JPS5916195B2 - Method of producing oxygen by air separation - Google Patents

Method of producing oxygen by air separation

Info

Publication number
JPS5916195B2
JPS5916195B2 JP56126055A JP12605581A JPS5916195B2 JP S5916195 B2 JPS5916195 B2 JP S5916195B2 JP 56126055 A JP56126055 A JP 56126055A JP 12605581 A JP12605581 A JP 12605581A JP S5916195 B2 JPS5916195 B2 JP S5916195B2
Authority
JP
Japan
Prior art keywords
nitrogen
heat exchanger
passage
charge air
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56126055A
Other languages
Japanese (ja)
Other versions
JPS5760164A (en
Inventor
ジエ−ムス・デ−ビツド・イヤ−アウト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS5760164A publication Critical patent/JPS5760164A/en
Publication of JPS5916195B2 publication Critical patent/JPS5916195B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • F25J3/0463Simultaneously between rectifying and stripping sections, i.e. double dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/908Filter or absorber

Description

【発明の詳細な説明】 この発明は鞘部によって空気から酸素を分離することに
関し、もつと詳細に述べると仕込み空気から水蒸気と炭
酸ガスを除去するための逆転式熱交換器と共に非断熱的
な空気分別系を使用して空気から酸素を分離するための
改良された方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the separation of oxygen from air by means of a sheath, and more particularly, to a non-adiabatic system with an inverting heat exchanger for removing water vapor and carbon dioxide from a charge air. An improved method for separating oxygen from air using an air fractionation system.

空気から酸素と窒素を製造する先行技術に於いて炭酸ガ
スと水蒸気は米国特許3594983号によって例示さ
れる様に分子ふるいの様な外部手段によって仕込み空気
から除かれていた。
In prior art production of oxygen and nitrogen from air, carbon dioxide and water vapor were removed from the charge air by external means such as molecular sieves, as exemplified by US Pat. No. 3,594,983.

しかしながら、この目的に使用される分子ふるいはかさ
ばり重く比較的高価である。
However, molecular sieves used for this purpose are bulky and relatively expensive.

空気分離によって窒素を製造するための米国特許350
8412号中では酸素に富んだ蒸気と窒素と向流の熱交
換関係で圧縮空気が再生式の冷却器中で冷却される。
U.S. Patent 350 for Producing Nitrogen by Air Separation
In No. 8412, compressed air is cooled in a regenerative cooler in countercurrent heat exchange relationship with oxygen-enriched steam and nitrogen.

仕込み空気から炭酸ガスと水蒸気を除去するための最も
経済的な方法は再生式の熱交換器の表面上に固形でCO
2と水蒸気を沈着させることであり、そして入って来る
仕込み空気と低圧窒素排流の間で流れの通路を逆転する
ことによってこれらの汚染物が熱交換器の表面を離れて
蒸気相中に昇華せしめられる。
The most economical way to remove carbon dioxide and water vapor from charge air is to remove CO2 as a solid on the surface of a regenerative heat exchanger.
2 and water vapor, and by reversing the flow path between the incoming charge air and the low-pressure nitrogen exhaust stream, these contaminants leave the heat exchanger surface and sublimate into the vapor phase. I am forced to do it.

しかしながらその様な再生的熱交換器は一般に例えば約
10気圧程度の高い仕込み空気圧で使用されていた。
However, such regenerative heat exchangers have generally been used at high charge air pressures, for example on the order of about 10 atmospheres.

仕込み空気の圧力を好ましくは約3気圧又はそれ以下に
減少させることによって電力消費を出来るだけ減少させ
ながら鞘部することにより空気から酸素を分離するため
の方法及び装置を提供することが本発明の目的である。
It is an object of the present invention to provide a method and apparatus for separating oxygen from air by sheathing while minimizing power consumption by reducing the pressure of the charge air, preferably to about 3 atmospheres or less. It is a purpose.

もう一つの目的は3気圧又はそれ以下の圧力で仕込み空
気から水蒸気と炭酸ガスの除去を実行するための逆転式
熱交換器を使用することである。
Another objective is to use an inverting heat exchanger to perform water vapor and carbon dioxide removal from the feed air at pressures of 3 atmospheres or less.

もう一つの目的は約3気圧を越えない空気仕込み圧力を
維持しながら炭酸ガスと水蒸気の除去のため空気分別装
置と共に逆転式熱交換器を使って空気から酸素を分離す
ることを行なうことである。
Another objective is to perform the separation of oxygen from the air using an inverting heat exchanger in conjunction with an air fractionator for the removal of carbon dioxide and water vapor while maintaining an air charge pressure not exceeding approximately 3 atmospheres. .

もつと他の目的は逆転式熱交換器を利用する上記の方法
と装置を使用する空気精製を維持しながら液体及びガス
状酸素生成物の両方の製造を可能にすることである。
Another object is to enable the production of both liquid and gaseous oxygen products while maintaining air purification using the above method and apparatus utilizing an inverting heat exchanger.

空気を分離するための微分蒸溜を使用してアメリカ合衆
国特許3508412号に開示されている型の方法に於
いて逆転式再生器を使用する供給空気からCO。
CO from the feed air using a reversing regenerator in a process of the type disclosed in U.S. Pat. No. 3,508,412 using differential distillation to separate the air.

デ水蒸気汚染物を搬び去る窒素に富んだ排流の能力は2
つの因子に依存することがわかつ弯即ち入って来る空気
と窒素に富んだ排流の間の圧力差と(2)これら2つの
流れの間の温度差によることが見出された。
The capacity of the nitrogen-rich waste stream to carry away water vapor contaminants is 2.
(2) the pressure difference between the incoming air and the nitrogen-rich exhaust stream; and (2) the temperature difference between these two streams.

仕込み空気圧力が減少し、その結果エネルギー消費がよ
り低くなるにつれ、熱交換器の冷たい方の端での上記2
つの流れの間の温度差がCO2と水蒸気の除去を可能に
するのにより臨界的になる。
2 above at the cold end of the heat exchanger as the charge air pressure decreases, resulting in lower energy consumption.
The temperature difference between the two streams becomes more critical in allowing removal of CO2 and water vapor.

仕込み空気の圧力が減少せしめられるにつれ、仕込み空
気と排流の、逆転式再生器の冷た(・方の端に於ける温
度差が極めて注意深(調節されねばならない。
As the pressure of the charge air is reduced, the temperature difference between the charge air and the exhaust stream at the cold end of the reversing regenerator must be very carefully regulated.

このことはとりもなおさず、仕込み空気と帰りの窒素排
流及び酸素生成物流の間の温度差が極めて小さい、即ち
3気圧で1.7℃(3R)である様に分別系の帯域内の
熱及び質量移動の関係が極めて注意深く定められること
を必要とする。
This is especially true in the zone of the fractionation system so that the temperature difference between the charge air and the return nitrogen exhaust and oxygen product streams is extremely small, i.e. 1.7°C (3R) at 3 atmospheres. It requires that the heat and mass transfer relationships be determined very carefully.

本発明によると空気からの酸素の製造は空気を例えば約
3気圧に圧縮し窒素排流との熱交換関係で圧縮仕込み空
気を逆転式熱交換器の交互の通路に通し、それによって
仕込み中の水蒸気とCO2を熱交換器通路の表面上で氷
らせるこ午によって実施される。
According to the invention, the production of oxygen from air involves compressing the air to, for example, about 3 atmospheres and passing the compressed charge air through alternate passages of a reversing heat exchanger in heat exchange relationship with the nitrogen exhaust stream, thereby reducing the This is done by freezing the water vapor and CO2 on the surface of the heat exchanger passages.

低圧窒素排流が仕込み空気通路を経て流れる様に流れを
逆転することによって、これはCO2と水蒸気の昇華と
蒸発を起こす。
By reversing the flow so that the low pressure nitrogen exhaust stream flows through the charge air passage, this causes sublimation and evaporation of CO2 and water vapor.

好ましい運転では仕込み空気の一部分が逆転式熱交換器
中の中間点で抜き出され、分子flJ!置の下部で更に
冷却さる。
In a preferred operation, a portion of the charge air is withdrawn at an intermediate point in the inverting heat exchanger, and molecules flJ! It is further cooled at the bottom of the rack.

熱交換器を通過する主空気流は分別装置を出る冷却され
た仕込み空気と混合され、生じた混合物は微分黒部を実
施するため非断熱分別装置の第一分別帯を通じて仕込ま
れ、それによって酸素に富んだ液体が凝縮せしめられ、
仕込み空気圧力、例えば約3気圧で運転している上記の
様な最初の(第1の)分別帯から抜かれ、窒素は塔頂物
として抜かれる。
The main air flow passing through the heat exchanger is mixed with the cooled charge air exiting the fractionator, and the resulting mixture is charged through the first fractionation zone of the non-adiabatic fractionator to perform a differential black section, thereby converting it into oxygen. The rich liquid is condensed,
A first fractionation zone as described above operating at a charge air pressure of, for example, about 3 atmospheres is withdrawn and nitrogen is withdrawn as overhead.

酸素に富んだ液は圧力が約1気圧に減少され、第一分別
帯域と熱交換関係にある第二の低圧分別帯域に供給され
、そこでは酸素に富んだ液体は部分的に蒸発され、比較
的純粋な酸素の液状塔底生成物が得られる。
The oxygen-enriched liquid is reduced in pressure to approximately 1 atm and fed to a second lower pressure fractionation zone in heat exchange relationship with the first fractionation zone, where the oxygen-enriched liquid is partially evaporated and compared to A liquid bottom product of virtually pure oxygen is obtained.

第2低圧帯域中の液体の部分的蒸発は高圧帯域に於ける
液の分縮の助けをする。
Partial evaporation of the liquid in the second low pressure zone assists in decondensation of the liquid in the high pressure zone.

第1高圧帯域の塔頂から抜かれる窒素はタービンを通し
て膨張され分別帯域と向流熱交換関係で通過させられ、
それによって最初の分別帯域中で酸素に富んだ液の分縮
に対して必要な付加的冷却を与える。
Nitrogen withdrawn from the top of the first high pressure zone is expanded through a turbine and passed in countercurrent heat exchange relationship with the fractionation zone;
This provides the necessary additional cooling for the partial condensation of the oxygen-rich liquid in the first fractionation zone.

低圧分別帯域の底部から抜かれる比較的純粋な酸素液体
は、液体としてか、又は分別装置の第一分別帯域に導入
される空気仕込みの僅かな部分の分縮によって蒸発され
るかのいずれかにより、系から抜出されうる。
The relatively pure oxygen liquid withdrawn from the bottom of the low pressure fractionation zone is evaporated either as a liquid or by condensation of a small portion of the air charge introduced into the first fractionation zone of the fractionator. , can be extracted from the system.

分別装置の熱交換通路を最終的に出る排窒素流は逆転式
熱交換器の逆転通路を通される。
The waste nitrogen stream that ultimately leaves the heat exchange passage of the fractionator is passed through the reversing passage of the reversing heat exchanger.

ガス状酸素生成物の流れは逆転式熱交換器の別個の非逆
転通路を通される。
The gaseous oxygen product stream is passed through a separate non-reversing passage of the reversing heat exchanger.

分別器の過程は排窒素流と酸素生成物流の両方と逆転式
熱交換器の冷たい方の端に於ける仕込み空気との間にた
だの約1.7℃(3R)の温度差がある様に実施される
The fractionator process is such that there is only a temperature difference of approximately 1.7°C (3R) between both the exhaust nitrogen stream and the oxygen product stream and the charge air at the cold end of the inverting heat exchanger. will be implemented.

一方本発明者の上記特許3508412号の方法で窒素
は仕込み空気の露点下およそ5.6℃(10R)で再生
式冷却器に入る。
On the other hand, in the method of my patent No. 3,508,412, nitrogen enters the regenerative cooler at approximately 5.6°C (10R) below the dew point of the charge air.

その上沈でんした炭酸ガスと水蒸気の完全な昇華を行な
うため熱交換器の逆転通路を通る充分な定量の排窒素ガ
スがある限り、酸素といくらかの量のガス状窒素の両方
を純粋生成物として抜き出すために系を変更しうる。
Furthermore, as long as there is a sufficient quantity of exhaust nitrogen gas through the reversing passage of the heat exchanger to effect complete sublimation of the precipitated carbon dioxide and water vapor, both oxygen and some amount of gaseous nitrogen can be produced as pure products. The system can be changed to extract it.

窒素と酸素の両方が生成物として抜かれる時の排流の容
量は仕込み空気流の全容量の50係より多くなげればな
らない。
The volume of the exhaust stream when both nitrogen and oxygen are removed as products must be greater than 50 times the total volume of the charge air stream.

逆転式再生式熱交換器中の中間点で除かれる仕込み空気
のその部分は交換器の上流の点又はその冷たい方の端上
で交換器から出され、それによって熱交換器の冷たい部
分に於ける質量の不均衡をつくり出す。
That portion of the charge air that is removed at an intermediate point in the inverting regenerative heat exchanger is exited from the exchanger at an upstream point or on its cold end, thereby being transferred to the cold section of the heat exchanger. creating a mass imbalance.

これは熱交換器の冷たい方の端での温度ピンチ(△T)
を造り出し、それによって排窒素と仕込み空気通路が逆
転されて排流が以前仕込み流によって占められていた通
路を通ることが出来るようにされる時、仕込みから固形
のCO2が完全に昇華することを確実にする。
This is the temperature pinch (△T) at the cold end of the heat exchanger.
, thereby ensuring complete sublimation of solid CO2 from the charge when the exhaust nitrogen and charge air passages are reversed to allow the exhaust flow to pass through the passage previously occupied by the charge stream. Assure.

これに反し、例えば上記特許3508412号の場合の
様に8気圧の程度のより高い仕込み圧力を使用する時は
、再生的冷却器を通る仕込み空気と分離された流の間の
温度差は逆転的交換器が働(ためには4.4℃(8R)
以下でなければならない。
On the contrary, when using a higher charge pressure of the order of 8 atmospheres, as for example in the case of the above-mentioned patent 3,508,412, the temperature difference between the charge air and the separated stream through the regenerative cooler is inversely The exchanger works (4.4℃ (8R)
Must be less than or equal to

もし入って来る空気流と窒素生成物及び酸素に富んだ排
流の間の逆転的再生器の冷たい方の端に於ける温度差カ
ミ、上記特許の方法を使って3気圧の仕込み圧力で運転
している時に、1.7℃(3R)より大きいならば、排
流は再生器をつまらせうるCO3をひろいあげて除くこ
とをしないであろう。
If the temperature difference at the cold end of the reversing regenerator between the incoming air stream and the nitrogen product and oxygen rich exhaust stream is increased, operating at a charge pressure of 3 atmospheres using the above patented method. If the temperature is greater than 1.7° C. (3R), the exhaust stream will not sweep up and remove CO3 which could clog the regenerator.

これらの関係は図面の第1図に図解されている。These relationships are illustrated in Figure 1 of the drawings.

本発明によって空気から酸素を分離する方法は基本的に
次のことからなる。
The method of separating oxygen from air according to the invention basically consists of the following.

水蒸気とCO2を含んでいる仕込み空気を比較的低圧に
圧縮し、 圧縮された仕込み空気流を逆転式熱交換器の第1の通路
に、上記熱交換器の第2の通路を通る窒素の排流と熱交
換関係に於いて通過させ、それによって仕込み空気中の
水蒸気とCO3を上記第1熱交換器通路の表面上で氷結
させ、 2つの流れを逆転させ、それによって窒素排流を上記第
1の通路を通して流し、上記仕込み空気流を上記第2の
通路を通して流し、上記水蒸気と上記CO2の昇華又は
蒸発を起こさせ、 この周期の終りに、圧縮仕込み空気流が上記の第1の通
路を通り、窒素の排流が上記の第2の通路を通る様に再
び2つの流れを逆転させ、且つ予め決められた間隔でこ
の周期を繰返し、 熱交換器中の中間点で仕込み空気流の一部を抜き出し、 分別装置内の熱交換関係で仕込み空気の上記抜き出した
部分を更に冷却し、 上記熱交換器の冷たい方の端から上記冷却された仕込み
空気の残りを完全にその中を通した後抜き出し、 上記更に冷却された仕込み空気の部分と上記抜き出され
た残りの冷却された仕込み空気流を混合し、 上記冷却された仕込み空気混合物を上記分別装置中の第
1分別帯域中を通し、それによって酸素に富んだ液体を
凝縮させ、窒素の塔頂物をつくり、上記第1分別帯域か
ら上記酸素に富んだ液体を抜き出し、 上記抜き出した酸素に富んだ液体を低圧に減圧し、 上記減圧された液体を下方に向けて上記分別装置中の第
2の分別帯域中に通し、それによって窒素蒸気を生成さ
せ酸素に富んだ液状生成物をつくり、 上記第2の分別帯域から生成物として上記酸素に富んだ
液体を抜き、 上記第1分別帯域からの塔頂窒素を仕事膨張させ減圧で
冷却された窒素を排出させ、 上記冷却された仕事膨張された窒素を、上記第2の分別
帯域と熱交換関係で上記分別装置中の通路を通過させそ
して上記帯域から熱を抜き取り、上記分別装置中の上記
の最後に述べた通路から上記の窒素を抜き取り、上記の
抜き取られた排窒素流を上記の熱交換器の冷たい方の端
中へ逆転式熱交換器の上記の第1と第2の通路の1つを
経て上記の様にして通し、 上記逆転式の熱交換器中の上記の熱交換と上記の分別装
置中の分別を、上記熱交換器の冷たい方の端に入る排窒
素流と熱交換器の冷たい方の端から抜き出される冷却さ
れた仕込み空気流の間にほんの小さい温度差しかない条
件下で実施すること。
Charge air containing water vapor and CO2 is compressed to a relatively low pressure, the compressed charge air stream is passed through a first passage of an inverting heat exchanger, and nitrogen is removed through a second passage of the heat exchanger. passing in heat exchange relationship with the air flow, thereby causing the water vapor and CO3 in the charge air to freeze on the surface of said first heat exchanger passage, reversing the two flows, thereby directing the nitrogen exhaust stream to said first heat exchanger passage. 1 passage, the charge air stream is passed through the second passage to cause sublimation or evaporation of the water vapor and the CO2, and at the end of this cycle, the compressed charge air stream is passed through the first passage. and then reversing the two flows again so that the nitrogen exhaust flow passes through the second passage, and repeating this cycle at predetermined intervals so that at an intermediate point in the heat exchanger one of the feed air streams is removed. The extracted portion of the charge air was further cooled by a heat exchanger in the separator, and the remainder of the cooled charge air was completely passed through it from the cold end of the heat exchanger. post-drawing, mixing said further cooled charge air portion with said withdrawn remaining cooled charge air stream, and passing said cooled charge air mixture through a first fractionation zone in said fractionator. , thereby condensing the oxygen-enriched liquid to produce a nitrogen overhead, withdrawing the oxygen-enriched liquid from the first fractionation zone, depressurizing the withdrawn oxygen-enriched liquid to a low pressure, and The depressurized liquid is passed downwardly into a second fractionation zone in the fractionator, thereby producing nitrogen vapor and producing an oxygen-enriched liquid product from the second fractionation zone as a product. withdrawing the oxygen-rich liquid, work-expanding the overhead nitrogen from the first fractionation zone and discharging the cooled nitrogen under reduced pressure, and transferring the cooled work-expanded nitrogen to the second fractionation zone. passing through a passageway in said fractionator in heat exchange relation with said zone and extracting heat from said zone, said nitrogen being withdrawn from said last-mentioned passageway in said fractionator, said withdrawn waste nitrogen stream being passing as described above through one of said first and second passages of said reversing heat exchanger into the cold end of said reversing heat exchanger; Heat exchange and fractionation in the above-mentioned fractionation device is carried out by a small fraction between the exhaust nitrogen stream entering the cold end of the heat exchanger and the cooled charge air stream withdrawing from the cold end of the heat exchanger. It should be carried out under conditions where there is no difference in temperature.

第2分別帯域から抜かれる酸素に富んだ液状生成物の少
なくとも一部分がガス状酸素として回収される場合、仕
込み空気混合物は第1分別帯域の通過前に酸素に富んだ
生成物のその様な部分との熱交換関係で更に冷却され、
その様な生成物からのガス状酸素の蒸発を起こす。
If at least a portion of the oxygen-enriched liquid product withdrawn from the second fractionation zone is recovered as gaseous oxygen, the charge air mixture collects such portion of the oxygen-enriched product before passing through the first fractionation zone. It is further cooled through heat exchange with
This causes evaporation of gaseous oxygen from such products.

その様なガス状酸素は次いで逆転式熱交換器の第3通路
中を、仕込み空気流との熱交換関係で通過させ得る。
Such gaseous oxygen may then be passed through the third passage of the inverting heat exchanger in heat exchange relationship with the charge air stream.

図面の第2図を参照するに10で約3気圧に空気を圧縮
し、12で環境温度近くに冷却し、遊離した水を14の
分離器中で分ける。
Referring to FIG. 2 of the drawings, the air is compressed to about 3 atmospheres at 10, cooled to near ambient temperature at 12, and the liberated water is separated in a separator at 14.

空気仕込みはついで逆転弁16を経て全体を18で示す
逆転式再生熱交換器に入る。
The air charge then passes through a reversing valve 16 and enters a reversing regenerative heat exchanger, generally designated 18.

この逆転弁16は3つの単位A、B及びCかもなる逆転
式再生式熱交換器18の2つの通路20と22に接続さ
れている。
This reversing valve 16 is connected to two passages 20 and 22 of a reversing regenerative heat exchanger 18 comprising three units A, B and C as well.

熱交換器は仕込み空気用熱交換通路20と排窒素用熱交
換通路22を、そして又酸素生成物用の熱交換通路24
を含んでいる。
The heat exchanger includes a heat exchange passage 20 for the feed air, a heat exchange passage 22 for the exhaust nitrogen, and also a heat exchange passage 24 for the oxygen product.
Contains.

以後もつと充分に記載する26の様な逆止弁組立体と共
に逆転弁16は通路20中で3気圧の仕込み空気を通路
22中の1気圧である窒素の排流とともに通路を交互に
変えさせる。
A reversing valve 16, together with a check valve assembly such as 26, which will be more fully described hereinafter, causes a charge air of 3 atmospheres in passage 20 to be alternated with a discharge of nitrogen at 1 atmosphere in passage 22. .

20中の仕込み空気が22の窒素排流及び24中の酸素
生成物と向流熱交換で冷却されるにつれ、水蒸気とCO
2は熱交換通路200表面で氷結される。
As the charge air in 20 is cooled in countercurrent heat exchange with the nitrogen exhaust stream in 22 and the oxygen product in 24, water vapor and CO
2 is frozen on the surface of the heat exchange passage 200.

予め定めた時間例えば7分30秒の後で逆転弁16が作
動して仕込み空気を前に窒素排流で占められていた通路
22へ向は且つ低圧窒素排流は以前は空気流で占められ
ていた通路20を経て流れ、CO2と水蒸気の氷結法で
んを昇華し蒸発させる。
After a predetermined period of time, e.g. 7 minutes and 30 seconds, the reversing valve 16 is actuated to redirect the charge air to the passageway 22 previously occupied by the nitrogen exhaust stream and to direct the low pressure nitrogen exhaust stream to the passageway 22 previously occupied by the air stream. The CO2 and water vapor freeze to sublimate and evaporate the gas.

典型的な工場に於いては完全な周期が各15分毎に起る
様に熱交換器が設計される。
In a typical factory, heat exchangers are designed so that a complete cycle occurs every 15 minutes.

仕込み空気の一部分例えば4容量係が約−163’C(
198R)の温度でタップ点(出し口)28で熱交換器
から抜かれ、逆止弁26を経てCO2の最後の痕跡まで
除くためにシリカゲル、木炭、又は分子篩を含み得るゲ
ルトラップ30を通され、空気は次いで更に互いに密接
して熱交換関係にある高圧蒸発帯44と低圧蒸発帯52
を有する分別装置33の熱交換通路32中で更に冷却さ
れ、およそ3気圧で一175℃(176R)で34のと
ころで出る。
A portion of the charged air, for example 4 volumes, is approximately -163'C (
198 R) at a tap point (outlet) 28 and passed through a check valve 26 to a gel trap 30, which may contain silica gel, charcoal, or molecular sieves, to remove every last trace of CO2; The air then passes through the high-pressure evaporation zone 44 and the low-pressure evaporation zone 52, which are in close heat exchange relationship with each other.
It is further cooled in the heat exchange passages 32 of a fractionator 33 having a temperature of 1.5 mm and exits at 34 at -175° C. (176 R) at approximately 3 atmospheres.

通路32は低圧蒸発帯域52の底の部分と熱交換関係で
のびている。
Passage 32 extends in heat exchange relationship with the bottom portion of low pressure evaporation zone 52 .

空気仕込みの残りは更に熱交換器18の単位Cの通路2
0で更に冷却され約−175℃(176R)で36に出
る。
The remainder of the air charge is further transferred to passage 2 of unit C of heat exchanger 18.
It is further cooled at 0 and exits at 36 at about -175°C (176R).

34の空気の流れを空気仕込み36と混合し、混合物を
ライン38を経て酸素生成物蒸発器40の熱交換通路3
9斜通して仕込み、ここで仕込みの小部分は以下更に記
す様に酸素生成物を蒸発させることによって部分的に凝
縮させる。
34 is mixed with air charge 36 and the mixture is passed through line 38 to heat exchange passage 3 of oxygen product evaporator 40.
9, where a small portion of the charge is partially condensed by evaporating the oxygen product, as described further below.

42の空気混合物を3気圧で運転している高圧分別帯域
44の底部に仕込む。
42 air mixture is charged to the bottom of high pressure fractionation zone 44 operating at 3 atmospheres.

この帯域中でそこテ行われている非断熱的ディファレン
シャル蒸製の結果として酸素に富んだ液を純窒素が46
の塔頂物として取り去られる迄上方に動いている蒸気か
ら次第に凝縮させる。
As a result of the non-adiabatic differential evaporation that takes place in this zone, the oxygen-rich liquid is converted into pure nitrogen at 46%
gradually condenses from the upwardly moving vapor until it is removed as the top of the column.

酸素に富んだ液を48で高圧分別帯域の底部から抜き取
り、液レベル調節弁50によって1気圧に迄減圧し1気
圧で運転している低圧分別帯域52へ仕込む。
The oxygen-enriched liquid is withdrawn from the bottom of the high pressure separation zone at 48, reduced to 1 atmosphere by a liquid level control valve 50, and charged to the low pressure separation zone 52, which is operating at 1 atmosphere.

帯域52に於いて非断熱微分黒部の結果として54で塔
底物として酸素95係迄の酸素に富んだ生成物を取り去
るまで窒素に富んだ蒸気を下降液から次第に蒸発させ、
ライン56を経て生成物蒸発器40に仕込む。
Nitrogen-rich vapor is gradually evaporated from the descending liquid until the oxygen-rich products up to oxygen 95 are removed as bottoms at 54 as a result of the non-adiabatic differential black zone in zone 52;
The product evaporator 40 is charged via line 56 .

約−177℃(173R)の酸素蒸気が58に出て通路
20中の空気仕込みと向流熱交換関係熱交換器18の冷
たい方の端59で通路24に入る。
Oxygen vapor at approximately -177°C (173R) exits 58 and enters passage 24 at the cold end 59 of heat exchanger 18 in countercurrent heat exchange relationship with the air charge in passage 20.

暖い酸素生成物が61で熱交換器18から排出される。Warm oxygen product exits heat exchanger 18 at 61.

低圧分別帯域52と熱交換関係にある高圧分別帯域44
は帯域52より実質的に短く、帯域52の高さの中間の
距離だけのびていることが注目される。
High pressure fractionation zone 44 in heat exchange relationship with low pressure fractionation zone 52
It is noted that is substantially shorter than band 52 and extends a distance midway through the height of band 52.

高圧分別帯域44からの46に抜ける塔頂の窒素は熱交
換通路60内で約−177℃(173R)に暖められ、
まだ3気圧である間に63でタービン62に仕込ま札そ
こで窒素の排出圧は1気圧に減少され、その温度は66
で約−194℃(142R)に下げられる。
The overhead nitrogen exiting to 46 from high pressure fractionation zone 44 is warmed in heat exchange passage 60 to about -177°C (173R);
While still at 3 atm, the nitrogen discharge pressure was reduced to 1 atm and the temperature at 66
The temperature is lowered to approximately -194°C (142R).

所望によりタービン62はコンプレッサー64によって
負荷され得、これは61の暖かい酸素の圧力を65の酸
素生成物に上昇させるのに使用される。
If desired, the turbine 62 may be loaded by a compressor 64, which is used to increase the pressure of warm oxygen at 61 to the oxygen product at 65.

66に於ける冷窒素蒸気は分別装置33中の熱交換通路
68に向けられ、こ又で低圧又は1気圧の分別帯域52
へ最初に冷却を与え、酸素に富んだ液を分縮する。
The cold nitrogen vapor at 66 is directed to a heat exchange passage 68 in the fractionator 33 where it passes through the fractionation zone 52 at low pressure or 1 atm.
First, cooling is applied to decompose the oxygen-rich liquid.

この液は帯域52中を下方に通るが一方はんの少量の酸
素を含んでいるにすぎない窒素は70で塔頂物として取
り去られる。
This liquid passes downwardly in zone 52 while the nitrogen, which contains only a small amount of oxygen, is removed as overhead at 70.

この窒素流は窒素タービンの排気66と混ぜられ、生じ
た排窒素混合物流は更に熱交換器の通路68中でそれが
一177℃(173R,)で72に出る迄暖められる。
This nitrogen stream is mixed with nitrogen turbine exhaust 66 and the resulting exhaust nitrogen mixture stream is further warmed in heat exchanger passages 68 until it exits 72 at 1177°C (173R,).

そしてこれは熱交換器18の冷たい端59を出る仕込み
空気36よりも僅か1.7℃(3R)よりつめたい丈の
熱交換器18の冷たい端59で通路22に入る。
This then enters the passageway 22 at the cold end 59 of the heat exchanger 18 which is only 1.7° C. (3R) cooler than the charge air 36 exiting the cold end 59 of the heat exchanger 18 .

もし液体の酸素が望まれるならば、それは弁14を経て
ライン56かも75で抜かれる。
If liquid oxygen is desired, it is removed via valve 14 in line 56 or 75.

上記の様に液体酸素が望む生成物であるときは逆転式交
換器の場合には付加的な困難さがある。
There are additional difficulties with reversing exchangers when liquid oxygen is the desired product, as noted above.

再生器に於ける帰りの流れ中の質量の不均衡のため、△
Tプロフィル即ち帰りの流れと28に於けるターホ膨張
機のタップの上流に於ける熱交換器中の空気の仕込みの
間の温度差はもはや一定でなく、空気仕込みの温度が減
少するにつれ△Tが増加する。
Due to the mass imbalance in the return flow in the regenerator, △
The temperature difference between the T profile or return flow and the air charge in the heat exchanger upstream of the Tahoe expander tap at 28 is no longer constant and as the temperature of the air charge decreases △T increases.

この現象は生成物として抜かれうる液の量を制限する。This phenomenon limits the amount of liquid that can be withdrawn as product.

この困難は28での第一タップよりもより暖かい位置で
の熱交換器中の80での第二の中間タップを加えること
によって解決される。
This difficulty is solved by adding a second intermediate tap at 80 in the heat exchanger at a warmer location than the first tap at 28.

仕込み空気の一部は約−129℃(260R)で抜かれ
逆止弁82とゲルトラップ84を通過後タービン85を
経て約−163℃(198°R)で1気圧に膨張せしめ
られる。
A portion of the charged air is extracted at about -129 DEG C. (260 R), passes through a check valve 82 and a gel trap 84, and then passes through a turbine 85 where it is expanded to 1 atmosphere at about -163 DEG C. (198 DEG R).

つめたい膨張した空気は次いで逆止弁組立体86を通り
、交換器中の点88で、且つ空気が熱交換通路32を通
過するように抜かれるところである地点28で排流22
に入る。
The cool expanded air then passes through check valve assembly 86 and exits exhaust 22 at point 88 in the exchanger and at point 28 where the air is withdrawn through heat exchange passageway 32.
to go into.

酸素に富んだ液体のみが望まれる場合、冷却された空気
流34と36の冷却された空気の仕込み流の38におけ
る混合物は直接高圧分別帯域44に仕込まれ、低圧分別
帯域44からの54の酸素に富んだ液体はすべて55の
酸素に富んだ液体生成物として除かれ、酸素に富んだ生
成物は再生的交換器18の通路24を通らない。
If only oxygen-enriched liquid is desired, the mixture of chilled air streams 34 and 36 in the chilled air feed stream 38 is fed directly to the high pressure fractionation zone 44 and the oxygen at 54 from the low pressure fractionation zone 44 is fed directly to the high pressure fractionation zone 44. Any oxygen-enriched liquid is removed as an oxygen-enriched liquid product 55 and no oxygen-enriched product passes through passage 24 of regenerative exchanger 18.

第3図に示される変型によれば逆転型交換器の単位Bと
C中に設けられた90と91で示されるトランブラーパ
ス(トランブラー通路:第3図90及び91の熱交換路
で、ゲルトラップ30にかわって逆転熱交換器で使われ
る。
According to the variant shown in FIG. 3, the tumbler paths, designated 90 and 91, provided in the units B and C of the reversing exchanger (trumbler passages: heat exchange channels 90 and 91 in FIG. 3, Used in a reversing heat exchanger instead of the gel trap 30.

入って来るすべての空気は第3図A、B、C全長にわた
り冷され、水蒸気CO3は完全に除かれ、精製された仕
込み空気のいくらかは32人口に望む温度に第1トラン
ブラーパス91で(例えば198 R)また残りのもの
はタービン85人口に適した温度(例えば282 R)
に第2トランブラーパス90であたためられる。
All incoming air is cooled along its entire length in Figures 3A, B, and C, water vapor CO3 is completely removed, and some of the purified charge air is brought to the desired temperature for the 32 population in the first tumbler pass 91 ( For example 198 R) and the rest at a temperature suitable for the turbine 85 population (for example 282 R)
It is then heated in the second tumbler path 90.

)が28と80のエヤーブリードの代りに使用されうる
) may be used in place of the 28 and 80 air bleeds.

仕込み空気は92の熱交換器の冷たい方の端で一175
℃(176R)に完全に冷却される。
The charge air is at the cold end of the heat exchanger at 92 - 175
Completely cooled to 176°C (176R).

次いで熱交換器通路32中で冷却されるべき部分は単位
Cのトラムプラー通路91中で一163℃(198R)
に暖められる。
The portion to be cooled in the heat exchanger passage 32 is then cooled to -163°C (198R) in the tram puller passage 91 of unit C.
warmed by.

タービン85に仕込まれるべき空気の残りの部分は更に
単位Bの第二のトラムプラー通路90を通過することに
よって更に一116℃(282R)に暖められる。
The remaining portion of the air to be charged to the turbine 85 is further warmed to -116°C (282R) by passing through the second tram puller passage 90 of unit B.

トラムプラー通路はある場合に有用である。Trampuller passages are useful in certain cases.

なぜならこれを使うと30と84のゲルトラップ及び2
6と82の逆止弁のいくらかを除くからである。
Because if you use this, 30 and 84 gel traps and 2
This is because some of the check valves 6 and 82 are removed.

これは装置と維持の費用を減少させるが欠点はそれが負
荷の変化を能率的に取扱うことができないことである。
Although this reduces equipment and maintenance costs, the disadvantage is that it cannot efficiently handle load changes.

従ってトラムプラー通路は一定負荷が維持される場合の
みに使用すべきである。
Tramp puller passages should therefore only be used if a constant load is maintained.

もし酸素ガスのみが望まれるならば空気流を80で出し
たり第2のトラムプラー通路90を使ったりする必要が
なく且つ第2のタービン85を使うことが必要でない。
If only oxygen gas is desired, there is no need to provide airflow at 80 or use the second tram puller passage 90, and there is no need to use the second turbine 85.

第4図に示される変型によると液体窒素還流を低圧分別
帯域52の上部へ供給することによって分別装置の全酸
素回収を増加する手段が設けられる。
According to the variant shown in FIG. 4, means are provided to increase the total oxygen recovery of the fractionator by supplying liquid nitrogen reflux to the top of the low pressure fractionation zone 52.

3気圧のい(らかの窒素蒸気がタービン中での膨張に先
立ってライン61かも抜かれるか代りに直接46の高圧
分別帯域から抜かれる。
Three atmospheres of nitrogen vapor is also vented in line 61 or alternatively directly from the high pressure fractionation zone 46 prior to expansion in the turbine.

流れ調節弁94が抜かれる窒素の量を調節し残りはター
ビン62中で膨張される。
A flow control valve 94 controls the amount of nitrogen removed and the remainder is expanded in turbine 62.

窒素は熱交換器98を通る950通路によってライン4
8中の減圧された酸素に富んだ液体と熱交換関係で凝縮
され、弁96中で圧力が減少され、還流として直接10
0の低圧分別帯域の頂部へ供給されるか又は代りに66
でタービンの排気と混合され、それによって低圧分別帯
域52の上部に増加された冷却を与える。
Nitrogen is transferred to line 4 by passage 950 through heat exchanger 98.
It is condensed in heat exchange relationship with the reduced pressure oxygen-rich liquid in 8, the pressure is reduced in valve 96, and the 10
0 to the top of the low pressure fractionation zone or alternatively 66
is mixed with the turbine exhaust gas at , thereby providing increased cooling to the upper portion of low pressure fractionation zone 52 .

この変型の第一の利点はそれが酸素の全回収を増すので
本質的にすべての仕込み空気中の酸素が回収され、ガス
状酸素生成物の製造のための全動力消費を減少すること
であるが、欠点はそれが費用を増し、タービン62から
利用できる冷却を減少させそれによって液体生成物とし
て回収しうる酸素の量を減少させることである。
The primary advantage of this variant is that it increases the total recovery of oxygen so that essentially all the oxygen in the charge air is recovered, reducing the total power consumption for the production of gaseous oxygen products. However, the disadvantage is that it increases cost and reduces the cooling available from turbine 62, thereby reducing the amount of oxygen that can be recovered as a liquid product.

従って本発明は幾つかの新規な特色を含んでいる。Accordingly, the present invention includes several novel features.

これらの特色の一つは逆転式熱交換器18中の熱交換と
非断熱的ディファレンシャル蒸溜装置33中の質量移動
帯域が黒部装置を去って行く排窒素流と酸素生成物流の
両方の温度が再生的熱交換器の冷たい方の端の仕込み空
気温度の下はんの僅かの温度即ち1.7℃(3R)に過
ぎない様になる様に定められる方法である。
One of these features is that the heat exchange in the reversing heat exchanger 18 and the mass transfer zone in the non-adiabatic differential distillation unit 33 regenerate the temperatures of both the exhaust nitrogen stream and the oxygen product stream leaving the Kurobe unit. The method is such that the temperature at the cold end of the heat exchanger is only slightly below the charge air temperature, i.e. 1.7°C (3R).

このことは仕込み空気と排流の逆転の間排流によって仕
込み空気通路から固形炭酸ガスと水の容易な除去を許す
ことになる。
This allows for easy removal of solid carbon dioxide and water from the charge air passageway by exhaust flow during reversal of the charge air and exhaust flow.

他の新規な特色は高圧分別帯域と低圧分別帯域を有する
分別装置を系に於いて使用することであるが、この場合
高圧分別帯域から抜かれた酸素に富んだ液体が酸素95
係迄の酸素に富んだ生成物をつ(る様低圧分別帯域に仕
込まれるものである。
Another novel feature is the use in the system of a fractionator having a high-pressure fractionation zone and a low-pressure fractionation zone, where the oxygen-enriched liquid withdrawn from the high-pressure fractionation zone is
The oxygen-rich product is then charged to a low-pressure fractionation zone.

仕込み空気の一部分は低圧分別帯域の低部と熱交換関係
で通過し全仕込み空気混合物は高圧分別帯域へ仕込まれ
る前に酸素に富んだ液体生成物と熱交換関係で通過する
A portion of the charge air passes in heat exchange relationship with the lower portion of the low pressure fractionation zone and the entire charge air mixture passes in heat exchange relationship with the oxygen-enriched liquid product before being charged to the high pressure fractionation zone.

高圧と低圧分別帯域の両方からの塔頂窒素流は、高圧分
離帯域からの塔頂窒素流は膨張によって更に冷却されて
いるが、その様な分別帯域中の仕込み空気と熱交換関係
で通過して逆転式熱交換器の冷たい方の端59に於て入
って来る窒素排気物と酸素生成物流22と24及び出て
行く空気仕込み流の間に低い温度差を維持する。
The overhead nitrogen streams from both the high pressure and low pressure separation zones pass in heat exchange relationship with the charge air in such separation zones, although the overhead nitrogen stream from the high pressure separation zone is further cooled by expansion. to maintain a low temperature differential between the incoming nitrogen exhaust and oxygen product streams 22 and 24 and the outgoing air charge stream at the cold end 59 of the inverting heat exchanger.

他の新規な特色は液体酸素とガス状酸素生成物又は酸素
ガスのみを製造しながら逆転式熱交換器を使用すること
ができるように本方法を実施することである。
Another novel feature is the implementation of the process so that a reversing heat exchanger can be used while producing liquid oxygen and gaseous oxygen products or only oxygen gas.

上記のことから本発明は仕込み空気通路中の氷結したC
02と水が熱交換器から容易に除かれる様な工程条件下
で逆転式の再生式熱交換器と一緒に微分蒸溜装置を使用
して空気から酸素を分離するための新規な方法と系を提
供することであることがわかる。
From the above, the present invention aims to reduce the amount of frozen C in the charging air passage.
A novel method and system for separating oxygen from air using a differential distillation apparatus in conjunction with an inverted regenerative heat exchanger under process conditions such that 02 and water are easily removed from the heat exchanger. You can see that it is by providing.

本発明の特別な具体例を例示の目的で記載したが発明の
精神内で種々の変化や変更を行うことができるから本発
明が添付の請求の範囲以外のことにより制限されると考
えられるべきものでないことが了解されるであろう。
Although particular embodiments of the invention have been described for purposes of illustration, since various changes and modifications may be made within the spirit of the invention, the invention should not be construed as limited by anything other than the scope of the appended claims. It will be understood that this is not the case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は仕込み空気流と窒素排流を含めた分離された流
れとの間の逆転式熱交換器の長手方向に沿った温度差を
示す。 第2図は好ましい運転様式の概略的流れ図を示す。 第2a図は生成物として酸素に富んだ液体のみの製造の
ための第2図に図解された系の変形である。 第3図はゲルトラップの代りにトランブラーパスを使用
する逆転式熱交換器を図解する別の変形である。 第4図は全酸素生成物回収を増加するため第1図に図解
された系の更に別の変型である。 10:空気圧縮機、12:空気冷却器、14:水分離器
、16:逆転弁、18:逆転式熱交換器A、B、C52
0:熱交換器の通路(空気用)、22:熱交換器の通路
(排窒素用)、24:熱交換器の通路(酸素用)、26
:逆止弁、28:仕込み空気のタップ点エヤーブリード
、30ニゲルトラツプ、32:熱交換通路、33:分別
装置(高圧蒸発帯44と低圧蒸発帯52を有する)、3
4:空気出口、36:空気出口、38:パイプライン、
39:酸素生成物蒸発器の熱交換通路、40:酸素生成
物蒸発器、42:空気混合物、44:高圧分別帯域、4
6:純酸素塔頂物、48:酸素に富んだ液、50:調節
弁、52:低圧分別帯域、54:塔底物、56:パイプ
ライン、58:酸素蒸気出口、59:熱交換器の冷却端
、60:熱交換通路、61:酸素生成物排出口、62:
タービン、63:タービン仕込、64:コンプレッサー
、65:酸素生成物、66:冷窒素蒸気タービンの排気
、68:熱交換通路、70:窒素塔頂物、72:熱交換
器を出た排窒素、74:弁、75:酸素抜き口、80:
熱交換器第二中間タップエヤーブリード、82:逆止弁
、84ニゲルトラツプ、85:タービン、86:逆止弁
、88:交換器中の点排液22に入る点、90ニドラム
プラー、91ニドラムプラー、92:熱交換器の冷端、
94:流れ調節弁、95:熱交換器通路、96:弁、9
8:熱交換器、100:低圧分別帯域の頂部。
FIG. 1 shows the temperature difference along the length of an inverting heat exchanger between the feed air stream and the separated stream, including the nitrogen exhaust stream. FIG. 2 shows a schematic flow diagram of the preferred mode of operation. FIG. 2a is a modification of the system illustrated in FIG. 2 for the production of only an oxygen-enriched liquid as product. FIG. 3 is another variation illustrating an inverted heat exchanger that uses a tumbler pass instead of a gel trap. FIG. 4 is yet another modification of the system illustrated in FIG. 1 to increase total oxygen product recovery. 10: Air compressor, 12: Air cooler, 14: Water separator, 16: Reversing valve, 18: Reversing heat exchanger A, B, C52
0: Heat exchanger passage (for air), 22: Heat exchanger passage (for exhaust nitrogen), 24: Heat exchanger passage (for oxygen), 26
: Check valve, 28: Charge air tap point air bleed, 30 Niger trap, 32: Heat exchange passage, 33: Separator (having high pressure evaporation zone 44 and low pressure evaporation zone 52), 3
4: Air outlet, 36: Air outlet, 38: Pipeline,
39: Heat exchange passage of oxygen product evaporator, 40: Oxygen product evaporator, 42: Air mixture, 44: High pressure fractionation zone, 4
6: Pure oxygen overhead, 48: Oxygen-enriched liquid, 50: Control valve, 52: Low pressure fractionation zone, 54: Bottoms, 56: Pipeline, 58: Oxygen vapor outlet, 59: Heat exchanger Cooling end, 60: Heat exchange passage, 61: Oxygen product outlet, 62:
turbine, 63: turbine feed, 64: compressor, 65: oxygen product, 66: cold nitrogen steam turbine exhaust, 68: heat exchange passage, 70: nitrogen overhead, 72: exhaust nitrogen leaving the heat exchanger; 74: Valve, 75: Oxygen vent, 80:
Heat exchanger second intermediate tap air bleed, 82: Check valve, 84 Nigel trap, 85: Turbine, 86: Check valve, 88: Point where drain liquid 22 enters the exchanger, 90 Nidrum puller, 91 Nidrum puller, 92 : cold end of heat exchanger,
94: Flow control valve, 95: Heat exchanger passage, 96: Valve, 9
8: heat exchanger, 100: top of low pressure fractionation zone.

Claims (1)

【特許請求の範囲】 1 水蒸気とCO2を含んでいる仕込み空気を約3気圧
以下に圧縮し、 逆転式熱交換器の第2の通路を通る窒素の排流と熱交換
関係に於いて、圧縮された仕込み空気流を逆転式熱交換
器の第1の通路に通過させ、それによって仕込み空気中
の水蒸気と002を上記第1熱交換器通路の表面上で氷
結させ、 2つの流れを逆転させ、それによって窒素排流を上記第
1の通路を通して流し、上記仕込み空気流を上記第2の
通路を通して流し、上記水蒸気と上記CO2の昇華又は
蒸発を起こさせ、 この周期の終りに圧縮仕込み空気流が上記の第1の通路
を通り、窒素の排流が上記の第2の通路を通る様に再び
2つの流れを逆転させ、且つ予め決められた間隔でこの
周期を繰返し、 熱交換器中の中間点で仕込み空気流の一部を抜き出し、 分別装置内の第2の分別帯域の下部と熱交換関係で仕込
み空気の上記抜き出した部分を更に冷却し、 上記熱交換器の冷たい方の端から上記冷却された仕込み
空気流の残りを完全にその中を通した後抜き出し、 上記更に冷却された仕込み空気の部分と上記抜き出され
た残りの冷却された仕込み空気流を混合し、 上記冷却された仕込み空気混合物を上記分別装置中の第
1分別帯域中を通し、それによって酸素に富んだ液体を
凝縮させ、窒素の塔頂物をつくり、上記第1分別帯域か
ら上記酸素に富んだ液体を抜き出し、 上記抜き出された酸素に富んだ液体を低圧に減圧し、 上記減圧された液体を下方に向けて上記分別装置の中の
第1の分別帯域と熱交換関係に在る第2の分別帯域中に
通しそれによって窒素蒸気を生成させ酸素に富んだ液体
をつくり、 上記第2の分別帯域から生成物として上記酸素に富んだ
液体を抜き、 上記第1分別帯域からの塔頂窒素を仕事膨張させ減圧で
冷却され仕事膨張された窒素を排出し、上記冷却され仕
事膨張された窒素を上記第2の分別帯域上部と向流熱交
換関係で上記分別装置中の通路を通過させそして上記帯
域から熱を抜き取り、 上記分別装置中の上記の最後に述べた通路から上記の窒
素を抜き取り、そして上記の抜き取られた排窒素流を上
記の熱交換器の冷たい方の端中へ逆転式熱交換器の上記
の第1と第2の通路の1つを経て上記の様にして通し、 上記逆転式の熱交換器中の上記の熱交換と上記の分別装
置の中の分別を、約3気圧以下の運転圧力に於て上記熱
交換器の冷端に入る排窒素流と熱交換器の冷端かも抜き
出される冷却された仕込み空気流の間に約1.7℃(3
R)のほんの小さい温度差がある丈の条件下で実施する
ことからなる空気から酸素を分離する方法。 2 水蒸気とC02を含んでいる仕込み空気を約3気圧
以下に圧縮し、 圧縮された仕込み空気流を逆転式熱交換器の第1の通路
を、上記熱交換器の第2の通路を通る窒素の排流と熱交
換関係に於て通過させ、それによって仕込み空気中の水
蒸気とCO2を上記第1熱交換器通路の表面上で氷結さ
せ、 2つの流れを逆転させ、それによって窒素排流を上記第
1の通路を通して流し、上記仕込み空気流を上記第2の
通路を通して流し、上記水蒸気と上記CO2の昇華又は
蒸発を起こさせ、 この周期の終りで、圧縮仕込み空気流が上記の第1の通
路を通り、窒素の排流が上記の第2の通路を通る様に再
び2つの流れを逆転させ、且つ予め決められた間隔でこ
の周期を繰返し、 上記の冷却された仕込み空気流を上記交換器の冷たい方
の端からその中を完全に通過させた後抜き出し、 冷却された仕込み空気流の一部分をトラムプラーバスを
経て通し逆転式交換器を通じて戻し、上記トラムプラー
パスからの仕込み空気流の上記の部分の少なくとも一部
分を上記熱交換器の中間点で抜き出し、 分別装置の内での熱交換関係で仕込み空気の上記抜き出
された一部分を更に冷却し、 上記冷却された仕込み空気流の残りを上記熱交換器の冷
たい方の端から熱交換器中を完全に通した後抜き出し、 仕込み空気の上記更に冷却された部分と冷却された仕込
み空気流の上記抜き出された残りを混合し、 上記冷却された仕込み空気混合物を上記分別装置中の第
1分別帯域中を通しそれによって酸素に富んだ液体を凝
縮させ窒素塔頂物をつ(す、上記第1分別帯域から上記
酸素に富んだ液体を抜き取り、 上記抜き取られた酸素に富んだ液体を低圧に減圧し、 上記減圧された液体を下方に向けて、上記の分別装置中
の第1の分別帯域と熱交換関係に在る第2分別帯域中に
通しそれによって窒素蒸気を生成させ酸素に富んだ液体
をつくり、 上記酸素に富んだ液体を生成物として上記第2の分別帯
域から抜き出し、 上記第1分別帯域からの窒素塔頂物を仕事をさせて膨張
させ、冷却され仕事をして膨張させた窒素を減圧で排出
させ、 上記冷却され仕事をして膨張させられた窒素を上記第2
分別帯域と向流熱交換関係で上記分別装置中の通路を通
過させ上記帯域から熱を抜き取り、上記分別装置中の上
記の最後に述べた通路から上記の窒素を抜き取り、上記
の抜き取られた排窒素流を上記の熱交換器の冷たい方の
端中へ逆転式熱交換器の上記の第1と第2の通路の1つ
を経て上述の如く通し、 上記逆転式の熱交換器中の上記の熱交換と上記の分別装
置の中の分別を、約3気圧以下の運転圧力に於て、上記
熱交換器の冷たい方の端に入る排窒素流と熱交換器の冷
たい方の端から抜き出される冷却された仕込み空気流と
の間に約1.7℃(3R)のほんの小さい温度差がある
にすぎない条件下で実施することからなる空気から酸素
を分離する方法。 3 水蒸気とCO2を含んでいる仕込み空気を約3気圧
以下に圧縮する手段 第1と第2の通路を含む逆転式熱交換器 仕込空気流中の水蒸気とCO2が熱交換器の通路の一方
の表面に氷結し、第1の通路から第2の通路への仕込空
気流の流れ、及び上記第2の通路から上記第1の通路へ
の窒素排流の流れを逆転することによって昇華及び蒸発
される様な、熱交換器中の第1の通路から第2の通路へ
そしてその逆の第2の通路から第1の通路へ仕込空気の
流れを交互に逆転させるための弁手段であって、予め決
められた間隔でサイクルを繰返すように作用する弁手段
、 交換器中の中間点で仕込み空気の流れの一部を抜き出す
手段、 上記抜き出された仕込み空気の流れを通す逆止弁、 第1分別塔と第2分別塔を含んでいる分別装置、仕込み
空気の上記抜き出された部分を更に冷却するため上記第
2分別塔の低部と熱交換関係で仕込み空気の上記抜き出
された部分を通過させる手段、 上記冷却された仕込み空気流の残りを上記熱交換器の冷
たい方の端からその完全な通過後抜き出す手段、 上記更に冷却された仕込み空気の部分と上記冷却された
仕込み空気流の抜き出された残りを混合する手段、 上記冷却された仕込み空気混合物を上記第1の分別塔に
通し、それによって酸素に富んだ液体を凝縮させ、窒素
塔頂物をつ(る手段、 上記酸素に富んだ液体を上記第2分別塔中抜き出す手段
、 上記抜き出された酸素に富んだ液体を低圧に減圧する手
段、 上記減圧された液体を下方に向けて上記第1分別塔と熱
交換関係に在る上記第2分別塔に通し、それによって窒
素蒸気を生成させ、酸素に富んだ液体をつくる手段、 上記酸素に富んだ液体を生成物として上記第2分別塔か
ら抜き出す手段、 仕事膨張機、 上記第1分別塔からの窒素基・頂物を上記仕事膨張機に
通し、冷い仕事膨張させられた窒素を減圧で排出する手
段、 上記第2分別塔中の通路手段、 上記冷却された仕事膨張させられた窒素を上記第2の分
別塔と熱交換関係で上記最後に述べた通路手段中を通す
手段、 上記最後に述べた通路からの窒素を抜き取り、この抜き
取られた窒素を窒素排流として上記熱交換器の冷却され
た端中へ上述の如く逆転式熱交換器の上記第1と第2の
通路の一つを経て通す手段からなる、 空気から酸素を分離する装置。
[Scope of Claims] 1. Compressing the charge air containing water vapor and CO2 to a pressure of about 3 atmospheres or less, and compressing the air in a heat exchange relationship with the exhaust flow of nitrogen through the second passage of the reversing heat exchanger. passing the charged feed air stream through a first passage of a reversing heat exchanger, thereby causing the water vapor and 002 in the charge air to freeze on the surface of said first heat exchanger passage, and reversing the two flows. , thereby flowing a nitrogen exhaust stream through the first passage and flowing the charge air stream through the second passage to cause sublimation or evaporation of the water vapor and the CO2, and at the end of the cycle a compressed charge air stream. reversing the two flows again such that the nitrogen flow passes through said first passage and the nitrogen exhaust flows through said second passage, and repeating this cycle at predetermined intervals, At an intermediate point, a portion of the feed air stream is withdrawn and the withdrawn portion of the charge air is further cooled in heat exchange relationship with the lower part of the second fractionation zone in the fractionator, from the cold end of the heat exchanger. withdrawing the remainder of said cooled charge air stream after passing through it completely; mixing said further cooled charge air portion with said remaining cooled charge air flow; The charged air mixture is passed through a first fractionation zone in the fractionator, thereby condensing the oxygen-enriched liquid and creating a nitrogen overhead, and removing the oxygen-rich liquid from the first fractionation zone. extracting the extracted oxygen-enriched liquid to a low pressure, and directing the reduced pressure liquid downwardly into a second fractionation zone in heat exchange relationship with the first fractionation zone in the fractionation apparatus. passing the oxygen-enriched liquid through the first fractionation zone to produce nitrogen vapor and produce an oxygen-enriched liquid, withdrawing the oxygen-rich liquid as product from the second fractionation zone, and removing the overhead nitrogen from the first fractionation zone to work. discharging the expanded and vacuum-cooled work-expanded nitrogen, passing the cooled and work-expanded nitrogen through a passageway in the fractionator in countercurrent heat exchange relationship with the upper part of the second fractionation zone; removing heat from the separator, removing the nitrogen from the last-mentioned passageway in the fractionator, and inverting the removed nitrogen stream into the cold end of the heat exchanger. The heat exchange in the reversing heat exchanger and the fractionation in the fractionator are carried out in the manner described above through one of the first and second passages of the vessel at a pressure of about 3 atm. The gap between the exhaust nitrogen stream entering the cold end of the heat exchanger and the cooled charge air stream also withdrawn from the cold end of the heat exchanger at an operating pressure of
R) A method of separating oxygen from air, comprising carrying out the process under conditions of only a small temperature difference. 2 Compressing the charge air containing water vapor and CO2 to less than about 3 atmospheres, passing the compressed charge air stream through a first passage of an inverting heat exchanger and passing nitrogen through a second passage of said heat exchanger. passing in heat exchange relationship with the nitrogen exhaust stream, thereby causing the water vapor and CO2 in the charge air to freeze on the surface of the first heat exchanger passage, reversing the two flows, thereby causing the nitrogen exhaust stream to freeze on the surface of the first heat exchanger passage. flowing through the first passageway and flowing the charge air stream through the second passageway to cause sublimation or evaporation of the water vapor and the CO2; at the end of the cycle, the compressed charge air stream passes through the first passageway; passing through the passageway, reversing the two flows again such that the nitrogen exhaust flow passes through the second passageway, and repeating this cycle at predetermined intervals, replacing the cooled charge airflow with the A portion of the cooled charge air stream is withdrawn from the cold end of the vessel after passing completely through it and passed through a trampuller bath and returned through a reversing exchanger. withdrawing at least a portion of said portion at an intermediate point of said heat exchanger; further cooling said withdrawn portion of said charge air in a heat exchange relationship within said fractionating device; said remainder of said cooled charge air stream; from the cold end of the heat exchanger after passing completely through the heat exchanger, mixing the further cooled portion of the charge air with the withdrawn remainder of the cooled charge air stream; The cooled charge air mixture is passed through a first fractionation zone in the fractionator thereby condensing the oxygen-rich liquid and removing the nitrogen overhead from the first fractionation zone. withdrawing the liquid, reducing the withdrawn oxygen-enriched liquid to a low pressure, and directing the reduced pressure downwardly into a second fractionation zone in heat exchange relationship with the first fractionation zone in the fractionation apparatus. passing through a fractionation zone thereby producing nitrogen vapor and producing an oxygen-enriched liquid; and withdrawing said oxygen-enriched liquid as product from said second fractionation zone; and nitrogen overhead from said first fractionation zone. The nitrogen that has been cooled and expanded while doing work is discharged under reduced pressure, and the nitrogen that has been cooled and expanded while doing work is transferred to the second
Heat is extracted from said zone by passing it through passages in said fractionator in countercurrent heat exchange relationship with said fractionation zone, said nitrogen is withdrawn from said last-mentioned passage in said fractionator, said extracted waste is passing a nitrogen stream as described above into the cold end of the inverting heat exchanger through one of the first and second passages of the inverting heat exchanger; heat exchange and fractionation in the above-mentioned fractionation apparatus at an operating pressure of less than about 3 atmospheres with a waste nitrogen stream entering the cold end of the heat exchanger and withdrawn from the cold end of the heat exchanger. A method for separating oxygen from air comprising carrying out under conditions where there is only a small temperature difference of about 1.7° C. (3R) between the exiting cooled charge air stream. 3. Means for compressing the feed air containing water vapor and CO2 to below about 3 atmospheres; an inverted heat exchanger including first and second passages; Freezes on the surface and is sublimed and evaporated by reversing the flow of the feed air stream from the first passage to the second passage and the flow of the nitrogen exhaust stream from the second passage to the first passage. Valve means for alternately reversing the flow of feed air from a first passage to a second passage and vice versa from the second passage to the first passage in the heat exchanger, such as valve means operable to repeat the cycle at predetermined intervals; means for withdrawing a portion of the flow of charge air at an intermediate point in the exchanger; a check valve for passing said flow of charge air; a fractionation apparatus comprising a first fractionation column and a second fractionation column, the said withdrawn portion of the charge air being in heat exchange relationship with the lower part of the second fractionation column for further cooling the said withdrawn portion of the charge air; means for withdrawing the remainder of said cooled charge air stream from the cold end of said heat exchanger after its complete passage; said further cooled charge air portion and said cooled charge air; means for mixing the withdrawn remainder of the stream; means for passing the cooled charge air mixture through the first fractionation column, thereby condensing the oxygen-enriched liquid and discharging the nitrogen overhead; means for extracting the oxygen-rich liquid from the second fractionation column; means for reducing the pressure of the extracted oxygen-rich liquid to a low pressure; means for passing said second fractionating column in exchange relationship, thereby producing nitrogen vapor and producing an oxygen-enriched liquid; means for withdrawing said oxygen-enriched liquid as a product from said second fractionating column; an expander; a means for passing the nitrogen radicals and tops from the first fractionating column through the work expander and discharging the cold work-expanded nitrogen under reduced pressure; a passage means in the second fractionating column; means for passing the expanded nitrogen through the last-mentioned passage means in heat exchange relationship with the second fractionation column; removing nitrogen from the last-mentioned passage; and removing the nitrogen from the last-mentioned passage; Apparatus for separating oxygen from air, comprising means for passing as a nitrogen exhaust stream into the cooled end of the heat exchanger through one of the first and second passages of the inverting heat exchanger as described above.
JP56126055A 1980-08-15 1981-08-13 Method of producing oxygen by air separation Expired JPS5916195B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US178296 1980-08-15
US06/178,296 US4308043A (en) 1980-08-15 1980-08-15 Production of oxygen by air separation

Publications (2)

Publication Number Publication Date
JPS5760164A JPS5760164A (en) 1982-04-10
JPS5916195B2 true JPS5916195B2 (en) 1984-04-13

Family

ID=22651984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126055A Expired JPS5916195B2 (en) 1980-08-15 1981-08-13 Method of producing oxygen by air separation

Country Status (5)

Country Link
US (1) US4308043A (en)
EP (1) EP0046367B1 (en)
JP (1) JPS5916195B2 (en)
CA (1) CA1144058A (en)
DE (1) DE3169545D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429770U (en) * 1990-07-05 1992-03-10

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060485A (en) * 1983-09-12 1985-04-08 株式会社神戸製鋼所 Method of separating air
US5059497A (en) * 1990-04-20 1991-10-22 Hughes Aircraft Company Composite ion-conductive electrolyte member
US5120338A (en) * 1991-03-14 1992-06-09 Exxon Production Research Company Method for separating a multi-component feed stream using distillation and controlled freezing zone
US5471842A (en) * 1994-08-17 1995-12-05 The Boc Group, Inc. Cryogenic rectification method and apparatus
GB9503592D0 (en) * 1995-02-23 1995-04-12 Boc Group Plc Separation of gas mixtures
US5592832A (en) * 1995-10-03 1997-01-14 Air Products And Chemicals, Inc. Process and apparatus for the production of moderate purity oxygen
US5921108A (en) * 1997-12-02 1999-07-13 Praxair Technology, Inc. Reflux condenser cryogenic rectification system for producing lower purity oxygen
US6079223A (en) * 1999-05-04 2000-06-27 Praxair Technology, Inc. Cryogenic air separation system for producing moderate purity oxygen and moderate purity nitrogen
US6212906B1 (en) * 2000-02-16 2001-04-10 Praxair Technology, Inc. Cryogenic reflux condenser system for producing oxygen-enriched air
US6237366B1 (en) * 2000-04-14 2001-05-29 Praxair Technology, Inc. Cryogenic air separation system using an integrated core
US20050274142A1 (en) * 2004-06-14 2005-12-15 Corey John A Cryogenically producing oxygen-enriched liquid and/or gaseous oxygen from atmospheric air
FR2946417A1 (en) * 2009-06-03 2010-12-10 Air Liquide METHOD AND APPARATUS FOR PRODUCING AT LEAST ONE ARGON-ENRICHED FLUID AND / OR AT LEAST ONE OXYGEN-ENRICHED FLUID FROM A RESIDUAL FLUID

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298184A (en) * 1962-05-29 1967-01-17 British Oxygen Co Ltd Separation of air

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1970299A (en) * 1929-04-19 1934-08-14 American Oxythermic Corp Low pressure process for separating low boiling gas mixtures
US2460859A (en) * 1944-05-01 1949-02-08 Kellogg M W Co Method of gas separation including impurity removing steps
BE521770A (en) * 1952-07-28
NL202828A (en) * 1955-01-05 Linde Eismasch Ag
US3066493A (en) * 1957-08-12 1962-12-04 Union Carbide Corp Process and apparatus for purifying and separating compressed gas mixtures
US3064441A (en) * 1958-12-09 1962-11-20 Union Carbide Corp Low temperature cleaning of an impurity-containing gas
BE626588A (en) * 1962-01-05
DE1196220B (en) * 1962-10-17 1965-07-08 Basf Ag Device for preventing the contamination of pure gases obtained by cryogenic decomposition
US3508412A (en) * 1966-08-12 1970-04-28 Mc Donnell Douglas Corp Production of nitrogen by air separation
US3535887A (en) * 1967-12-01 1970-10-27 Mc Donnell Douglas Corp High purity oxygen production from air by plural stage separation of plural streams of compressed air with utilization of recompressed overhead as a source of heat exchange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298184A (en) * 1962-05-29 1967-01-17 British Oxygen Co Ltd Separation of air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429770U (en) * 1990-07-05 1992-03-10

Also Published As

Publication number Publication date
DE3169545D1 (en) 1985-05-02
US4308043A (en) 1981-12-29
CA1144058A (en) 1983-04-05
EP0046367A2 (en) 1982-02-24
JPS5760164A (en) 1982-04-10
EP0046367A3 (en) 1982-03-10
EP0046367B1 (en) 1985-03-27

Similar Documents

Publication Publication Date Title
KR0137916B1 (en) Cryogenic air separation
US2873583A (en) Dual pressure cycle for air separation
KR100192874B1 (en) Air separation
US4367082A (en) Air separating system
US3508412A (en) Production of nitrogen by air separation
EP0672878B1 (en) Air separation
KR100198352B1 (en) Air separation method and apparatus for producing nitrogen
CN100380079C (en) Air fractionating process and apparatuswith mixing column and krypton-xenon recovery device
EP0684438B1 (en) Air separation
JPS5916195B2 (en) Method of producing oxygen by air separation
US4746343A (en) Method and apparatus for gas separation
JPS6391475A (en) Simultaneous manufacture of argon and nitrogen
US3886756A (en) Separation of gases
EP1086345B1 (en) Process and apparatus for the production of nitrogen by cryogenic distillation using a dephlegmator
US2825212A (en) Process for separating a compressed gas mixture
US3191393A (en) Krypton-xenon separation from a gas mixture
US2918801A (en) Process and apparatus for separating gas mixtures
US2812645A (en) Process and apparatus for separating gas mixtures
US3264831A (en) Method and apparatus for the separation of gas mixtures
CA2093874A1 (en) Air separation
RU2069293C1 (en) Cryogenic method of producing nitrogen from air
US3039274A (en) Process and apparatus for purifying and separating compressed gas mixtures
US4289515A (en) Production of nitrogen by air separation
US3535886A (en) Production of high purity nitrogen from air by distillation with depressurized,work expanded and cooled oxygen-rich bottoms used in indirect heat exchange for the distillation
US6170291B1 (en) Separation of air