JPS59160847A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS59160847A
JPS59160847A JP3275583A JP3275583A JPS59160847A JP S59160847 A JPS59160847 A JP S59160847A JP 3275583 A JP3275583 A JP 3275583A JP 3275583 A JP3275583 A JP 3275583A JP S59160847 A JPS59160847 A JP S59160847A
Authority
JP
Japan
Prior art keywords
guide groove
groove
thickness
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3275583A
Other languages
Japanese (ja)
Inventor
Toshio Niihara
敏夫 新原
Masahiro Oshima
尾島 正啓
Hideo Fujiwara
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3275583A priority Critical patent/JPS59160847A/en
Publication of JPS59160847A publication Critical patent/JPS59160847A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • G11B11/10578Servo format, e.g. prepits, guide tracks, pilot signals

Abstract

PURPOSE:To provide an photomagnetic recording medium which permits easy tracking, is adaptable to all thin magnetic material films and has <=1mum inter- track space by providing a thin dielectric film having a guide groove on the thin magnetic material film and utilizing the difference in the reflectivity of light owing to the quide groove in performing tracking. CONSTITUTION:A thin magnetic material film 6 of CrO2, Co-Cr, Gd-Co, Tb-Fe, MnBi, magnetic garnet, etc. is provided on a substrate 7 of glass or polymethyl methacrylate or the like, and a thin dielectric film 11 having a guide groove 8 is formed on the thin film. A recording track is the groove 8 part. The groove 8 is set at such a thickness at which the intensity of reflected light is minimized and conversely the projecting part 10 of the guide groove is set at such a thickness at which the intensity of the reflected light is maximized. In other words, the optical film thickness of the groove 8 is set at integer multiple of 1/4 of the laser wavelength and the optical thickness of the projecting part of the guide plate is set at integer multiple of 1/2 wavelength. If the medium is formed in such constitution, a tracking signal is obted. and the inter-track space is made <=1mum.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光磁気記録に係り、特に、レーザ光を、用いて
記録・再生を行なう光磁気記録媒体に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to magneto-optical recording, and particularly to a magneto-optical recording medium that performs recording and reproduction using laser light.

〔背景技術〕[Background technology]

磁気記録における記録密度の高密度化にともなって、レ
ーザ光を用いて情報を記録・再生する光磁気記録が注目
されている。光磁気記録方式で高密度記録が可能な理由
の一つには、光スポットを利用しているためトラック間
隔をIAm程度以下にまでできるという特長を有してい
ることである。
2. Description of the Related Art As the recording density in magnetic recording increases, magneto-optical recording, which uses laser light to record and reproduce information, is attracting attention. One of the reasons why high-density recording is possible with the magneto-optical recording method is that it has the advantage that the track spacing can be reduced to about IAm or less because it uses a light spot.

但し、記録・再生の際には、記録トラックの半径方向の
動きに応じて、細く絞られたレーザ光束を動かし、記録
トラックを常に光スポットの中心でとらえるように制御
すること、つまりトラッキングが必要である。
However, during recording and playback, it is necessary to control the recording track by moving a narrowly focused laser beam according to the radial movement of the recording track so that the recording track is always captured at the center of the optical spot.In other words, tracking is required. It is.

トラッキングの方法としては、従来、3スポツト法が用
いられている。
Conventionally, a three-spot method has been used as a tracking method.

3スポツト法では、第1図に示すように、信号読取用光
スポラ)lbの他に、一対の光スポットla、lcをト
ラック中心から正負にわずかにずらして記録ビット列2
a、2b、2c上に投射し、反射光の偏光面の回転成分
を検出することによシ、トラックを追従することができ
る。しかし、このトラッキング方式では、記録ビットの
薔き込み時と、長い部分にわたって記録ビットが存在し
ない場合の再生時にはトラッキングが行なえず、光磁気
記録の特徴や一つであるトラック毎の消去・誉き換えを
生かすことができない。この問題を解決するために、結
晶化ガイドトラックを設ける方法と、基板にガイド溝を
設ける方法が既に提案されている。
In the three-spot method, as shown in FIG. 1, in addition to the signal reading optical spora) lb, a pair of optical spots la and lc are slightly shifted in the positive and negative directions from the track center to produce a recording bit string 2.
A, 2b, and 2c are projected and the track can be followed by detecting the rotational component of the polarization plane of the reflected light. However, with this tracking method, tracking cannot be performed when recording bits are inserted or during playback when there are no recorded bits over a long section, and one of the characteristics of magneto-optical recording is the ability to erase and honor each track. I can't take advantage of the change. In order to solve this problem, a method of providing a crystallization guide track and a method of providing a guide groove in the substrate have already been proposed.

光磁気記録材として非晶質磁性薄膜を用いた場合には、
第2図に示すように、レーザ光によシガイドトラック3
を結晶化して設けることができる。
When an amorphous magnetic thin film is used as a magneto-optical recording material,
As shown in Fig. 2, the guide track 3 is
It can be provided by crystallizing.

結晶化した部分では光の透過率が大きくなっているため
、光スポットエaと10の透過光量差を検出することに
よってトラッキングを行なえる。そのためこの方式では
、記録ビットがない場合でもトラッキングを行うことが
できる。しかし、結晶化領域と非晶質領域との境界が直
線状になるように結晶化トラックを作製することは極め
て困難であシ、通常、結晶化ガイドトラック3と記録ト
ラックとの境界線は入シ組んでしまう。そのため、光ス
ポットの中心は記録トラック上を揺動することになシ、
精度のよいトラッキングができない。
Since the light transmittance is high in the crystallized portion, tracking can be performed by detecting the difference in the amount of transmitted light between the light spots a and 10. Therefore, with this method, tracking can be performed even when there are no recording bits. However, it is extremely difficult to create a crystallization track so that the boundary between the crystallized region and the amorphous region is a straight line, and usually the boundary between the crystallization guide track 3 and the recording track is a straight line. I'm going to put it together. Therefore, the center of the light spot does not have to oscillate on the recording track.
Accurate tracking is not possible.

また、透過率の差は高々数%であるためトラッキングの
感度も悪い。さらにこの方法の不利な点tよ、非晶質磁
性体薄膜のみにしか適用できない点である。
Furthermore, since the difference in transmittance is only a few percent at most, tracking sensitivity is also poor. A further disadvantage of this method is that it can only be applied to amorphous magnetic thin films.

一方、第3図に示すように、基板7自身にあらかじめガ
イド溝8を設けておき、その上に磁性体薄膜6を形成し
、反射光の回折を利用してトラッキングを行うこともで
きる。すなわち、光スポットの中心がガイド溝8の中心
にあるとき、回折光強度はガイド溝8に対して対称”と
なるが、ガイド溝8がi位すると回折光は非対称な強度
分布をもつこと−を利用する。この方法では、記録信号
がない場合でも、また非晶質以外の磁性体薄膜にでも適
用可能である。しかし、回折をおこすためにはガイド溝
8の深さがレーザ波長の8分の1程度でなければならず
、このような深さの溝を基板上に直接加工することは不
可能である。同様に、1μm以下に記録トラックを狭加
工することも困難である。また回折効率を高めるには、
ガイド溝8とガイド溝凸部10との間の斜面9は基板面
に対して垂直にしなければならないが、そうすると磁性
体薄膜6は斜面9部で段切れを生じてしまい、再生時に
は雑音の原因となる。
On the other hand, as shown in FIG. 3, it is also possible to provide a guide groove 8 in advance on the substrate 7 itself, form a magnetic thin film 6 thereon, and perform tracking using diffraction of reflected light. That is, when the center of the light spot is at the center of the guide groove 8, the intensity of the diffracted light is symmetrical with respect to the guide groove 8, but when the guide groove 8 is at the i position, the diffracted light has an asymmetric intensity distribution. This method can be applied even when there is no recording signal and can be applied to magnetic thin films other than amorphous.However, in order to cause diffraction, the depth of the guide groove 8 must be 8 times the laser wavelength. It is impossible to directly process grooves with such a depth on the substrate.Similarly, it is also difficult to process recording tracks to be narrower than 1 μm. To increase diffraction efficiency,
The slope 9 between the guide groove 8 and the guide groove convex portion 10 must be perpendicular to the substrate surface, but if this is done, the magnetic thin film 6 will break at the slope 9, causing noise during playback. becomes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の考察から、従来のトラッキング
方式がもつ欠点を改善するために、トラッキングが容易
にでき、あらゆる磁性体薄膜に適用可能で、しかもトラ
ック間隔を1μm以下にできる光磁気記録媒体を提供す
ることにある。
From the above considerations, an object of the present invention is to provide a magneto-optical recording system that can be easily tracked, can be applied to any magnetic thin film, and can have a track spacing of 1 μm or less, in order to improve the drawbacks of conventional tracking methods. The goal is to provide a medium.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明の光磁気記録媒体
では、磁性体薄膜上にガイド溝をもつ誘電体薄膜を設け
たことを特徴としておシ、該ガイド溝による光の反射率
差を利用してドラッギングを行う。
In order to achieve the above object, the magneto-optical recording medium of the present invention is characterized in that a dielectric thin film having guide grooves is provided on a magnetic thin film. Use this to perform dragging.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明になる光磁気記録媒体の一実施例を示す
斜視図である。ガラスあるいはポリメチル・メタ・アク
リレ−)(PΔ4MA )等の基板7上には1. Cr
O21Co−Cr 、 Gd−Co、 Tb−Fe1M
n13i、磁性ガーネット等の磁性体薄膜6が設けられ
ておシ、該薄膜上にはガイド溝8をもった誘電体薄膜1
1が形成されている。記録トラックはガイド?!!8部
である。ここで、ガイド溝8の厚さは反射光強度が最小
になるような厚さに設定されておシ、逆に、ガイド溝凸
部10は反射光強度が最大になるような厚さに設定され
ている。たとえば、磁性体薄膜6としてTb−Fe非晶
質磁性体薄膜を用い、He−Neレーザを使用した場合
には、SiO誘電体薄膜を、ガイド溝8の厚さが77n
mになるように設け、ガイド溝凸部10の厚さが166
 nmになるように設ければよい。このような膜厚に設
定する理由を第5図(TLJ。
FIG. 4 is a perspective view showing an embodiment of the magneto-optical recording medium according to the present invention. 1. On the substrate 7 made of glass or polymethyl meta acrylate (PΔ4MA), etc. Cr
O21Co-Cr, Gd-Co, Tb-Fe1M
A thin film 6 of magnetic material such as magnetic garnet or the like is provided on the thin film, and a thin dielectric film 1 having guide grooves 8 is provided on the thin film.
1 is formed. Is the recording track a guide? ! ! There are 8 parts. Here, the thickness of the guide groove 8 is set to a thickness that minimizes the intensity of reflected light, and conversely, the thickness of the guide groove convex portion 10 is set to a thickness that maximizes the intensity of reflected light. has been done. For example, when a Tb-Fe amorphous magnetic thin film is used as the magnetic thin film 6 and a He-Ne laser is used, the guide groove 8 has a thickness of 77 nm using a SiO dielectric thin film.
m, and the thickness of the guide groove convex portion 10 is 166 mm.
What is necessary is just to provide it so that it may become nm. The reason for setting such a film thickness is shown in Figure 5 (TLJ.

Chen、 D、 Cheng l andG−13−
Charl a” ; I EEETrans、Mag
n、、MAG−16,1194(1980))を用いて
説明する。第5図は、Tb−Fe非晶質磁性体薄膜上に
Sing電体薄膜を形成したときの、He−Neレーザ
波長における反射率およびカー回転角のSiO膜厚依存
性を示したものである。
Chen, D., and G-13-
Charl a”; I EEET Trans, Mag
An explanation will be given using the following: MAG-16, 1194 (1980)). Figure 5 shows the SiO film thickness dependence of reflectance and Kerr rotation angle at the He-Ne laser wavelength when a Sing electric thin film is formed on a Tb-Fe amorphous magnetic thin film. .

図かられかるように、SiO膜厚が77nmのときには
反射率が最小値17.4%となシ、166nmのときに
は56.2%となる。そのため、第4図に示すガイド溝
8、ガイド溝凸部10各々からの反射光強度には38,
8%の強度差が存在する。
As can be seen from the figure, when the SiO film thickness is 77 nm, the reflectance is a minimum value of 17.4%, and when it is 166 nm, it is 56.2%. Therefore, the intensity of reflected light from each of the guide groove 8 and the guide groove convex portion 10 shown in FIG. 4 is 38,
There is an 8% difference in intensity.

したがって、トラッキング信号を得るためには、たとえ
ば、第1図中のla、ICのような一対の光スポットを
ガイド溝8とガイド溝凸部1oとの両方にかかるように
投射し、反射光を光検知器で差動的に検出すればよい。
Therefore, in order to obtain a tracking signal, for example, a pair of light spots such as la and IC in FIG. 1 are projected so as to cover both the guide groove 8 and the guide groove convex portion 1o, and the reflected light is It may be detected differentially using a photodetector.

なお、ガイド溝8とガイド溝凸部10の膜厚は前記膜厚
のみに限られるものではなく、第5図かられかるように
、いくつに かの適当な膜厚がそれぞれ存在する。レーザ波長をかえ
た場合にも最適膜厚が存在する。換言すれば、ガイド溝
8は光学的膜厚がレーザ波長の4分の1の整数倍であれ
ばよく、ガイド溝凸部は2分の1波長の整数倍の膜厚で
あればよい。
The thicknesses of the guide grooves 8 and the guide groove convex portions 10 are not limited to the above-mentioned thicknesses, but as can be seen from FIG. 5, there are several suitable thicknesses. An optimum film thickness also exists when the laser wavelength is changed. In other words, the guide groove 8 may have an optical thickness that is an integral multiple of a quarter of the laser wavelength, and the guide groove convex portion may have a thickness that is an integral multiple of a half wavelength.

また、本発明になる光磁気記録媒体において、ガイド溝
8では反射出が小さくレーザ光は効率よく吸収されるた
め、小さなレーザ光強度での記録が可能である。一方、
ガイド溝凸部1oはレーザ光を反射し、記録ビットがト
ラック幅以上に広がることを防ぎ均一な幅の記録ビット
を得る役割をも果たしている。
Furthermore, in the magneto-optical recording medium of the present invention, since the guide groove 8 reflects little laser light and efficiently absorbs the laser light, recording can be performed with a low laser light intensity. on the other hand,
The guide groove convex portion 1o also plays the role of reflecting the laser beam, preventing the recording bit from spreading beyond the track width, and obtaining recording bits of uniform width.

誘電体薄膜11の更に別の利点は、カー回転角を増大さ
せることである。第5図に示したように、SiO誘電体
薄膜を形成することによfi、Tb−pe非晶賀磁性体
薄膜のみのカー回転角に比べて約3倍大きくすることが
でき、再生時の信号対雑音比を改善できる。
Yet another advantage of dielectric thin film 11 is that it increases the Kerr rotation angle. As shown in Fig. 5, by forming a SiO dielectric thin film, the Kerr rotation angle can be made approximately three times larger than that of only the fi, Tb-pe amorphous magnetic thin film. Signal-to-noise ratio can be improved.

第6図は、本発明になる光磁気記録媒体の他の実施例を
示す斜視図である。基板7上には、まず、ガイド溝8を
もった誘電体薄膜11が形成されておシ、該誘電体薄膜
上に磁性体薄膜6、保護膜12が順次積層されている。
FIG. 6 is a perspective view showing another embodiment of the magneto-optical recording medium according to the present invention. A dielectric thin film 11 having guide grooves 8 is first formed on the substrate 7, and a magnetic thin film 6 and a protective film 12 are sequentially laminated on the dielectric thin film.

ガイド溝8が記録トラックとなっておシ、この部分の磁
性体薄膜6に記録ビットが形成される。トラッキングを
行うには、3つの光スポットを基板7側から入射させ、
第4図に示す実施例で説明したような原理を用いる。
The guide groove 8 serves as a recording track, and recording bits are formed in this portion of the magnetic thin film 6. To perform tracking, three light spots are made incident from the substrate 7 side,
The principle as explained in the embodiment shown in FIG. 4 is used.

第4図、第6図に示した実施例において誘電体薄膜11
にガイド溝8を設けるには、アルゴンイオンレーザ等の
短波長レーザ露光によるパターン形成後、通常のエツチ
ングあるいはスパッタエツチングを行えばよく、この手
法によシガイド溝8の幅は0.5μmまで微細化でき、
深さはlQnm以下の精度で制御可能である。したがっ
て本発明の中核をなすガイド溝8の形成は容易に実現で
きる。しかも、このガイド溝8をもつ誘電体薄膜11に
隣接して設けられている磁性体薄膜6には、第3図にお
いて問題点として指摘した段切れはない。
In the embodiment shown in FIGS. 4 and 6, the dielectric thin film 11
In order to provide the guide grooves 8 in the etching, the width of the guide grooves 8 can be miniaturized to 0.5 μm by performing normal etching or sputter etching after pattern formation by short wavelength laser exposure such as an argon ion laser. I can do it,
The depth can be controlled with an accuracy of lQnm or less. Therefore, the formation of the guide groove 8, which is the core of the present invention, can be easily realized. Moreover, the magnetic thin film 6 provided adjacent to the dielectric thin film 11 having the guide groove 8 does not have the step break pointed out as a problem in FIG.

〔発明の効果〕 以上詳細に説明したように、本発明によれば、磁性体薄
膜上に形成した誘電体薄膜にガイド溝を設けることによ
ってトラッキング信号を得ることができ、しかもトラッ
ク間隔が1μm以下の光磁気記録媒体を提供できるもの
である。
[Effects of the Invention] As described above in detail, according to the present invention, a tracking signal can be obtained by providing a guide groove in a dielectric thin film formed on a magnetic thin film, and the track spacing is 1 μm or less. Accordingly, it is possible to provide a magneto-optical recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光磁気記録におけるトラッキング例を示す説明
図、第2図、第3図は従来の光磁気記録媒体の平面図と
斜視図、第4図は本発明になる光磁気記録媒体の一実施
例を示す斜視図、第5図は反射率およびカー回転角の特
性を示す図、第6図は本発明になる光磁気記録媒体の他
の実施例を示す斜視図である。 6・・・磁性体薄膜、7・・・基板、8・・・ガイド溝
、10・・・ガイド溝凸部、11・・・誘電体薄膜、1
2・・・保護晃 1 図 箇 2 図 1C4−zb  2C 第3 図 嘉4 因
FIG. 1 is an explanatory diagram showing an example of tracking in magneto-optical recording, FIGS. 2 and 3 are a plan view and a perspective view of a conventional magneto-optical recording medium, and FIG. 4 is an illustration of a magneto-optical recording medium according to the present invention. FIG. 5 is a perspective view showing the reflectance and Kerr rotation angle characteristics, and FIG. 6 is a perspective view showing another example of the magneto-optical recording medium according to the present invention. 6... Magnetic thin film, 7... Substrate, 8... Guide groove, 10... Guide groove convex portion, 11... Dielectric thin film, 1
2...Protection Akira 1 Figure 2 Figure 1C4-zb 2C 3 Figure 4 Cause

Claims (1)

【特許請求の範囲】[Claims] 磁性体薄膜と、該磁性体薄膜上にあシ、かつガイド溝が
形成された誘電体薄膜とから成ることを特徴とする光磁
気記録媒体。
A magneto-optical recording medium comprising a magnetic thin film and a dielectric thin film on which reeds and guide grooves are formed.
JP3275583A 1983-03-02 1983-03-02 Photomagnetic recording medium Pending JPS59160847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3275583A JPS59160847A (en) 1983-03-02 1983-03-02 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3275583A JPS59160847A (en) 1983-03-02 1983-03-02 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59160847A true JPS59160847A (en) 1984-09-11

Family

ID=12367654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3275583A Pending JPS59160847A (en) 1983-03-02 1983-03-02 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59160847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253038A (en) * 1984-05-29 1985-12-13 Ricoh Co Ltd Photomagnetic disk
JPS61162844A (en) * 1985-01-14 1986-07-23 Ricoh Co Ltd Photomagnetic recording medium and its production
JPH02301658A (en) * 1989-05-15 1990-12-13 Tomonobu Maeda Magnetic processing device for fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253038A (en) * 1984-05-29 1985-12-13 Ricoh Co Ltd Photomagnetic disk
JPS61162844A (en) * 1985-01-14 1986-07-23 Ricoh Co Ltd Photomagnetic recording medium and its production
JPH02301658A (en) * 1989-05-15 1990-12-13 Tomonobu Maeda Magnetic processing device for fuel
JPH0477146B2 (en) * 1989-05-15 1992-12-07 Tomonobu Maeda

Similar Documents

Publication Publication Date Title
US5270987A (en) Magneto-optical recording and reproducing method, magneto-optical memory apparatus and magneto-optical recording medium therefor
JPH05234145A (en) Optical recording medium and substrate for optical recording medium
EP0306324B2 (en) An optical memory system
JP2002025138A (en) Optical recording medium and optical recording and reproducing equipment
JPH09293286A (en) Magneto-optical recording medium and information recording and reproducing device
JP3433651B2 (en) Magneto-optical recording medium and recording / reproducing method thereof
JPH0581977B2 (en)
JP3159363B2 (en) Optical reproduction medium and reproduction method thereof
JP3512583B2 (en) optical disk
JP2644840B2 (en) optical disk
JPS59160847A (en) Photomagnetic recording medium
JPS6332751A (en) Magneto-optical recording medium
JP3572686B2 (en) Information recording medium and reproducing method thereof
EP0393652B1 (en) Magneto-optical recording and reproducing method, magnetooptical memory apparatus
JP4040563B2 (en) Optical disk device
JP2863431B2 (en) Magneto-optical recording / reproducing device
JP3108671B2 (en) Magneto-optical memory device
US6108280A (en) Optical information storage unit
JPS58218033A (en) Optomagnetic recorder
JP2883101B2 (en) Information recording device
JPS6129423A (en) Recording and reproducing method of optical recording medium
KR100317766B1 (en) High Density Information Recording and Playback Method
JPH04281218A (en) Optical information reproducing method and optical information recording medium
JPS6273442A (en) Magneto-optical storage element
JPH1021596A (en) Magneto-optical recording medium and optical reproducing device