体を所定の形状に一体に成形してもよく、あ
るいは第5図に示すように分割片を組合せて配置しても
よい。すなわち、第1の遮蔽材60は焼結体からなるブ
ロック6aと6bとを交互に配置してなり、第2の遮蔽
材70は焼結体7aと7bとを交互に配置して形成して
いる。この場合ブロック6aはTi 3−Anの粉末の
焼結体で構成し、ブロック6bは窒化または炭化ボロン
の粉末の焼結体で構成して、これらを図示のように交互
に配置してもよく、あるいは両方のブロックを同一の焼
結体で構成してもよい。ブロック7a。
The sintered body may be integrally molded into a predetermined shape, or divided pieces may be combined and arranged as shown in FIG. That is, the first shielding material 60 is formed by alternately arranging blocks 6a and 6b made of sintered bodies, and the second shielding material 70 is formed by arranging sintered bodies 7a and 7b alternately. There is. In this case, the blocks 6a may be made of a sintered body of Ti3-An powder, and the blocks 6b may be made of a sintered body of nitride or boron carbide powder, and these may be arranged alternately as shown in the figure. Alternatively, both blocks may be made of the same sintered body. Block 7a.

7b’についても同様に同材質または異なる材質の焼結
体で構成することができる。
Similarly, 7b' can be made of a sintered body made of the same material or a different material.

以゛上説明したように、この発明は中性子減速材として
Ti −Aρ系合・金の水素化物を利用するようにした
ものであり、またこれに中性子域31 +Jとして吸収
材として窒化または炭化ボロンを組合せて用いるように
したものであり、これらは耐熱性および熱伝導性が勝れ
ているために発熱性放射性物質の輸送、貯蔵容器の遮蔽
材として非凡に勝れたものである。
As explained above, the present invention utilizes a Ti-Aρ alloy/metal hydride as a neutron moderator, and also uses nitride or boron carbide as an absorber in the neutron region 31 +J. These materials have excellent heat resistance and thermal conductivity, making them exceptionally excellent materials for transporting pyrogenic radioactive substances and as shielding materials for storage containers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の適用例を示す輸送容器の部分断面側
面図、第2図はその横断面図、第3図は他の例を示す部
分断面側面図、第4図はその横断面図、第5図は遮蔽材
の配置の他の例を示J−縦断面図である。 1・・・容器本体、2・・・円筒部、4・・・バスケッ
ト、5.71・・・筒体、6.60・・・第1の遮蔽材
、7゜70−・・第2の遮蔽材、6a 、 、6b 、
 7a 、 7b −・・遮蔽材の焼結体のブロック。
FIG. 1 is a partial cross-sectional side view of a transportation container showing an example of application of the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a partial cross-sectional side view showing another example, and FIG. 4 is a cross-sectional view thereof. , FIG. 5 is a J-longitudinal sectional view showing another example of the arrangement of the shielding material. DESCRIPTION OF SYMBOLS 1... Container body, 2... Cylindrical part, 4... Basket, 5.71... Cylindrical body, 6.60... First shielding material, 7°70-... Second Shielding material, 6a, , 6b,
7a, 7b--Sintered block of shielding material.

Claims (1)

【特許請求の範囲】 1、中性子遮蔽材としてTi −Aρ系合金の水素化物
を含むことを特徴とする中性子遮蔽材。 2、中性子減速材としてTi −Aρ系合金の水素化物
、中性子吸収材として窒化または炭化ボロンを組合せた
ことを特徴とする中性子遮蔽材。
[Scope of Claims] 1. A neutron shielding material comprising a hydride of a Ti-Aρ alloy as a neutron shielding material. 2. A neutron shielding material characterized by combining a Ti-Aρ alloy hydride as a neutron moderator and nitride or boron carbide as a neutron absorber.
JP3637983A 1983-03-04 1983-03-04 Neutron shielding material Pending JPS59162487A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3637983A JPS59162487A (en) 1983-03-04 1983-03-04 Neutron shielding material
EP84301443A EP0119781A1 (en) 1983-03-04 1984-03-05 A neutron shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3637983A JPS59162487A (en) 1983-03-04 1983-03-04 Neutron shielding material

Publications (1)

Publication Number Publication Date
JPS59162487A true JPS59162487A (en) 1984-09-13

Family

ID=12468209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3637983A Pending JPS59162487A (en) 1983-03-04 1983-03-04 Neutron shielding material

Country Status (1)

Country Link
JP (1) JPS59162487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089127A (en) * 2012-10-30 2014-05-15 Takenaka Komuten Co Ltd Radiation shield wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089127A (en) * 2012-10-30 2014-05-15 Takenaka Komuten Co Ltd Radiation shield wall

Similar Documents

Publication Publication Date Title
US4752437A (en) Packaging of radioactive materials
EP0405050A2 (en) Radiation shielding material with heat-transferring property
US3432666A (en) Containers for transporting radioactive and/or fissile materials
US5641970A (en) Transport/storage cask for a radioactive material
EP0020948A3 (en) Cask for radioactive material, method of manufacturing such a cask, module used thereby and method of shielding neutrons
US4453081A (en) Container for the transportation and/or storage of radioactive material
US4663533A (en) Storage and shipping cask for spent nuclear fuel
JPH1039091A (en) Container for radioactive substance and radiation shielding material
US6630100B1 (en) Manufacturing method for spent fuel storage member and mixed power
US5949084A (en) Radioactive material storage vessel
GB1444479A (en) Radioactive waste storage
US4388268A (en) Transportation and/or storage containers for radioactive materials
US4434373A (en) Neutron shielding
JPS59162487A (en) Neutron shielding material
KR102174554B1 (en) Spent fuel canister using 3D printing technique and manufacturing method thereof
US3888795A (en) Uh' 3 'cermet
JPH01124799A (en) Buffer body for radioactive material transporting container
EP0119781A1 (en) A neutron shielding material
KR102347710B1 (en) Spent nuclear fuel canister with excellent corrosion resistance and mechanical properties
GB1496846A (en) Transport containers for radioactive material
KR102347712B1 (en) Spent nuclear fuel canister with high thermal conductivity and self-sealing function
JP2004156997A (en) Canister for accommodating spent nuclear fuel
JP2001318187A (en) Cask
US3725663A (en) Internally moderated heat sources and method of production
US3878275A (en) Method of making spent nuclear fuel shipping casks