JPS59171619A - Molding of curved frp pipe - Google Patents

Molding of curved frp pipe

Info

Publication number
JPS59171619A
JPS59171619A JP58046549A JP4654983A JPS59171619A JP S59171619 A JPS59171619 A JP S59171619A JP 58046549 A JP58046549 A JP 58046549A JP 4654983 A JP4654983 A JP 4654983A JP S59171619 A JPS59171619 A JP S59171619A
Authority
JP
Japan
Prior art keywords
roving
core
core mold
wound
rovings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58046549A
Other languages
Japanese (ja)
Other versions
JPH044139B2 (en
Inventor
Satoshi Miura
三浦 敏
Kenji Iwamoto
健司 岩本
Shigeru Umeda
繁 梅田
Terukuni Hashimoto
橋本 輝国
Hiroshi Okamoto
弘 岡本
Yoshiki Higuchi
芳樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Nippon Shokubai Co Ltd
Original Assignee
Kubota Corp
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Nippon Shokubai Co Ltd filed Critical Kubota Corp
Priority to JP58046549A priority Critical patent/JPS59171619A/en
Publication of JPS59171619A publication Critical patent/JPS59171619A/en
Publication of JPH044139B2 publication Critical patent/JPH044139B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain highly reinforced FRP curved pipe at a low cost by a method wherein a roving is wound about the outer circumference of a core to mold a curved pipe in the circumferential direction and many rovings are supplied in the axial direction and wound about the core in swinging operation. CONSTITUTION:Creels A-C are arranged in the axial direction of a core 32, the creels A, C are revolved synchronously in the same direction and the middle creel B is fixed. Plural roving bobbins 38 are arranged nearly at equal intervals along the circumferential direction on each creel A-C. The rovings 42A, 42C drawn from the creels A, C are wound about the core 32, the roving 42B drawn from the fixed creel B is mounted in the axial direction of the core 32 but moves in the reverse direction against the swing of the core 32 as it is providing a wound layer 43C. The curved pipe is coated with thermosetting resin liquid injected from a spring 3, is heated to provide FRP curved pipe about the outer circumference of the core 32.

Description

【発明の詳細な説明】 本発明は曲管成形用の芯型のまわ)にロービングを新規
な供給方法で巻回するFRP製曲管の成形方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an FRP bent pipe in which roving is wound around a core mold for forming a bent pipe using a novel feeding method.

FRP製曲管(以下単に「曲管」という)の成形は、こ
れまで主として■手作築によるハンドレイアップ法か■
機械作業によるフィラメントヮインデインク法(「以下
「FW法」と称する)によって行なわれている。しかし
いずれの方法においても下記する様な問題点が指摘され
ていた。
Up until now, FRP bent pipes (hereinafter simply referred to as "bent pipes") have mainly been formed using the hand lay-up method.
This is carried out by a mechanical filament ink method (hereinafter referred to as the "FW method"). However, the following problems have been pointed out in both methods.

即チハンドレイアツプ法においては装置、設備費が安価
ではあるが、手作業である為生産性が極めて悪く、又無
圧成形数にロービング含有量が少なく、成形品の機械的
強度がいきおい低くなるという致命的な欠点がある。例
えばハンドレイアップ法で得られた成形品の強度はFW
法で得られた同一寸法成形品の強度の約めに過ぎない。
Although the equipment and equipment costs are low in the instant hand lay-up method, the productivity is extremely low because it is manual work, and the number of non-pressure moldings and roving content is low, so the mechanical strength of the molded product is extremely low. It has a fatal flaw. For example, the strength of molded products obtained by hand layup method is FW
This is only an approximation of the strength of a molded product of the same size obtained by the method.

勿論ロービングの含有量を増加すれば成形品強度を増大
し得る訳であるが、その増大の割合は僅少であるからロ
ービングコストをいたずらに高騰させるだけであって極
めて非経済的である。
Of course, it is possible to increase the strength of the molded product by increasing the roving content, but the rate of increase is so small that it only unnecessarily increases the roving cost, which is extremely uneconomical.

一方FW法は上記ハンドレイアップ法の欠点、特に成形
品強度の劣る点を解決すべく開発されたもので、引張シ
強さの大きいロービングを引張多方向に応力を受けるよ
うに曲管成形用芯型の表面に連続的に巻き伺は配置する
ことによシ機械的強度の非常に高い曲管を成形すること
ができる。即ちFW法によって曲管を成形する場合を、
第1図(概略側面図)及び第2図(概略平面図)に基づ
いて説明すると、1はFW成形機で、回転型のロービン
グ調整・供給装置3を非回転型の曲管成形用芯型(以下
単に「芯型」という)2のまわシに回転できる様に配設
している。即ち平板軸受4の中央部で枢支されたターン
テーブル5の略中夫上方には芯型2を配置すると共に、
該芯型2の頂面を、L形アーム6を介して駆動機7に連
結することにより、支点Pを中心として芯型2を上下矢
印方向に旋回させる。一方ターンテーブル5の外周縁付
近には、枢支点を中心としてほぼ対称的な位置に複数の
ロービングユニット8をセットしてなるロービングユニ
ット支持中空台9とロービングガイド10をセットして
なるロービングガイド支持中空台11が配設され、更に
ロービングユニット支持中空台9とロービングガイド支
持中空台11の間でターンテーブル5の上面には樹脂浴
槽12が載設される。この様なFW成形41a1におい
ては、各ロービングユニット8から集束して引出された
ロービングは樹脂浴槽12で適当な樹脂液が含浸された
後、ロービングガイド支持中空台11.ロービングガイ
ド10を経て該ガイド10先端部の糸導出部材13から
芯型2方向へ連続的に供給される。上記ロービングはタ
ーンテーブル5を所定の速度で回転させながら供給され
るので、樹脂含浸ロービングは適当な張力が付与された
状態で芯型2に巻きつけられることになり、しかもその
巻き付けの進行に伴って芯型2を図の上向き矢印方向へ
徐々に旋回させるので機械的強度の優れた曲管が比較的
効率良く成形される。この様に従来のFW法は成形品の
機械的強度を高める上で大きく貢献し得たものであるが
、特有の構造から生じる下記問題点の解決が強く望まれ
ていた。即ち上記FW法によれば該芯型2の周方向への
フィラメントワインディングは可能であるが、芯型2の
軸芯方向にはロービングの積層を行なうことができない
為、その代シとしてすだれ織りをしたフィラメント又は
ガラスロービングマットの様なロービング加工品を芯型
2の上へ別途巻きつけて軸方向ロービングの代用として
いた。即ち周方向ワインディングを行なう工程の他にロ
ービング加工品を軸方向へ添設する工程が必要になるだ
けでなく高価な加工品を用いることによる経済性の問題
がある。
On the other hand, the FW method was developed to solve the drawbacks of the hand lay-up method mentioned above, especially the poor strength of the molded product. By arranging the windings continuously on the surface of the core mold, a curved pipe with extremely high mechanical strength can be formed. In other words, when forming a bent pipe using the FW method,
To explain based on FIG. 1 (schematic side view) and FIG. 2 (schematic plan view), 1 is a FW forming machine, in which a rotary roving adjustment/supply device 3 is connected to a non-rotating core mold for curved pipe forming. (Hereinafter simply referred to as "core type") It is arranged so that it can rotate in two directions. That is, the core mold 2 is disposed approximately above the center shaft of the turntable 5 which is pivotally supported at the center of the flat bearing 4, and
By connecting the top surface of the core mold 2 to a driver 7 via an L-shaped arm 6, the core mold 2 is rotated about a fulcrum P in the directions of the up and down arrows. On the other hand, near the outer periphery of the turntable 5, there is a roving guide support formed by setting a roving unit support hollow base 9 and a roving guide 10, each of which has a plurality of roving units 8 set in substantially symmetrical positions around the pivot point. A hollow base 11 is provided, and a resin bath 12 is mounted on the upper surface of the turntable 5 between the roving unit support hollow base 9 and the roving guide support hollow base 11. In such FW molding 41a1, the rovings pulled out in a bundle from each roving unit 8 are impregnated with an appropriate resin liquid in the resin bath 12, and then transferred to the roving guide support hollow base 11. The yarn is continuously supplied through the roving guide 10 from the yarn guide member 13 at the tip of the guide 10 toward the two core molds. Since the roving is supplied while rotating the turntable 5 at a predetermined speed, the resin-impregnated roving is wound around the core 2 with an appropriate tension applied, and as the winding progresses, the resin-impregnated roving is Since the core mold 2 is gradually turned in the direction of the upward arrow in the figure, a curved pipe with excellent mechanical strength can be formed relatively efficiently. As described above, the conventional FW method has greatly contributed to increasing the mechanical strength of molded products, but it has been strongly desired to solve the following problems arising from the unique structure. That is, according to the above-mentioned FW method, filament winding in the circumferential direction of the core 2 is possible, but since it is not possible to stack roving in the axial direction of the core 2, blind weave is used as an alternative. A roving workpiece, such as a filament or a glass roving mat, was separately wound onto the core mold 2 to serve as a substitute for the axial roving. That is, in addition to the process of winding in the circumferential direction, a process of attaching the roving workpiece in the axial direction is required, and there is also an economical problem due to the use of expensive workpieces.

即ち上記のすだれ織りしたフィラメント又はロービング
マットの様な加工品はロービングを更に加工したもので
あって原材料費もロービングそのものに比べて高価であ
る。
That is, processed products such as the above-mentioned woven filaments or roving mats are products obtained by further processing roving, and the raw material costs are higher than that of the roving itself.

本発明は前記の様な事情を考慮して芯型の周方向及び添
設を行なうことによって上記問題点を解決し、品質的及
び経済的に有利な曲管の成形法を提供することを目的と
してなされたものであり、この様な目的を達成し得た本
発明の構成とは、芯型の外周から該芯型の外周面に対し
てロービングを求心的に供給すると共に、ロービングの
供給は前記芯型の軸方向において少なくとも3つの異な
る位置から供給する様に構成し、前記芯型を管軸方向に
スイングさせつつ前記ロービングのうち両端から供給す
るロービングを芯型のまわシに巻回させると共に、中央
から供給するロービングを芯型の軸方向に載置すること
を要旨とするものである。
The purpose of the present invention is to solve the above-mentioned problems by circumferentially and attaching the core mold in consideration of the above-mentioned circumstances, and to provide a method for forming a curved pipe that is advantageous in terms of quality and economy. The structure of the present invention that has achieved such an object is to supply roving centripetally from the outer periphery of the core mold to the outer peripheral surface of the core mold, and to supply the rovings in a centripetal manner. The rovings are configured to be supplied from at least three different positions in the axial direction of the core mold, and the rovings supplied from both ends of the rovings are wound around the core mold while swinging the core mold in the tube axis direction. In addition, the gist is to place the roving supplied from the center in the axial direction of the core mold.

以下実施例を示す図面に基づいて本発明の構成及び作用
効果を具体的に説明するが、下記実施例は一具体例にす
ぎず、もとより前・後記の趣旨に徴して種々設計を変更
することは、いずれも本発明の技術範囲に含まれる。
The configuration and effects of the present invention will be explained below in detail based on the drawings showing the embodiments. However, the embodiments below are only one specific example, and the design may be modified in various ways in keeping with the spirit described above and below. All of these are included within the technical scope of the present invention.

第3図は本発明方法を実施するときに用いる曲管成形装
置31の概略側面説明図である。第4図は第3図の1V
TV綜断面矢視概略説明図、第5図は第4図にあられれ
だロービングボビン保持部の説明図、第6図は第3図の
Vl−M線断面矢視概略説明図、第7図は第6図にあら
れれたローどングボビン保持部の説明図および第8図は
第3図の回転クリール部の要部斜視図である。曲管成形
装置31には芯型32の外周面に対してロービングを求
心的に供給すべく芯W32の中心軸P、P2方向に見て
3つの異なる位置に夫々クリールA、B。
FIG. 3 is a schematic side view of a bent pipe forming apparatus 31 used when carrying out the method of the present invention. Figure 4 is 1V of Figure 3.
5 is a schematic explanatory diagram of the roving bobbin holding section shown in FIG. 4, FIG. 6 is a schematic explanatory diagram of the Vl-M line cross section of FIG. 3, and FIG. 6 is an explanatory view of the loading bobbin holding section shown in FIG. 6, and FIG. 8 is a perspective view of the main part of the rotating creel section shown in FIG. 3. The bent tube forming device 31 has creels A and B at three different positions as viewed from the central axis P and P2 direction of the core W32 in order to centripetally supply rovings to the outer circumferential surface of the core mold 32.

Cが設けられている。即ち両端のクリールA及びCは同
方向へ同期的に回転する回転式クリールであり、中央の
クリールBは非回転の固定式クリールである。そして各
クリールA、B、Cは断面コ字型の中空ドーナツ状部材
で、コ字部の底面部48には夫々ロービングの繰り出し
が自由である様に複数のロービングボビン38が周方向
に漬って略等間隔を置いて設けられる(第8図ではロー
ビングボビンは省略している)。前回では各クリールA
、Cは中空側縁部及び外周側縁が共に円形であり、クリ
ールBは中空側縁及び外周側縁共に正方形になっておシ
、いずれも中空部に芯型32が貫設される。そして円形
クリールA、Cの外周面には環状ラック41が取付けら
れ、モータ34の駆動を駆動軸46及びビニオン33経
由で上記環状ラック41に伝えてクリールA、Cを同方
向に同期回転させる様になっている。そして35は芯型
32のまわりに巻回層は載置されたロービングに熱硬化
性樹脂液を塗布湿潤させる為のスプレー装置を示す。又
芯型32は図示しない手段によって軸心方向即ち芯型3
2の曲率円周P、P2に沿って矢印の様に往榎スイング
可能に構成されている。
C is provided. That is, creels A and C at both ends are rotating creels that rotate synchronously in the same direction, and creel B at the center is a stationary creel that does not rotate. Each of the creels A, B, and C is a hollow donut-shaped member with a U-shaped cross section, and a plurality of roving bobbins 38 are dipped in the circumferential direction on the bottom surface 48 of the U-shaped portion so that the rovings can be freely fed out. The roving bobbins are provided at approximately equal intervals (the roving bobbins are omitted in FIG. 8). Last time, each creel A
, C have both a circular hollow side edge and an outer peripheral side edge, and a creel B has a square hollow side edge and an outer peripheral side edge, both of which have a core mold 32 penetrating through the hollow portion. An annular rack 41 is attached to the outer peripheral surface of the circular creels A and C, and the drive of the motor 34 is transmitted to the annular rack 41 via a drive shaft 46 and a pinion 33 to cause the creels A and C to rotate synchronously in the same direction. It has become. Reference numeral 35 denotes a spray device for coating and moistening the thermosetting resin liquid onto the roving which is placed around the core mold 32. Further, the core mold 32 is moved in the axial direction, that is, the core mold 3 by means not shown.
It is configured to be able to swing forward and backward along the curvature circumferences P and P2 of 2 as shown by the arrow.

第4図において、固定された枠部材36には3個の溝付
きガイドローラ37が3方向に夫々回転自在に取付けら
れ、第5図に示す如く前記環状ラック41が溝付きガイ
ドローラ37の溝47に代金することによってクリール
Aが図の左右に転倒するのを防止している。従ってクリ
ールA、Cの回転によってロービングボビン38から繰
シ出されるロービング42Aはロービングガイド孔39
を経て芯型32のまわジに巻回される。又第6,7図に
示す様に固定式クリールBのコ字型部48には各ロービ
ングボビン38から繰り出されるロービング42Bの案
内用のロービングガイドパイプ40が設けられている。
In FIG. 4, three grooved guide rollers 37 are attached to the fixed frame member 36 so as to be rotatable in three directions, and as shown in FIG. 47 prevents the creel A from falling to the left or right in the figure. Therefore, the roving 42A fed out from the roving bobbin 38 by the rotation of the creels A and C is transferred to the roving guide hole 39.
After that, it is wound around the core 32. Further, as shown in FIGS. 6 and 7, the U-shaped portion 48 of the fixed creel B is provided with a roving guide pipe 40 for guiding the rovings 42B paid out from each roving bobbin 38.

これは芯型32のスイングによってロービング42Bが
芯型32の軸方向へ引きずられ正しい積層の(トy成が
阻害されるのを防止する為である。
This is to prevent the rovings 42B from being dragged in the axial direction of the core mold 32 due to the swing of the core mold 32, thereby preventing correct lamination.

次に第9図(a) l (b)は本発明方法による曲管
成形している芯型32にクリールA、B、Cによってロ
ービング42を巻回する手順をモデル的に示している。
Next, FIGS. 9(a) and 9(b) show, in model form, the procedure for winding the roving 42 around the core mold 32, which is being formed into a curved pipe according to the method of the present invention, using creels A, B, and C.

第9図(a)において、回転クリールA、Cから繰り出
されるロービング42A、42Cは回転式クリールA、
Cの回転によって芯型32のまわシに巻回され、それと
同時に固定クリールBから繰り出されるロービング42
Bは芯型32の軸方向に載置されるが、芯型32の矢印
方向へのスイングによってロービング42Cは芯型32
のスイングと逆方向に巻回層43Cを形成しつつ移動す
る。ロービング4’2Bは上記巻回層43Cの層上へ芯
軸に沿って載置され、芯型32のスイングと逆方向に積
層43Bを形成しつつ移動する。回転クリールAから繰
り出されるロービング42Aは上記巻回層43C及び積
層43Bの層上へ巻回されて上記クリールB、Cと同時
に芯型32のスイングと逆方向に巻回層43Aを形成し
つつ移動する。即ち上記によってクリールC,Aの回転
によって形成された巻回層43Cと43Aの間に固定式
クリールBがら供給されたロービング42Bによって軸
方向に載置された積層43Bが挾み込まれた形態となっ
ておシ、積層43Bは両巻回層間にがっちり把持されて
曲管が形成される。第9図(b)は矢印で示す様に芯型
32のスイングが(a)と逆になった段階を示す図で、
ロービングr2Aはスイングと逆方向に巻回層43Aの
すぐ上に再び巻回層43Aを形成しつつ移動し、ついで
巻回層43A上に積層43Bが、又更にその上に巻回層
43Aが形成される。又ロービング42A、42B。
In FIG. 9(a), rovings 42A, 42C paid out from rotary creels A, C are rotary creels A,
The roving 42 is wound around the spindle of the core mold 32 by the rotation of C, and at the same time is let out from the stationary creel B.
B is placed in the axial direction of the core mold 32, but as the core mold 32 swings in the direction of the arrow, the roving 42C is placed on the core mold 32.
It moves in the opposite direction to the swing while forming the wound layer 43C. The roving 4'2B is placed on the wound layer 43C along the core axis, and moves in the opposite direction to the swing of the core mold 32 while forming the laminated layer 43B. The roving 42A unwound from the rotating creel A is wound onto the wound layer 43C and the laminated layer 43B, and moves simultaneously with the creels B and C in a direction opposite to the swing of the core mold 32 while forming the wound layer 43A. do. That is, the laminated layer 43B placed in the axial direction is sandwiched between the wound layers 43C and 43A formed by the rotation of the creels C and A as described above by the roving 42B supplied from the fixed creel B. Now, the laminated layer 43B is firmly held between the two winding layers to form a bent pipe. FIG. 9(b) is a diagram showing a stage in which the swing of the core mold 32 is reversed from that in FIG. 9(a), as indicated by the arrow.
The roving r2A moves in the opposite direction to the swing while forming the wound layer 43A again just above the wound layer 43A, and then the laminated layer 43B is formed on the wound layer 43A, and the wound layer 43A is further formed on it. be done. Also roving 42A, 42B.

4、2 Cは夫々芯型32上に巻回又は載置された巻回
層4.3 A 、 43 C及び積層43Bを形成する
と共に芯型32上に固定されるから、ロービング42A
、42CはクリールA、Cの回転によって張力が発生し
ロービングボビン38から自由に繰シ出され、ロービン
グ42Bは芯型32のスイングによって張力を生じて繰
シ出し可能であシ、連続的に且つスムーズに巻回及び載
置が可能である。なお第9図の芯型32端部の状況から
も理解される様に芯型32のスイングの関係で該芯型3
2の左右の端部には、巻回層又は積層の全くない部分又
は中央部に比較して少ない部分が発生するので、最初か
ら必要長さの曲管より長めの芯型32を用意しておくこ
とが推奨される。又芯型32のスイングの振幅、周期や
回転クリールA、Cの回転数、即ちロービングの巻回数
、積層数等は成形される曲管の所望特性に応じて適宜選
択可能である。又自動制御装置を併設して自動化するこ
とも可能である。
4 and 2C form the wound layers 4.3A and 43C wound or placed on the core mold 32, respectively, and the laminated layer 43B, and are fixed on the core mold 32, so that the roving 42A
, 42C are freely paid out from the roving bobbin 38 due to the tension generated by the rotation of the creels A and C, and the roving 42B is payable by the tension generated by the swing of the core mold 32, and is continuously and It can be rolled and placed smoothly. In addition, as can be understood from the situation at the end of the core mold 32 in FIG. 9, the core mold 3
At the left and right ends of 2, there are parts where there are no winding layers or laminations, or where there are fewer layers than in the center, so prepare a core mold 32 that is longer than the required length of the bent pipe from the beginning. It is recommended that you leave the Further, the swing amplitude and period of the core mold 32, the number of rotations of the rotating creels A and C, ie, the number of windings of the roving, the number of layers, etc. can be appropriately selected depending on the desired characteristics of the curved pipe to be formed. It is also possible to automate the process by adding an automatic control device.

本発明は以上の様に構成されているので、曲管成形用芯
型の周方向へのロービングの巻回及び軸方向への積層を
同時に行なうことができ、均一で品質的にも又効率的に
も有利々多層構造の曲管成形が可能となった。
Since the present invention is configured as described above, the winding of the roving in the circumferential direction of the core mold for curved pipe forming and the lamination in the axial direction can be performed at the same time, which is uniform and efficient in terms of quality. It has also become possible to form curved tubes with multi-layered structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFW成形機の概略側面図、第2図は同概
略平面図、第3図は本発明方法を実施するときに用いる
曲管成形装置の概略側面説明図、第4図は第3図の■−
■綜断面矢視概略説明図、嬉5図は第4図にあられれた
ロービングボビン保持部の説明図、第6図は第3図の■
−■線断面矢視概略説明図、第7図は第6図にあられれ
だロービングボビン保持部の説明図、第8図は第3図に
あられれた回転式クリールの要部斜視図及び第9図は本
発明方法による曲管成形方法を例示する説明図である。 31・・・曲管成形装置 32・・・曲管成形用芯型3
3・・・ピニオン   34・・・モータ35・・・ス
プレー装fθ 36・・・枠部材37・・・ン防伺きガ
イドローラ 38・・・ロービングボビン 39・・・ロービングガイド孔 40・・・ロービングガイドパイプ 41・・・環状ラック  42・・・ロービング43・
・・巻回層    44・・・積層45・・・ボビン軸
   46・・・駆動軸47・・・溝      48
・・・底面部A、C・・・回転式クリール B・・・固定式クリール 出願人  久保田鉄工株式会社 第6図 第8図
Fig. 1 is a schematic side view of a conventional FW forming machine, Fig. 2 is a schematic plan view thereof, Fig. 3 is a schematic side explanatory view of a bent pipe forming apparatus used when carrying out the method of the present invention, and Fig. 4 is a schematic side view of a conventional FW forming machine. ■- in Figure 3
■A schematic explanatory diagram of the heddle cross-section viewed from the arrows, Figure 5 is an explanatory diagram of the roving bobbin holding part shown in Figure 4, and Figure 6 is an explanatory diagram of the roving bobbin holding part shown in Figure 3.
7 is an explanatory diagram of the roving bobbin holder shown in FIG. 6, and FIG. 8 is a perspective view of the main parts of the rotary creel shown in FIG. FIG. 9 is an explanatory diagram illustrating a method for forming a curved pipe according to the method of the present invention. 31... Bent pipe forming device 32... Core mold 3 for bending pipe forming
3...Pinion 34...Motor 35...Spray equipment fθ 36...Frame member 37...Rubbing prevention guide roller 38...Roving bobbin 39...Roving guide hole 40... Roving guide pipe 41...Annular rack 42...Roving 43.
...Wound layer 44...Lamination layer 45...Bobbin shaft 46...Drive shaft 47...Groove 48
...Bottom parts A, C...Rotating creel B...Fixed creel Applicant: Kubota Iron Works Co., Ltd. Figure 6 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 曲管成形用芯型の外周から該芯型の外周面に対してロー
ビングを求心的に供給すると共に該ロービングの供給は
前記芯型の軸方向において少なくとも3つの異なる位数
から供給する様に構成し、前記芯型を管軸方向にスイン
グさせつつ前記ロービングのうち両端から供給するロー
ビングを芯型のまわシに巻回させると共に、中央から供
給するロービングを芯型の軸方向に載置することを特徴
とするFRP製曲管の成形方法。
The rovings are centripetally supplied from the outer periphery of the core mold for curved pipe forming to the outer peripheral surface of the core mold, and the rovings are supplied from at least three different orders in the axial direction of the core mold. and, while swinging the core mold in the tube axis direction, winding the rovings supplied from both ends of the rovings around the core mold, and placing the rovings supplied from the center in the axial direction of the core mold. A method for forming an FRP bent pipe characterized by:
JP58046549A 1983-03-18 1983-03-18 Molding of curved frp pipe Granted JPS59171619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046549A JPS59171619A (en) 1983-03-18 1983-03-18 Molding of curved frp pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046549A JPS59171619A (en) 1983-03-18 1983-03-18 Molding of curved frp pipe

Publications (2)

Publication Number Publication Date
JPS59171619A true JPS59171619A (en) 1984-09-28
JPH044139B2 JPH044139B2 (en) 1992-01-27

Family

ID=12750391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046549A Granted JPS59171619A (en) 1983-03-18 1983-03-18 Molding of curved frp pipe

Country Status (1)

Country Link
JP (1) JPS59171619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170225383A1 (en) * 2016-02-09 2017-08-10 Honda Motor Co., Ltd. Method of manufacturing shaft-shape composite member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170225383A1 (en) * 2016-02-09 2017-08-10 Honda Motor Co., Ltd. Method of manufacturing shaft-shape composite member

Also Published As

Publication number Publication date
JPH044139B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
JP4420250B2 (en) Filament winding equipment
US4877471A (en) Method and apparatus for delivering a resin-impregnated, multifilament band
US8105454B2 (en) Filament winding apparatus and method thereof
US4938824A (en) Method for making a composite component using a transverse tape
US4909880A (en) Method and apparatus for tape winding on irregular shapes
JP6825428B2 (en) Filament winding device
JPH0126330B2 (en)
KR101086106B1 (en) Apparatus for winding carbon fiber strand
CN112157926A (en) Fiber reinforced composite material winding forming equipment and winding forming process thereof
US3616061A (en) Apparatus for making curved wound articles
CN112955392B (en) Filament winding device
US3332815A (en) Method and apparatus for continuously forming elongated hollow articles
JPS59171619A (en) Molding of curved frp pipe
JPH02139467A (en) Apparatus for guiding fiber
JPH0226947A (en) Fiber machine
JP3698268B2 (en) FRP cylinder manufacturing method and manufacturing apparatus
JPH044138B2 (en)
JP2936874B2 (en) Filament winding device
JPS63247270A (en) Winding feeding device with moving truck
JP2005089161A (en) Manufacturing device of fiber reinforced composite material, its manufacturing method, and pressure vessel
US5238520A (en) Filament winding apparatus
JPH08108487A (en) Manufacture of frp cylindrical body and its device
JP3268105B2 (en) Apparatus and method for producing FRP tubular body
JPH06271195A (en) Reinforcing base material forming device
US3281300A (en) Method and apparatus for forming articles from plastic covered strands