JPS59162022A - Manufacture of frp bent pipe - Google Patents

Manufacture of frp bent pipe

Info

Publication number
JPS59162022A
JPS59162022A JP58036213A JP3621383A JPS59162022A JP S59162022 A JPS59162022 A JP S59162022A JP 58036213 A JP58036213 A JP 58036213A JP 3621383 A JP3621383 A JP 3621383A JP S59162022 A JPS59162022 A JP S59162022A
Authority
JP
Japan
Prior art keywords
roving
core mold
bent pipe
core
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58036213A
Other languages
Japanese (ja)
Other versions
JPH044138B2 (en
Inventor
Satoshi Miura
三浦 敏
Kenji Iwamoto
健司 岩本
Shigeru Umeda
繁 梅田
Terukuni Hashimoto
橋本 輝国
Hiroshi Okamoto
弘 岡本
Yoshiki Higuchi
芳樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Nippon Shokubai Co Ltd
Original Assignee
Kubota Corp
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Nippon Shokubai Co Ltd filed Critical Kubota Corp
Priority to JP58036213A priority Critical patent/JPS59162022A/en
Publication of JPS59162022A publication Critical patent/JPS59162022A/en
Publication of JPH044138B2 publication Critical patent/JPH044138B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/583Winding and joining, e.g. winding spirally helically for making tubular articles with particular features
    • B29C53/588Winding and joining, e.g. winding spirally helically for making tubular articles with particular features having a non-linear axis, e.g. elbows, toroids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/004Bent tubes

Abstract

PURPOSE:To improve productive efficiency and economy by a method wherein roving is wrapped about a bent pipe molding core, the roving is impregnated with thermosetting resin liquid to form a bent pipe, to be hardened by heat treatment and to be pulled continuously as finished product from the core. CONSTITUTION:Roving 34 drawn by the revolution of creels A, C out of a roving bobbin 44 is wrapped about a core 32 through a roving guide hole 51. Since a roving guide pipe 52 is mounted on the bottom 43 of a fixed creel B, the roving drawn out is guided to the neighborhood of the core 32 in good order and laminated about the wrapped roving drawn out of the rotary creel A. On the other hand, a resin liquid spray 35 is equipped at the end of the forming part 33 of the bent pipe, the roving is impregnated with resin liquid, passed through the inner part of a circular heater 37 for thermosetting treatment, formed by completion of thermosetting process into a bent pipe 36. Since conveyors 38, 39 grip the outer periphery of the bent pipe 36, draw it from the core 32 and carry it, all operations can be carried out continuously by a single process in improved productive efficiency.

Description

【発明の詳細な説明】 本発明は曲管成形用芯型のまわりにロービングを巻回す
るFRP製曲管の製造方法に関し、特に該ロービングの
巻回・熱硬化処理および該芯型の引抜きを連続的に行な
うFRP製曲管製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an FRP bent pipe in which a roving is wound around a core mold for forming a curved pipe, and in particular, the method includes winding and thermosetting of the roving and drawing of the core mold. This invention relates to a continuous method for manufacturing bent FRP pipes.

FRP製曲管(以下単に「曲管」という)の成形は、こ
れまで主として■手作業によるハンドレイアップ法か■
機械作業によるフィラメントワインディング法(以下r
FW法」と称する)によって行なわれている。しかしい
ずれの方法においても下記する様な問題点が指摘されて
いた。
Up until now, FRP bent pipes (hereinafter simply referred to as "bent pipes") have mainly been formed using the manual hand lay-up method.
Filament winding method using mechanical work (r
FW method). However, the following problems have been pointed out in both methods.

即ちハンドレイアップ法においては装置、設備費が安価
ではあるが、手作業である為生産性が極めて悪く、又無
圧成形故にロービング含有量が少なく、成形品の機械的
強度がいきおい低くなるという致命的な欠点がある。例
えばハンドレイアップ法で得られた成形品の強度はFW
法で得られた同一寸法成形品の強度の約−に過ぎない。
In other words, in the hand lay-up method, equipment and equipment costs are low, but productivity is extremely low because it is manual work, and the roving content is low due to pressureless forming, which significantly reduces the mechanical strength of the molded product. It has a fatal flaw. For example, the strength of molded products obtained by hand layup method is FW
The strength is only about - that of a molded product of the same size obtained by the method.

勿論ロービングの含有量を増加すれば成形品強度を増大
し得る訳であるが、その増大の割合は僅少である。又肉
を厚くしても成形品強度を増大し得るが材料コストをい
たずらに高騰させるので極めて非経済的である。
Of course, increasing the roving content can increase the strength of the molded product, but the rate of increase is small. Although the strength of the molded product can be increased by making the wall thicker, it is extremely uneconomical as it unnecessarily increases the material cost.

一方FW法は上記ハンドレイアップ法の欠点、特に成形
品強度の劣る点を解決すべく開発されたもので、引張シ
強さの大きいロービングを引張多方向に応力を受けるよ
うに曲管成形用芯型表面に連続的に巻き付は配置するこ
とによシ機械的強度の非常に高い曲管を成形することが
できる。即ちFW法によって曲管を成形する場合を、第
1図(概略側面図)及び第2図(概略平面図)に基づい
て説明すると、1はFW成形機で、回転型のロービング
調整・供給装置3を非回転型の曲管成形用芯型(以下単
に「芯型」という)2のまわりに回転できる様に配設し
ている。即ち平板軸受け4の中央部で枢支されたターン
テーブル5の略中央上方には芯型2を配置すると共に、
該芯型2の頂面を、L形アーム6を介して駆動機7に連
結することにより、支点Pを中心として芯型2を上下矢
印方向に旋回させる。一方ターンテーブル5の外周縁付
近には、枢支点を中心としてほぼ対称的な位置に複数の
ロービングユニット8をセットしてなるロービングユニ
ット支持中空台9とロービングガイド10をセットして
なるロービングガイド支持中空台11が配置され、更に
ロービングユニット支持中空台9とロービングガイド支
持中空台11の間でターンテーブル5の上面には樹脂浴
槽12が載置される。この様なPW成形機1においては
、各ロービングユニット8から集束して引出されたロー
ビングは樹脂浴槽12で適当な樹脂液の含浸を受けた後
、ロービングガイド10を経て該ガイド10先端部の糸
導出部材13から芯型2方向へ連続的に供給される。上
記ロービングはターンテーブル5を所定の速度で回転さ
せながら供給されるので、樹脂含浸ロービングは適当な
張力が付与された状態で芯型2に巻きつけられることに
なり、しかもその巻きつけの進行に伴って芯型2を図の
上向き矢印方向へ徐々に旋回させるので機械的強度の優
れた曲管が比較的効率良く成形される。この様に従来の
FW法は成形品の機械的強度を高める上で大きく貢献し
得たものであるが、特有の構造から生じる下記問題点の
解決が強く望まれていた。即ち従来のFW法によれば上
記ロービングの巻回と成形を終えた曲管を次の工程で熱
硬化処理に付し、次に芯型を分離して該曲管を取外し、
更に次のロービング巻きっけの為に該芯型を組み立て直
すという様な非連続のバッチ式の曲管製造形態である為
、曲管製造の1サイクル所要時間がかなりか\す、又一
方間口径の曲管を一時に製造しようとすれば同じ芯型が
複数個必要である等、生産効率の面からも経済的な面か
らも改良すべき点があった。
On the other hand, the FW method was developed to solve the drawbacks of the hand lay-up method mentioned above, especially the poor strength of the molded product. By arranging the windings continuously on the core surface, a curved pipe with extremely high mechanical strength can be formed. That is, the case of forming a curved pipe by the FW method will be explained based on Fig. 1 (schematic side view) and Fig. 2 (schematic plan view). 1 is a FW forming machine, which has a rotary roving adjustment and supply device. 3 is rotatably arranged around a non-rotating core mold for curved pipe forming (hereinafter simply referred to as "core mold") 2. That is, the core mold 2 is disposed approximately above the center of the turntable 5 which is pivotally supported at the center of the flat plate bearing 4, and
By connecting the top surface of the core mold 2 to a driver 7 via an L-shaped arm 6, the core mold 2 is rotated about a fulcrum P in the directions of the up and down arrows. On the other hand, near the outer periphery of the turntable 5, there is a roving guide support formed by setting a roving unit support hollow base 9 and a roving guide 10, each of which has a plurality of roving units 8 set in substantially symmetrical positions around the pivot point. A hollow base 11 is arranged, and a resin bath 12 is placed on the upper surface of the turntable 5 between the roving unit support hollow base 9 and the roving guide support hollow base 11. In such a PW molding machine 1, rovings pulled out in a bundle from each roving unit 8 are impregnated with an appropriate resin liquid in a resin bath 12, and then passed through a roving guide 10 to form a thread at the tip of the guide 10. It is continuously supplied from the derivation member 13 in two directions to the core mold. Since the roving is supplied while rotating the turntable 5 at a predetermined speed, the resin-impregnated roving is wound around the core mold 2 with an appropriate tension applied, and the progress of the winding is controlled. At the same time, since the core mold 2 is gradually turned in the direction of the upward arrow in the figure, a curved pipe with excellent mechanical strength can be formed relatively efficiently. As described above, the conventional FW method has greatly contributed to increasing the mechanical strength of molded products, but it has been strongly desired to solve the following problems arising from the unique structure. That is, according to the conventional FW method, the bent tube after the winding and forming of the roving is subjected to heat curing treatment in the next step, and then the core mold is separated and the bent tube is removed.
Furthermore, since the bent pipe manufacturing method is a non-continuous batch type in which the core mold is reassembled for the next roving wrapping, the time required for one cycle of bent pipe manufacturing is quite long. There were some points that needed to be improved from both a production efficiency and economical standpoint, such as the need for multiple core types of the same diameter if bent pipes of different diameters were to be manufactured at the same time.

本発明者等は上記の様な事情を考慮して、曲管の成形、
熱硬化処理および芯型からの曲管の引抜きを一工程で且
つ連続的に行なうことによって上記問題点を解決すると
共に生産効率的及び経済的に有利なFRP製曲管製造方
法を提供しようとするものである。
The present inventors took the above circumstances into consideration, and formed a curved pipe.
The present invention aims to solve the above-mentioned problems by continuously carrying out thermosetting treatment and drawing of the bent pipe from the core mold in one step, and to provide an efficient and economically advantageous FRP bent pipe manufacturing method. It is something.

即ち本目的を達成し得た本発明の構成とは、曲管成形用
芯型の外周から該芯型の外周面に対してロービングを求
心的に供給して該芯型にロービングを巻回すると共に、
該ロービングに熱硬化性樹脂液を含浸させて曲管を形成
しひきつづき該曲管に熱硬化処理を施しつつ該芯型よシ
成形完了品として連続的に引抜き任意の長さに自動的に
切断することを要旨とするものである。
In other words, the configuration of the present invention that achieves the object is that the roving is centripetally supplied from the outer periphery of the core mold to the outer circumferential surface of the core mold, and the roving is wound around the core mold. With,
The roving is impregnated with a thermosetting resin liquid to form a curved pipe, and then the curved pipe is continuously subjected to a thermosetting treatment while being continuously pulled out and automatically cut into a desired length as a completed core-shaped molded product. The gist of this is to

以下実施例を示す図面に基づいて本発明の構成及び作用
効果を具体的に説明するが、下記実施例は一具体例にす
ぎず、もとより前・後記の趣旨に徴して種々設計を変更
することは、いずれも本発明の技術範囲に含まれる。
The configuration and effects of the present invention will be explained below in detail based on the drawings showing the embodiments. However, the embodiments below are only one specific example, and the design may be modified in various ways in keeping with the spirit described above and below. All of these are included within the technical scope of the present invention.

第3図は本発明方法を実施するときに用いる曲管製造装
置の概略断面説明図、第4図は第3図のff−■線断面
矢視概略説明図、第5図は第3図のv−v線断面矢視概
略説明図を示す。即ち上記第3図は曲管成形用芯型32
のまわりにロービングを巻回し、巻回の前又は巻回と同
時に又は巻回後に熱硬化性樹脂を該ロービングに含浸さ
せ(実施例では巻回の後に含浸させ)その後ひき続いて
環状ヒーター37で熱硬化処理を施しつつ曲管36とし
て形成し更に第1コンベア38及び第2コンベア39に
よって該芯型32よシ矢印方向へ連続的に引抜きつつあ
る曲管製造装置31を示し、第4.5図は曲管成形部3
3の説明図で特に第4図はロービング巻回用の回転式ク
リールA、第5図はロービング積層用の固定式クリール
Bを示している。以下詳細に説明すると第3図において
芯型32はスタンド41を介して固定台42の0点に枢
支され、図示し々い駆動機構によっである角度範囲内で
回動できる様に構成されており、第3図の段階では図示
する位置に固定されている(詳細は後述するが芯型32
は始動時のみ回動し、曲管の連続製造中は固定されてい
る)。又芯型32の一方の端部32aには後述する補助
芯型53を底着する嵌着具54が設けてあシ、ある限界
以上の引張シカで補助芯型53が離脱できる様に構成さ
れている。曲管成形部33は、(1)芯型32の外周か
ら芯型32の外周面に対してロービング34を求心的に
供給して巻回すべく同方向へ同期的に回転する回転式ク
リールA、Cと、(2)芯型32の長さ方向に沿ってロ
ービング34を積層する非回転の固定式クリールB及び
(3)上記巻回又は積層されたロービング34に熱硬化
性樹脂液を含浸させる樹脂液スプレー35.35から構
成されている。
FIG. 3 is a schematic cross-sectional explanatory diagram of a curved pipe manufacturing apparatus used when carrying out the method of the present invention, FIG. A schematic explanatory view taken along the v-v line and viewed from the arrows. That is, FIG. 3 above shows the core mold 32 for forming a curved pipe.
The roving is wound around the roving, and the roving is impregnated with a thermosetting resin before, at the same time as, or after the winding (in the embodiment, it is impregnated after the winding), and then the annular heater 37 4.5 shows a curved tube manufacturing apparatus 31 which is being formed into a curved tube 36 while being subjected to a thermosetting treatment and is being continuously drawn out from the core mold 32 in the direction of the arrow by the first conveyor 38 and the second conveyor 39. The figure shows bent pipe forming part 3
3, in particular, FIG. 4 shows a rotary creel A for winding rovings, and FIG. 5 shows a stationary creel B for laminating rovings. To explain in detail below, in FIG. 3, the core mold 32 is pivotally supported at the zero point of a fixed base 42 via a stand 41, and is configured to be able to rotate within a certain angular range by a drive mechanism not shown in the drawings. At the stage shown in Fig. 3, it is fixed at the position shown (details will be described later, but the core
rotates only at startup and remains fixed during continuous production of bent pipes). Further, one end 32a of the core mold 32 is provided with a fitting 54 for attaching an auxiliary core mold 53, which will be described later, to the bottom, and is configured so that the auxiliary core mold 53 can be detached with a tensile force exceeding a certain limit. ing. The bent tube forming section 33 includes (1) a rotary creel A that rotates synchronously in the same direction to centripetally supply and wind the rovings 34 from the outer periphery of the core mold 32 to the outer peripheral surface of the core mold 32; C, (2) a non-rotating stationary creel B that laminates the rovings 34 along the length direction of the core mold 32, and (3) impregnates the wound or laminated rovings 34 with a thermosetting resin liquid. Consists of resin liquid spray 35.35.

なお上記ロービングの巻回・積層又は熱硬化性樹脂液の
含浸等の曲管成形手段については公知の何れの方法によ
ってもよく、前述のFW成形機の如き手段でもよいし又
本実施例の知き回転式クリール方式(本特許出願人よシ
既に出願済み)を用いても良い。各クリールA、B、C
は断面コ字型の中空ドーナツ状部材で、コ字部の底面部
43には夫々ロービング34の繰出しが自由である様に
複数のロービングボビン44が周方向に活って略等間隔
を置いて設けられる。面図では各回転クリールA、Cは
中空側縁部及び外周側縁が共に円形であシ、固定式クリ
ールBは中空側縁及び外周側縁共に正方形になっておシ
、いずれも中空部に芯型32が貫設される。そして円形
状の回転クリールA、Cの外周面には環状ラック45が
取付けられ、モータ46の駆動を駆動軸47及びビニオ
ン48経由で上記環状ラック45に伝えて回転式クリー
ルA、Cを同方向に同期回転させる様に構成されている
。第4図において固定された枠部材49には3個の溝付
きガイドローラ5oが3方向に夫々回転自在に取付けら
れ、前記環状ラック45が溝付きガイドローラ50に表
金することによってクリールAの転倒を防止している。
Note that the curved tube forming means such as winding and laminating the roving or impregnating it with a thermosetting resin liquid may be any known method, such as the above-mentioned FW forming machine, or the known method of this embodiment. A rotary creel system (which has already been filed by the applicant of this patent) may also be used. Each creel A, B, C
is a hollow doughnut-shaped member having a U-shaped cross section, and a plurality of roving bobbins 44 are provided in the circumferential direction at approximately equal intervals on the bottom surface 43 of the U-shaped portion so that each roving 34 can be freely fed out. provided. In the top view, each of the rotating creels A and C has a circular hollow side edge and an outer circumferential edge, while the fixed creel B has a square hollow side edge and an outer circumferential edge. A core mold 32 is installed therethrough. An annular rack 45 is attached to the outer peripheral surface of the circular rotating creels A and C, and the drive of the motor 46 is transmitted to the annular rack 45 via a drive shaft 47 and a pinion 48 to move the rotating creels A and C in the same direction. It is configured to rotate in synchronization with the Three grooved guide rollers 5o are attached to the fixed frame member 49 in FIG. Prevents falls.

従って回転式りIJ−ルAICの回転によってロービン
グボビン44から繰シ出されるロービング34はロービ
ングガイド孔51を経て芯型32のまわシに巻回される
Therefore, the roving 34 paid out from the roving bobbin 44 by the rotation of the rotary roll IJ-ru AIC passes through the roving guide hole 51 and is wound around the core mold 32.

又第5図に示す固定式クリールBのコ字型の底面部43
には各ロービングボビン44から繰出されるロービング
34を案内する為のロービングガイドパイプ52が設け
られているので繰出されたロービングが芯型32の可及
的近傍まで乱れない様に案内される。そして回転クリー
ルAから出た巻回ロービングのまわシに積層される。一
方曲管成形部33の最終部には樹脂液スプレー35が設
置されてロービングに樹脂液が含浸され更に芯型32の
曲管引抜き側の端部32aとの間に固定された熱硬化処
理用環状ヒーター37内を通って熱硬化が完了し曲管3
6として成形される。
Also, the U-shaped bottom portion 43 of the fixed creel B shown in FIG.
Since a roving guide pipe 52 is provided for guiding the roving 34 paid out from each roving bobbin 44, the paid roving is guided as close as possible to the core mold 32 without being disturbed. The roving is then laminated onto the winding roving coming out of the rotating creel A. On the other hand, a resin liquid spray 35 is installed at the final part of the curved pipe forming section 33, and the roving is impregnated with the resin liquid. After passing through the annular heater 37 and completing thermal curing, the bent pipe 3
It is molded as 6.

38.38及び39は曲管36の外周部を把持して  
            該曲管36を芯型32から引
抜いて搬送する為に設けられたキャタピラ式のコンベア
で、第1コツベア38は芯型32の端部に近接して芯型
32又は曲管36の曲率外周に沿って上下から曲管36
を挾持する位置に設けられ、矢印方向に回動可能に設け
られている。上記第1コンベア38の上部と芯型32の
端部との距離ノは、該曲管製造装置31の始動時に芯型
32の端部に設けた嵌着具54に底着される補助芯型5
3の外周に成形された曲管36の外周〔第6図(C)参
照〕を挟持できる距離であることを要する。第2コンベ
ア39.39は上記M1コンベア38.38にひきつづ
いて曲管36の外周に沿って設けられ、第1コンベア3
8.38から受は渡しされた曲管36を搬送すべく曲管
36の外周を挟持搬送可能に構成されて配設されている
38. 38 and 39 grip the outer periphery of the bent pipe 36 and
A caterpillar type conveyor is provided to pull out the curved pipe 36 from the core mold 32 and convey it. Bent pipe 36 from above and below along
It is provided at a position where it can be rotated in the direction of the arrow. The distance between the upper part of the first conveyor 38 and the end of the core mold 32 is determined by the distance between the upper part of the first conveyor 38 and the end of the core mold 32. 5
The distance must be such that the outer periphery of the curved pipe 36 formed on the outer periphery of the tube 3 (see FIG. 6(C)) can be held therebetween. The second conveyor 39.39 is provided along the outer periphery of the curved pipe 36 following the M1 conveyor 38.38, and the second conveyor 39.39 is
From 8.38 onwards, the receiver is configured and arranged to be able to pinch and convey the outer periphery of the bent tube 36 in order to convey the passed bent tube 36.

上記第1コンベア38.38及び第2コンベア39゜3
9は面示しないモータ等の駆動手段によって上下コンベ
アが同期して同速度で矢印方向へ進行する様に構成され
ている。又第1コンベア38 、38及び第2コンベア
39.39の中間には矢印X及びY方向に進退可能にカ
ッター40が設けられ、第1コンベア38.38及び第
2コンベア39゜39に挾持された進行する曲管36の
速度に合わせて移動しながらこれを透面な長さに切断す
る。
The first conveyor 38.38 and the second conveyor 39°3
The upper and lower conveyors 9 are configured to synchronize and move in the direction of the arrow at the same speed by a drive means such as a motor (not shown). Further, a cutter 40 is provided between the first conveyors 38, 38 and the second conveyor 39.39 so as to be movable in the directions of arrows X and Y, and is held between the first conveyor 38.38 and the second conveyor 39.39. While moving in accordance with the speed of the advancing curved pipe 36, it is cut into transparent lengths.

第6図は本発明による曲管製造方法を例示する説明図で
、第3図に示した曲管製造装置31の曲管製造の手順を
示す。即ち第6図(a)は曲管製造装置31の始動直前
の状態で、芯型32を固定台42に枢支するスタンド4
1は第3図と比較して0点のまわりに左旋回した位置に
あジスタント41に固設された芯型32も0点のまわシ
に左旋回してその端部32aは曲管成形部33のクリー
ルA。
FIG. 6 is an explanatory diagram illustrating the method for manufacturing a curved pipe according to the present invention, and shows the procedure for manufacturing a curved pipe using the curved pipe manufacturing apparatus 31 shown in FIG. That is, FIG. 6(a) shows the state immediately before starting the bent pipe manufacturing apparatus 31, with the stand 4 pivoting the core mold 32 on the fixed base 42.
1 shows a position in which the core mold 32 fixed to the adjuster 41 has turned to the left around the 0 point compared to FIG. Creel A.

B、C中に位置している。なお詳細に説明すれば、該端
部32aには次回(第6図(b))にあられれる様な補
助芯型53が第3図で示した嵌着具54を介して俵着さ
れ、夫々クリールA、B、C中に載置されるロービング
ボビン44から繰シ出されるロービング34の巻き始め
位置にセットされている。
It is located between B and C. To explain in detail, an auxiliary core mold 53, which will be shown next time (FIG. 6(b)), is attached to the end portion 32a via the fitting 54 shown in FIG. It is set at the start position of the winding of the roving 34 fed out from the roving bobbin 44 placed in the creels A, B, and C.

次に第6図(b)は曲管成形装置31の始動後、補助芯
型53上に成形したロービングを環状ヒーター中に導入
して熱硬化処理を施している状態を示している。スタン
ド41は図示しない駆動手段によって曲管製造装置31
の始動と共に第6図(a)の位置よシ固定台42の0点
のまわシに矢印方向へ右旋回しつつあシこの旋回によっ
て芯型32も同方向へ旋回即ちスイングする。そして補
助芯型53上及びひき続いて芯型32上にロービングを
巻回並びに積層しつつ環状ヒーター37への移動を続け
ている。ここで第7図は同じく本発明による曲管製造方
法を例示する説明図である。この図によって曲管成形装
置31による補助芯型53および芯型32への巻回及び
積層手順を説明する。回転式クリールA、Cから繰シ出
されるロービング(説明の都合上、各ロービングはクリ
ール別にA。
Next, FIG. 6(b) shows a state in which the roving formed on the auxiliary core mold 53 is introduced into the annular heater and subjected to a thermosetting treatment after the bent pipe forming apparatus 31 is started. The stand 41 is connected to the bent pipe manufacturing device 31 by a driving means (not shown).
At the same time as starting, the core mold 32 is turned to the right in the direction of the arrow from the position shown in FIG. The rovings are then wound and laminated on the auxiliary core mold 53 and subsequently on the core mold 32 while continuing to move to the annular heater 37. Here, FIG. 7 is an explanatory diagram illustrating the method for manufacturing a bent pipe according to the present invention. With reference to this figure, the procedure of winding and laminating around the auxiliary core mold 53 and the core mold 32 by the curved pipe forming device 31 will be explained. Rovings are fed out from rotary creels A and C (for convenience of explanation, each roving is labeled A for each creel).

B、Cの文字を付記して表示する)は補助芯型53のま
わシに巻回されて巻回層55C及び55Aを形成する。
(indicated with letters B and C) are wound around the auxiliary core mold 53 to form wound layers 55C and 55A.

それと同時に固定クリールBから繰シ出されるロービン
グ34Bは補助芯型53の軸方向に載置されて積層55
Bを形成する。芯型32の矢印方向へのスイングによっ
て上記巻回155c。
At the same time, the roving 34B fed out from the fixed creel B is placed in the axial direction of the auxiliary core mold 53 and laminated 55.
Form B. By swinging the core mold 32 in the direction of the arrow, the winding 155c is formed.

55Aおよび積層55Bは補助芯型53の外周上に形成
され、補助芯型53にひきつづいて芯型32のまわシに
巻回層および積層を形成してゆく。そして形成された曲
管36には樹脂液スプレー35から硬化性樹脂液が含浸
される。さて元へ戻って第6図(b)に示す如く移動を
続けた巻き始めの部分は、芯型32のスイーングによっ
て環状ヒーター37中へ挿入され、熱硬化処理を受けて
いる。次に第6図(C)は環状ヒーター37中へ進入し
た補助芯型53上に成形された曲管36が該環状ヒータ
ー37での熱硬化処理を終え、更に位置を移動して第1
コンベア38138に達して矢印方向に回転するコンベ
アに外周を挾持され血管の外周に沿って曲管36の引抜
き及び搬送の体勢に入った状態を示している。そこで芯
型32と嵌着具54によって連結された補助芯型53は
、第1コンベア38.38に挾持され矢印方向への引張
力を受けて嵌着が解は芯型32と分離する(同図の位置
でスタンド41は停止し、芯型32のスイングも停止す
る)。補助芯型53はまわシに曲管36をはめたままで
第1コンベア38.38中を搬送され、コンベア38.
38と補助芯型53に挾持された曲管36は芯型32か
ら引抜かれ始める(上記芯型32の位置はこの後の連続
製造工程中はこの位置を動かな−)。第6図(d)は芯
型32と分離した補助芯型53と曲管36を芯型32か
ら引抜きつつ第1コンベア38を経て同コンベアと同方
向に同期・同速度で回転する第2コンベア39 、39
に挟持、搬送される状態を示している。曲管36は既に
補助芯型53と共に相当長さ芯型32から引抜かれ、な
お芯型32上では連続して成形および熱硬化処理が行な
われる。次に第6図(e)は曲管36が第6図(d)の
位置において(正しくは少しずつ矢印方向へ移動しなが
ら)カッター40によシ曲管36の一部を切断している
状態を示している。
55A and the laminated layer 55B are formed on the outer periphery of the auxiliary core mold 53, and following the auxiliary core mold 53, the wound layer and the laminated layer are formed around the circumference of the core mold 32. Then, the formed bent pipe 36 is impregnated with a curable resin liquid from the resin liquid spray 35. Now, returning to the original position and continuing to move as shown in FIG. 6(b), the starting part of the winding is inserted into the annular heater 37 by the swing of the core mold 32 and is subjected to a thermosetting process. Next, FIG. 6(C) shows that the curved tube 36 formed on the auxiliary core mold 53 that has entered the annular heater 37 has completed the heat curing process in the annular heater 37, and is further moved to the first position.
It is shown that the curved tube 36 has reached the conveyor 38138 and is in a position to be pulled out and conveyed along the outer circumference of the blood vessel, with the outer periphery being clamped by the conveyor rotating in the direction of the arrow. Therefore, the auxiliary core mold 53 connected to the core mold 32 by the fitting tool 54 is clamped by the first conveyor 38, 38 and receives a tensile force in the direction of the arrow. The stand 41 stops at the position shown in the figure, and the swing of the core mold 32 also stops). The auxiliary core mold 53 is conveyed through the first conveyor 38.38 with the curved tube 36 still attached to the windshield, and the auxiliary core mold 53 is conveyed through the first conveyor 38.38.
38 and the auxiliary core mold 53, the bent tube 36 begins to be pulled out from the core mold 32 (the position of the core mold 32 is not moved during the subsequent continuous manufacturing process). FIG. 6(d) shows a second conveyor rotating in the same direction and at the same speed as the first conveyor 38 while pulling out the auxiliary core mold 53 and bent tube 36 separated from the core mold 32 from the core mold 32. 39, 39
The figure shows the state in which it is being held and transported. The bent pipe 36 has already been pulled out from the core mold 32 for a considerable length together with the auxiliary core mold 53, and is continuously subjected to molding and thermosetting treatment on the core mold 32. Next, in FIG. 6(e), a part of the bent pipe 36 is cut by the cutter 40 at the position shown in FIG. 6(d) (correctly, moving little by little in the direction of the arrow). It shows the condition.

補助芯型53上に形成された曲管36は第7図で示した
様に回転式クリールCの巻き始め部分である為巻層ある
いは積層が不揃いであることから切断後補助芯型53か
ら抜いて廃棄すればよい。回転鋸刃式のカッター40は
前述の知く矢印X、Y方向に進退自在であるから曲管3
6の切断を終えると直ちに曲管搬送路から第6図(f)
の位置へ退避する。第6図(f)は第6図(a)〜(e
)の手順を経て始動を終えた曲管製造装置31が曲管3
6の連続製造を行なっている状況を示す。カッタ40の
作動は曲管36の所要長さ又は所要角度に従って作動条
件を設定すればよく、カッター40によって所望の長さ
に切断された曲管36は第2コンベア39゜39によっ
て左方へ搬送される。以上の様に一旦連続製造を開始し
た曲管製造装置31は、クリールA、B、Cのロービン
グボビンのロービングが空になって供給の為に停止する
時を除いては連続的に曲管製造が可能である。これとて
も上記各クリールにロービングの予備ボビンを備よるス
ペースを設けておけば相当長期に亘って連続的な曲管製
造が可能となる。なお芯型32から曲管36を引抜く際
にスムーズに引抜ける様に、曲管成形部33の直前で芯
型32の外周に摩擦抵抗を下げる芯型処理を行うと、引
抜きは更に容易である。
As shown in FIG. 7, the bent pipe 36 formed on the auxiliary core mold 53 is the beginning of the winding of the rotary creel C, so the winding layers or laminations are uneven, so it is removed from the auxiliary core mold 53 after cutting. Just dispose of it. The rotary saw blade type cutter 40 can move forward and backward in the directions of the above-mentioned arrows X and Y.
Immediately after cutting 6, the pipe is removed from the curved pipe conveyance path as shown in Fig. 6 (f).
Evacuate to position. Figure 6(f) is
) The bent pipe manufacturing device 31 that has finished starting up after the procedure is the bent pipe 3.
This shows the situation in which No. 6 is being continuously manufactured. The operating conditions of the cutter 40 can be set according to the required length or angle of the curved pipe 36, and the curved pipe 36 cut to a desired length by the cutter 40 is conveyed to the left by the second conveyor 39°39. be done. As described above, the bent pipe manufacturing apparatus 31 that has once started continuous manufacturing continues to manufacture bent pipes except when the rovings of the roving bobbins of creels A, B, and C are empty and the rovings are stopped for supply. is possible. If a space is provided in each of the creels to provide a spare bobbin for roving, continuous production of bent pipes over a considerable period of time becomes possible. In addition, when pulling out the curved pipe 36 from the core mold 32, if a core treatment is performed on the outer periphery of the core mold 32 to reduce frictional resistance immediately before the curved pipe forming part 33 so that the curved pipe 36 can be pulled out smoothly, it will be easier to pull it out. be.

本発明は以上の様に構成されているので、FRP製曲管
の成形・熱硬化処理及び芯型からの曲管の引抜きを一工
程で且つ連続的に行々うことを可能とり生産効率的及び
経済的に有利な曲管製造が可能となった。
Since the present invention is configured as described above, it is possible to continuously perform the molding and thermosetting treatment of the FRP curved pipe and the drawing of the curved pipe from the core mold in one process, thereby increasing production efficiency. This also made it possible to manufacture economically advantageous bent pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

0υ 55・・・巻回層 第1図は従来のFW成形機の概略側面図、第2図は同概
略平面図、第3図は本発明方法を実施するときに用いる
曲管製造装置の概略断面説明図、第4図は第3図のIV
−]V線断面矢視概略説明図、第5図は第3図のY−Y
線断面矢視概略説明図および第6,7図は本発明による
曲管製造方法を例示する説明図である。 31・・・曲管製造装置 32・・・曲管成形用芯型3
3・・・曲管成形部  34・・・ロービング35・・
・樹脂液スプレー36・・・曲管37・・・環状ヒータ
ー 38・・・第1コンベア39・・・第2コンベア 
40・・・カッター41・・・スタンド   42・・
・固定台43・・・底面部    材・・・ロービング
ボビン45・・・環状ラック  46・・・モータ47
・・・駆動軸    48・・・ピニオン49・・・枠
部材    50・・・溝付きガイドローラ51・・・
ローピンクガイド孔 52・・・ロービングガイドパイプ 53・・・補助芯型   54・・・嵌着具θQ 出願人  久保田鉄工株式会社 同   日本触媒化学工業株式会社
0υ 55...Wound layer FIG. 1 is a schematic side view of a conventional FW forming machine, FIG. 2 is a schematic plan view thereof, and FIG. 3 is a schematic diagram of a bent pipe manufacturing apparatus used when carrying out the method of the present invention. Cross-sectional explanatory diagram, Figure 4 is IV of Figure 3
-] V-line cross-sectional view schematic explanatory diagram, Figure 5 is Y-Y in Figure 3
A schematic cross-sectional view and FIGS. 6 and 7 are explanatory diagrams illustrating the method for manufacturing a curved pipe according to the present invention. 31... Bent pipe manufacturing device 32... Core mold 3 for forming bent pipes
3... Bent tube forming part 34... Roving 35...
・Resin liquid spray 36...Bent pipe 37...Annular heater 38...First conveyor 39...Second conveyor
40...Cutter 41...Stand 42...
・Fixing base 43...Bottom member...Roving bobbin 45...Annular rack 46...Motor 47
... Drive shaft 48 ... Pinion 49 ... Frame member 50 ... Grooved guide roller 51 ...
Low pink guide hole 52... Roving guide pipe 53... Auxiliary core type 54... Fitting tool θQ Applicant: Kubota Iron Works Co., Ltd. Nippon Shokubai Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 曲管成形用芯型の外周から芯型の外周面に対してロービ
ングを求心的に供給して該芯型にロービングを巻回する
と共に、該ロービングに熱硬化性樹脂液を含浸させて曲
管を形成しひきつづき該曲管に熱硬化処理を施しつつ該
芯型よシ連続的に引抜くことを特徴とするFRP製曲管
製迫方法。
The roving is centripetally supplied from the outer periphery of the core mold to the outer peripheral surface of the core mold to wind the roving around the core mold, and the roving is impregnated with a thermosetting resin liquid to form the curved pipe. A method for manufacturing an FRP curved pipe, which comprises forming a curved pipe, continuously subjecting the curved pipe to a thermosetting treatment, and continuously drawing out the core shape.
JP58036213A 1983-03-04 1983-03-04 Manufacture of frp bent pipe Granted JPS59162022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58036213A JPS59162022A (en) 1983-03-04 1983-03-04 Manufacture of frp bent pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036213A JPS59162022A (en) 1983-03-04 1983-03-04 Manufacture of frp bent pipe

Publications (2)

Publication Number Publication Date
JPS59162022A true JPS59162022A (en) 1984-09-12
JPH044138B2 JPH044138B2 (en) 1992-01-27

Family

ID=12463469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036213A Granted JPS59162022A (en) 1983-03-04 1983-03-04 Manufacture of frp bent pipe

Country Status (1)

Country Link
JP (1) JPS59162022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219678B1 (en) * 1985-09-18 1991-01-16 Shigeyuki Yasuda Method for controlling steady state exothermic temperature in the use of heat sensitive-electrically resistant composites
CN101846230A (en) * 2010-02-11 2010-09-29 中国石油集团川庆钻探工程有限公司 Antiseptic operation system of hot bending bent pipe and operation method thereof
CN101865351A (en) * 2010-06-09 2010-10-20 四川石油天然气建设工程有限责任公司 Hot bending bent pipe fan-shaped corrosion prevention operation device and corrosion prevention operation method
CN114537971A (en) * 2022-02-08 2022-05-27 河南新开源石化管道有限公司 Elbow bearing dragging device with circular arc motion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219678B1 (en) * 1985-09-18 1991-01-16 Shigeyuki Yasuda Method for controlling steady state exothermic temperature in the use of heat sensitive-electrically resistant composites
CN101846230A (en) * 2010-02-11 2010-09-29 中国石油集团川庆钻探工程有限公司 Antiseptic operation system of hot bending bent pipe and operation method thereof
CN101865351A (en) * 2010-06-09 2010-10-20 四川石油天然气建设工程有限责任公司 Hot bending bent pipe fan-shaped corrosion prevention operation device and corrosion prevention operation method
CN114537971A (en) * 2022-02-08 2022-05-27 河南新开源石化管道有限公司 Elbow bearing dragging device with circular arc motion

Also Published As

Publication number Publication date
JPH044138B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
US4078957A (en) Filament winding apparatus and method
CN102632609B (en) Continuous molding device for fiber reinforced composite pipes
US6544367B1 (en) Overwrap tape end-effector for fiber placement/winding machines
CN103707496B (en) A kind of Wrapping formed tubing of thermoplastic fibre and its moulding process
JPS63189235A (en) Method and device for winding crossing tape
CN104827650A (en) Whole combination type enhanced thermoplastic pipe composite tape winder and winding method thereof
US20100252179A1 (en) Device And Method For Draping And Pre-Shaping Curved Profiled Structural Components Of Fiber Materials
US4028164A (en) Process and apparatus for the continuous obtainment by displacement of cylindrical or prismatic hollow bodies produced with fibre-reinforced synthetic resins
US8048248B2 (en) Method of and apparatus for winding a fiber strand onto a bobbin
US3616061A (en) Apparatus for making curved wound articles
JPS59162022A (en) Manufacture of frp bent pipe
JP2001278543A (en) Method and device for processing tip of yarn in filament winding device and the filament winding device
JPH05338044A (en) Filament winding molding device
JP2000334853A (en) Continuous production system for fiber-reinforced pressure vessel by braider
JPH07117139A (en) Production of fiber reinforced resin pipe
JPH08187797A (en) Method and apparatus for producing cylindrical fiber reinforced plastic
JP3292771B2 (en) Method and apparatus for manufacturing fiber-reinforced plastic curved tube
EP0268544B1 (en) Apparatus for laying a continuous strip of elastomeric material onto a surface
JP4072930B2 (en) Manufacturing method and manufacturing apparatus for reinforcing member for pressure vessel
JP3698268B2 (en) FRP cylinder manufacturing method and manufacturing apparatus
CN116141702A (en) 3D winding method of fibers
JPS6330234A (en) Automatic winding apparatus of resin-impregnated filament
JPS59171619A (en) Molding of curved frp pipe
JP3641812B2 (en) Tape winding device
JPS63247270A (en) Winding feeding device with moving truck