JPS59161813A - Manufacture of impurity doped semiconductor thin film - Google Patents

Manufacture of impurity doped semiconductor thin film

Info

Publication number
JPS59161813A
JPS59161813A JP3717183A JP3717183A JPS59161813A JP S59161813 A JPS59161813 A JP S59161813A JP 3717183 A JP3717183 A JP 3717183A JP 3717183 A JP3717183 A JP 3717183A JP S59161813 A JPS59161813 A JP S59161813A
Authority
JP
Japan
Prior art keywords
gas
thin film
electrode
electrodes
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3717183A
Other languages
Japanese (ja)
Inventor
Kazunobu Tanaka
田中 一宣
Akihisa Matsuda
彰久 松田
Hideo Tanaka
秀夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Seiko Instruments Inc filed Critical Agency of Industrial Science and Technology
Priority to JP3717183A priority Critical patent/JPS59161813A/en
Publication of JPS59161813A publication Critical patent/JPS59161813A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To reduce the danger of handling a gas and facilitate the doping of an atom which does not have gaseous compound of hydrogen by a method wherein an impurity is put on one of the facing electrodes and a substrate is attached to another and discharge decomposition of the gas and sputtering are performed. CONSTITUTION:A pair of parallel plane type electrodes are composed of electrodes 1a and 1b. Indium 2 is attached to the bottom surface of the electrode 1a and a glass substrate 3, on which an impurity doped semiconductor thin film is to be formed, is put on the top surface of the electrode 1b. These electrodes are surrounded by a reaction chamber to which a gas inlet 4 and a gas outlet 5 are provided. Terminals of a heater 6, buried in the electrode 1b, are drawn out and a source 8 is connected to an external terminal projected from the electrode 1a. The reaction chamber is filled with SiH4 gas and Ar gas and SiH4 is decomposed by glow discharge, are discharge, DC discharge or the like to deposite an Si thin film on the substrate 3. With this constitution, the equipment can be simple and the thin film formation and doping can be performed at the same time.

Description

【発明の詳細な説明】 本発明は、不純物をドープした半導体に膜の製造方法の
新規な改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel and improved methods of manufacturing films in semiconductors doped with impurities.

従来の不純物をドープした半導体薄膜の製造方法は、必
要な不純物を有する水素化合物気体とシラン、水素等の
ガスとを混合し、この混合ガスのグロー放電分解を行な
うことにより、不純吻をドープした半導体薄膜?形成す
る方法が知られている。
The conventional method for manufacturing a semiconductor thin film doped with impurities is to mix a hydrogen compound gas containing the necessary impurities with a gas such as silane or hydrogen, and perform glow discharge decomposition of this mixed gas to dope the impurity. Semiconductor thin film? Methods of forming are known.

しかしながら、上記従来の不純物全ドープした半導体薄
膜の製造方法には、以下のような種々の欠点が存在する
However, the above-mentioned conventional method for manufacturing a semiconductor thin film fully doped with impurities has various drawbacks as described below.

(1)不純物用のガスとして最も汎用されているものに
、ホスフィン、ジボラン等があるが、これらはいずれも
きわめて毒性が高い。
(1) The most widely used gases for impurities include phosphine and diborane, which are all extremely toxic.

(2)ガリウム、アンチモン、アルミニウム、インジウ
ム等の水素化合物気体金持たない原子は、不純′吻のド
ープがなさfLない、本発明は、これらの欠点を除去す
るためになさ′i″したものであって、不純物を固体の
ま捷としておいて、半導体薄膜を形成する時に安全に不
純物のドープを可能とすることを目的とする、以下、図
面にもとづいて、本発明の不純物音ドープした半導体薄
膜の製造方法を詳細に説明する。
(2) Hydrogen compound gases such as gallium, antimony, aluminum, and indium have no gold-bearing atoms, and are not doped with impurities.The present invention was made to eliminate these drawbacks. Hereinafter, based on the drawings, the semiconductor thin film doped with impurities of the present invention is intended to enable safe doping of impurities when forming a semiconductor thin film by keeping the impurities in a solid state. The manufacturing method will be explained in detail.

第1図において、電極1aと1b!′i平行平fIi電
極を形成する。2はインジウム、3は不純物をドープし
た半導体薄膜形成用のガラス基板、4はガスタの導入孔
、5はガスタの排気、孔である。な°お6ば、カラス基
板ろをあたためるヒータである。
In FIG. 1, electrodes 1a and 1b! 'i parallel plane fIi electrodes are formed. 2 is indium, 3 is a glass substrate doped with impurities for forming a semiconductor thin film, 4 is a gas star introduction hole, and 5 is a gas star exhaust hole. Additionally, there is a heater that warms the glass substrate filter.

このように、インジウム2とガラス基鈑4を設置した状
態で、ガス7の導入孔4から反応室内にガフ 7 k 
a fcす。ガス7としては、7ランとアルゴンとを混
合しにガスを用いる。次に、前記電極1aと1bの間に
高周波′電圧又は直流電圧を高層e電源8によりかける
と、グロー放電、アーク放電及び面流放′区等により、
ブランが分解して、カラス基板4の士にンリコン薄膜が
堆積する。同時に、つ′ルゴンによりインジウム2がス
パッタリングされて、シリコン薄膜中にインジウム2が
ドープされる。
In this way, with the indium 2 and glass substrate 4 installed, a gaff 7k is introduced into the reaction chamber from the gas 7 introduction hole 4.
a fc. As the gas 7, a mixture of 7 run and argon is used. Next, when a high frequency voltage or a DC voltage is applied between the electrodes 1a and 1b by the high-rise e-power source 8, glow discharge, arc discharge, surface discharge, etc.
The blank decomposes and a thin film of silicone is deposited between the glass substrates 4. At the same time, indium 2 is sputtered by a nitrogen gas to dope the silicon thin film with indium 2.

このようにして製作したシリコン膜の導電率とアルゴン
ガス流部の関係を、第2図に示す。第2図より、アルゴ
ンカス流−喰を増ずとインジウムのドーピングが起こり
、導電率が増加していることがわかる。
The relationship between the electrical conductivity of the silicon film manufactured in this way and the argon gas flow area is shown in FIG. From FIG. 2, it can be seen that indium doping occurs without increasing the argon gas flow and the conductivity increases.

′また、熱電能測定により、P型の伝導を示すことも確
認されている。
'It has also been confirmed by thermoelectric power measurements that it exhibits P-type conduction.

以上の説明(1、インジウム:と不純物とした場合の、
不純物をドープした/ジョン薄膜の製造方法についてな
さhfcが、この他に、ガリウム、アルミニウム、アン
チモン等ヲ不純物として使用したシリコン、炭化ケイ素
、チツ化り一イ素などの他の半導体薄膜の場合にも、同
様に不純物をドープした半導体薄膜の製造が可能である
。また基板としてはガラスの他、/リコン単結晶2石英
、ステンレス等を用いても良い。更に、半導体薄膜形成
用のガスとして鉱、シラン(SiH4,>の他、四フッ
化ケイ素(81F4)、ジンラン(S:12H6)等を
用いることもてきる。
The above explanation (1. Indium: When used as an impurity,
Regarding the manufacturing method of thin films doped with impurities, in addition to this, gallium, aluminum, antimony, etc. are used as impurities for other semiconductor thin films such as silicon, silicon carbide, and nitride. Similarly, semiconductor thin films doped with impurities can also be produced. In addition to glass, the substrate may also be made of /recon single crystal diquartz, stainless steel, or the like. Furthermore, as a gas for forming a semiconductor thin film, silicon tetrafluoride (81F4), silane (S:12H6), etc. can also be used in addition to silane (SiH4).

本発明は、上述したように不純物を固体の丑ま用いるこ
とができるので、 (υ ガスの取扱いに関する危に住か減少する。
In the present invention, as mentioned above, since the impurities can be used in the form of solid particles, the dangers associated with handling the gas are reduced.

(2′、水素化合物気体を持たない原子もドープするこ
とができる。
(2', atoms without hydrogen compound gas can also be doped.

とめう効果′5r:肩するばかシでなく、イオン注入装
置4のように大がかりな装置が不要で、がっ、イオンイ
ンブランティジョンとは異な9、薄膜形成とドーピング
が同時にできるという効果全も有する。
Stopping effect '5r: It is not a burden to shoulder, does not require large-scale equipment like ion implantation equipment 4, and has the full effect that thin film formation and doping can be performed at the same time, which is different from ion implantation. It also has

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、基板と不純物を電極に取り付けた本発明で使
用するプラズマOVD装置内の反応室の断面図、第2図
は、本発明の製造方法によりガラス基権上に形成したP
型不純物半導体薄膜の電気的特性図である。 1a、 ib・・・・・・電極 2・・・・・・インジウム 6・・・・・・カラス基板 4・・・・・・ガスの導入孔 5・・・・・・ガスの排気孔 6・・・・・・ヒータ 7・・・・・・ガ ス 8・・・・・・高周波電源 以   上 出願人 工業技術院長 白坂誠− 出願人 株式会社 第二精工舎 代理人 弁理士 最上 務
FIG. 1 is a cross-sectional view of a reaction chamber in a plasma OVD apparatus used in the present invention in which a substrate and impurities are attached to electrodes, and FIG.
FIG. 3 is an electrical characteristic diagram of a type impurity semiconductor thin film. 1a, ib... Electrode 2... Indium 6... Glass substrate 4... Gas inlet hole 5... Gas exhaust hole 6 ... Heater 7 ... Gas 8 ... High frequency power supply and above Applicant Makoto Shirasaka, Director General of the Agency of Industrial Science and Technology - Applicant Daini Seikosha Co., Ltd. Agent Patent Attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] 対向する二電極の一方の電極に不純物全設置するととも
に、他方の電極に基板を設置して、ガスの放電6分解と
スパッタリングとを行なうことを特徴とする不純物をド
ープした半導体薄膜の製造方法。
A method for manufacturing a semiconductor thin film doped with impurities, characterized in that all impurities are placed on one of two opposing electrodes, a substrate is placed on the other electrode, and gas discharge decomposition and sputtering are performed.
JP3717183A 1983-03-07 1983-03-07 Manufacture of impurity doped semiconductor thin film Pending JPS59161813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3717183A JPS59161813A (en) 1983-03-07 1983-03-07 Manufacture of impurity doped semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3717183A JPS59161813A (en) 1983-03-07 1983-03-07 Manufacture of impurity doped semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS59161813A true JPS59161813A (en) 1984-09-12

Family

ID=12490145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3717183A Pending JPS59161813A (en) 1983-03-07 1983-03-07 Manufacture of impurity doped semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS59161813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162875A (en) * 1986-12-25 1988-07-06 Tdk Corp Thin film and production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916326A (en) * 1982-07-19 1984-01-27 Agency Of Ind Science & Technol Manufacture of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916326A (en) * 1982-07-19 1984-01-27 Agency Of Ind Science & Technol Manufacture of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162875A (en) * 1986-12-25 1988-07-06 Tdk Corp Thin film and production thereof

Similar Documents

Publication Publication Date Title
JP2962417B2 (en) Chemical vapor deposition of silicon nitride from bis (t-butylamino) silane
JPS5767020A (en) Thin silicon film and its manufacture
JPS62125642A (en) Wafer susceptor
JPS61234534A (en) Fabrication of silicon nitride coating
Mizuno et al. Vapor growth kinetics of III–V compounds in a hydrogen-inert gas mixed carrier system
JPS59161813A (en) Manufacture of impurity doped semiconductor thin film
JPH06168937A (en) Manufacture of silicon oxide film
JPS5727015A (en) Manufacture of silicon thin film
JPS5884111A (en) Improved plasma deposition for silicon
US3152932A (en) Reduction in situ of a dipolar molecular gas adhering to a substrate
JPS6262529A (en) Forming method for silicon nitride film
JP3422345B2 (en) Method of forming tungsten film
JPH0280577A (en) Formation of thin film
JPS62261128A (en) Manufacture of mos type semiconductor device
JP3116403B2 (en) Method for manufacturing thin film transistor
JP2620293B2 (en) Diamond modification method
JPS6294922A (en) Film forming device using plasma cvd method
JPH0250969A (en) Thin film forming device
JPS63186417A (en) Formation of semiconductor carbon thin film
JPS62179716A (en) Manufacture of semiconductive carbon thin film
JPH079059B2 (en) Method for producing carbon thin film
JPH09199306A (en) Thin film thermistor and thin film thermistor manufacturing method
JP2521953B2 (en) Method for producing semiconducting carbon thin film
JP2726676B2 (en) Formation method of silicon carbide microcrystalline thin film
JPS61234533A (en) Fabrication of silicon nitride coating