JPS5916038B2 - Method for producing processed paper with enhanced wet compressive strength - Google Patents

Method for producing processed paper with enhanced wet compressive strength

Info

Publication number
JPS5916038B2
JPS5916038B2 JP48105880A JP10588073A JPS5916038B2 JP S5916038 B2 JPS5916038 B2 JP S5916038B2 JP 48105880 A JP48105880 A JP 48105880A JP 10588073 A JP10588073 A JP 10588073A JP S5916038 B2 JPS5916038 B2 JP S5916038B2
Authority
JP
Japan
Prior art keywords
paperboard
prepolymer
wet
strength
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48105880A
Other languages
Japanese (ja)
Other versions
JPS5058310A (en
Inventor
紀夫 岡田
秀治 大槻
寛 稲垣
利明 羽入田
正照 得能
清一 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP48105880A priority Critical patent/JPS5916038B2/en
Publication of JPS5058310A publication Critical patent/JPS5058310A/ja
Priority to US05/686,217 priority patent/US4091167A/en
Publication of JPS5916038B2 publication Critical patent/JPS5916038B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は包装用のすぐれた乾湿抗張強度、乾湿圧縮強度
を有する板紙類を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing paperboard for packaging having excellent wet and dry tensile strength and wet and dry compressive strength.

5 より詳細には本発明は、不飽和塩基酸とビスフェノ
ールAタイプジグリシジルエーテル又はエポキシ化合物
の反応生成物にして同一分子中に、エステル結合を直接
介して分子末端に少くとも1個のα、β一エチレン性不
飽和2重結合を有しかつ該0 エステル結合に対してβ
位置に少くとも1個の水酸基を有し分子量が300〜3
、000好ましくは500〜2、000の範囲の不飽和
のビニルエステルプレポリマー(以下””プレポリマー
”’と略記する重合がある)とメチルアクリレート、エ
チルア5 クリレートおよびブチルアクリレートから成
る群より選ばれた少くとも1種のモノマーを重量比10
二90〜40:60の割合で混合した混合物を板紙類に
含浸およびまたは塗布して高エネルギー電子線を照射し
重合させることを特徴とする増’o 強された湿圧縮強
度をもつ加工板紙類の製造方法に関する。
5. More specifically, the present invention is a reaction product of an unsaturated basic acid and a bisphenol A type diglycidyl ether or an epoxy compound, and in the same molecule, at least one α, β has one ethylenically unsaturated double bond and β for the 0 ester bond
Has at least one hydroxyl group at the position and has a molecular weight of 300 to 3
, 000, preferably in the range of 500 to 2,000 (hereinafter abbreviated as "prepolymer"), and methyl acrylate, ethylacrylate and butyl acrylate. At least one monomer in a weight ratio of 10
Processed paperboard with enhanced wet compressive strength characterized by impregnating and/or coating paperboard with a mixture in a ratio of 290 to 40:60 and polymerizing it by irradiating it with high-energy electron beams. Relating to a manufacturing method.

板紙は包装用素材として有用であるが、耐水性に乏しい
ためその使用範囲が制限されている。
Although paperboard is useful as a packaging material, its use is limited by its poor water resistance.

コールドチェーンの発展、流通過程の改善に伴い、i5
薩菜、果物、冷凍魚、鮮魚などの包装材料は耐水性がま
すます要求され、とくに輸送中の荷くずれ、積み上げ時
の圧縮破壊等がおこらないようにするために、その剛性
、圧縮強度とくに水に濡れた場合の剛性、圧縮強度の向
上が強く望まれている。従来、板紙類に耐水性を賦与す
る技術としては、溶融パラフイン、ビニルポリマー等合
成樹脂溶液の含浸あるいは塗布あるいは不飽和化合物を
含浸させ紙内で重合させる方法等がある。しかし溶融パ
ラフインの含浸は紙面を著しく変色させ、外観を損じる
ばかりでなく、滑り易い欠点がある。また充分な湿圧縮
強度を得るにはかなり大量のワツクスを附着させる必要
があり、附着量をコントロールすることも困難である。
ビニルポリマー等合成樹脂溶液の含浸、塗布によつて所
望の強度を得るにはかなりの量のポリマーを附着させる
必要があり、そのため溶液粘度、溶剤などの選択に問題
がある。
With the development of cold chain and improvement of distribution process, i5
Packaging materials for vegetables, fruits, frozen fish, fresh fish, etc., are increasingly required to be water resistant, and their rigidity and compressive strength are particularly important in order to prevent them from collapsing during transportation or compressive destruction during stacking. It is strongly desired to improve the rigidity and compressive strength when wet with water. Conventional techniques for imparting water resistance to paperboard include impregnation or coating with a synthetic resin solution such as molten paraffin or vinyl polymer, or impregnation with an unsaturated compound and polymerization within the paper. However, impregnation with molten paraffin not only significantly discolors the paper surface and impairs its appearance, but also has the drawback of being slippery. Furthermore, in order to obtain sufficient wet compressive strength, it is necessary to deposit a considerable amount of wax, and it is also difficult to control the amount of wax deposited.
In order to obtain the desired strength by impregnating and coating a solution of a synthetic resin such as a vinyl polymer, it is necessary to deposit a considerable amount of the polymer, which poses problems in the selection of solution viscosity, solvent, etc.

さらに、メタクリル酸メチル、スチレン、アクリロニト
リルなどの重合性不飽和化合物あるいはこれらの重合件
不飽和化合物とその重合物を混合して含浸および、また
は塗布し、適当な開始手段例えば第1鉄塩一過酸化水素
を用いるレドツクス系、紫外線照射、高エネルギー電離
件放射線の照射などの手段によつて該不飽和化合物を紙
内部で重合させる方法が知られている。
Furthermore, a polymerizable unsaturated compound such as methyl methacrylate, styrene, acrylonitrile, or a mixture of these polymerizable unsaturated compounds and the polymer is impregnated and/or coated, and a suitable initiation means such as a ferrous salt is applied. Methods are known in which the unsaturated compound is polymerized inside the paper by means such as redox systems using hydrogen oxide, ultraviolet irradiation, and irradiation with high-energy ionizing radiation.

しカルながらこの方法で加工板紙を製造する場合、加工
板紙の、湿抗張強度、湿圧縮強度を充分改善するのに必
要な量の樹脂附着させると並に加工板紙の乾折曲強度が
低下し、さらに製函加ニコルゲート加工のさいに破損を
招き易いという二律背反があつた。本発明者らは上記ビ
ニルモノマーあるいはビニルモノマーとポリマー混合物
を用い、加速器よりの電子線の照射による重合処理法に
よる板紙の耐水加工法について研究を重ねた結果、或る
一定の分子量範囲のプレポリマ一とメチルアタリレート
、エチルアクリレート、ブチルアクリレートから選ばれ
た少くとも1種のモノマーとの混合物を用いることによ
り、従来法の欠点を克服し、充分な乾折曲強度を保ちな
がら、しかもすぐれた湿抗張強度、湿圧縮強度を有する
板紙を得ることができることを見出し、本発明に到達し
た。本発明方法は加速器からの電子線を用いるので、室
温において高速度で板紙の加工処理が可能であるのみな
らず、本発明方法で得られた加工板紙類は従来法のメタ
クリル酸メチル、スチレン、アクリロニトリルなどの重
合性不飽和化合物の重合処理により得られた加工板紙に
比べてかなりの吸湿性、乾折曲強度を保有しながらしか
もすぐれた湿抗張強度、湿圧縮強度を有するものである
However, when producing processed paperboard using this method, the amount of resin required to sufficiently improve the wet tensile strength and wet compressive strength of the processed paperboard must be applied, and at the same time, the dry bending strength of the processed paperboard will decrease. However, there was also the tradeoff that it was easy to cause damage during Nicol gate processing during box manufacturing. The present inventors have conducted repeated research on a method for waterproofing paperboard using a polymerization treatment method by irradiating electron beams from an accelerator using the above-mentioned vinyl monomer or vinyl monomer/polymer mixture. By using a mixture of and at least one monomer selected from methyl acrylate, ethyl acrylate, and butyl acrylate, the drawbacks of the conventional method can be overcome, and while maintaining sufficient dry bending strength, it also has excellent wet resistance. The inventors have discovered that it is possible to obtain paperboard having high tensile strength and wet compressive strength, and have arrived at the present invention. Since the method of the present invention uses an electron beam from an accelerator, it is not only possible to process paperboard at high speed at room temperature, but also the processed paperboard obtained by the method of the present invention can be processed using conventional methods such as methyl methacrylate, styrene, Compared to processed paperboard obtained by polymerizing a polymerizable unsaturated compound such as acrylonitrile, it has considerably higher hygroscopicity and dry bending strength, as well as superior wet tensile strength and wet compressive strength.

従来法のメタクリル酸メチル、スチレン、アクリロニト
リル等の重合性不飽和化合物を板紙に含浸、塗布し、重
合を行う方法の場合、これらのモノマーから生成するポ
リマーのガラス転移温度は室温より高く、しかもこれら
ポリマーは疎水性であるため加工板紙類の湿潤時におけ
る抗張強度、圧縮強度は通常これらのポリマーに起因す
る。とくに圧縮強度に関してはポリマーの室温における
剛硬性が高ければ高い程少ない附着量で所定の湿圧縮強
度が得られる。しかしながらこれらポリマーは一般に脆
く、したがつてこれらポリマーを附着させた板紙類の折
曲強度が低下するのである。折曲強度を充分な値に保つ
ためにはそのポリマーのガラス転移温度が室温より低い
酢酸ビニル、メチルアクリレート、エチルアクリレート
などのモノマーを共重合させるとか、これらのポリマー
あるいはポリブタジエンなどのポリマーを混合して重合
処理することが考えられる。しかしながらこれらの手段
によつて折曲強度の要求が満足されると湿抗張強度、湿
圧縮強度は不充分となるという二律を反におちいり、従
来技術では折曲強度と湿抗強度の両方の要求を満足させ
ることは著しく困難であつた。本発明者らは電子線照射
により迅速に重合硬化し、かつ板紙類に対し折曲強度を
損うことなく、湿抗張強度、湿圧縮強度を増強できるポ
リマー配合物について種々研究検討を重ねたところ、不
飽和塩基酸とビスフエノールAタイプジグリシジルエー
テル又はエポキシ化合物の反応生成物にして同一分子中
に、エステル結合を直接介して分子末端に少くとも1個
のα,β一エチレン性不飽和2重結合を有しかつ該エス
テル結合に対してβ位置に少くとも1個の水酸基を有し
分子量が300〜3,000の範囲の不飽和のビニルエ
ステルプレポリマ一とメチルアクリレート、エチルアク
リレートおよびブチルアクリレートから成る群より選ば
れた少くとも1種のモノマーを重量比10:90〜40
:60の割合で混合した混合物を板紙類に含浸およびま
たは塗布して電子線を照射し重合させることによつて所
期の目的を達することを見出し、本発明に到達したので
ある。
In the conventional method of impregnating and coating paperboard with polymerizable unsaturated compounds such as methyl methacrylate, styrene, and acrylonitrile and polymerizing them, the glass transition temperature of the polymers produced from these monomers is higher than room temperature; Since polymers are hydrophobic, the wet tensile and compressive strengths of processed paperboards are usually due to these polymers. In particular, with regard to compressive strength, the higher the rigidity of the polymer at room temperature, the smaller the amount of adhesion to obtain a predetermined wet compressive strength. However, these polymers are generally brittle and therefore reduce the bending strength of paperboards to which they are applied. In order to maintain a sufficient bending strength, it is necessary to copolymerize monomers such as vinyl acetate, methyl acrylate, and ethyl acrylate, whose glass transition temperature is lower than room temperature, or to mix these polymers or polymers such as polybutadiene. It is conceivable to carry out a polymerization treatment. However, if the requirements for bending strength are satisfied by these means, the wet tensile strength and wet compressive strength become insufficient. It was extremely difficult to satisfy these demands. The present inventors have conducted various research studies on polymer compounds that can be rapidly polymerized and cured by electron beam irradiation, and that can increase the wet tensile strength and wet compressive strength of paperboard without impairing the bending strength. However, in the reaction product of an unsaturated basic acid and a bisphenol A type diglycidyl ether or epoxy compound, at least one α,β monoethylenically unsaturated substance is present at the end of the molecule directly via an ester bond. An unsaturated vinyl ester prepolymer having a double bond and at least one hydroxyl group at the β position relative to the ester bond and having a molecular weight in the range of 300 to 3,000, methyl acrylate, ethyl acrylate, and At least one monomer selected from the group consisting of butyl acrylate in a weight ratio of 10:90 to 40.
It was discovered that the desired object could be achieved by impregnating and/or coating a paperboard with a mixture in a ratio of 60:60 and irradiating it with an electron beam to polymerize it, thereby achieving the present invention.

従来法において例えばメタクリル酸メチルのメタノール
溶液を板紙試料に含浸させ、バンデグラーフ静電加速器
を使用して1.5MeV1501tAで線量率0.25
Mrad/Secの電子線を5Mrad照射してメタク
リル酸メチルを紙中で重合させた場合、満足すべき湿潤
時のリングラツシユ強度(152.4m7!L×12.
7mmのリング状の紙片についての測定、湿潤時とは2
0℃の水中に1時間浸漬後の試験結果)10kgに達す
るに要するポリマー附着量は339/TIである。
In the conventional method, for example, a paperboard sample is impregnated with a methanol solution of methyl methacrylate, and a dose rate of 0.25 is applied using a Vandegraaf electrostatic accelerator at 1.5 MeV 1501 tA.
When methyl methacrylate is polymerized in paper by irradiation with 5 Mrad/Sec electron beam, a satisfactory wet ring luster strength (152.4 m7!L×12.
Measurement on a 7mm ring-shaped piece of paper, when wet 2
(Test result after 1 hour immersion in 0°C water) The amount of polymer adhesion required to reach 10 kg is 339/TI.

(未処理紙の湿潤時のリングクラツシユ強度は2kgに
すぎない。)乾燥時に切断がおこるのに要する折曲回数
(以下゜5乾折曲強度1fと略記する場合がある。)は
未処理紙の850回に対し上記ポリマー附着量の処理紙
のそれは30回にすぎない。メタクリル酸メチルの代り
にスチレンを用いると湿潤時のリングクラツシユ強度1
0kgに達するに要するポリスチレン附着量は189/
イであり、このようなポリマー附着量での乾折曲強度は
100回であつた。アクリロニトリルもスチレンとほマ
同様な結果を得ている。このような加工によつて要求さ
れる板紙の性能は実用的には湿潤時におけるリングクラ
ツシユ強度10kg、乾折曲強度200回以上である。
従来法においてはこのような要求を満足させることは困
難であつた。ポリスチレンは湿潤時の圧縮強度を向上す
るためのポリマーとしてはかなり有効であるが、スチレ
ンは放射線重合速度が非常におそく、上記線量率(0.
25Mrad/Sec)の電子線を10Mrad照射し
た後においても重合率は65%にすぎず、スチレンを完
全に重合させることは困難であつた。すなわちスチレン
は電子線で重合するモノマーとしては好適ではない。ア
クリロニトリルは電子線による重合速度はかなり大きく
5Mradの照射で重合率90%以上に達するが、アク
リロニトリルポリマーを附着した紙の表面は凹凸が生じ
、均一かつ滑らかな表面を得るには不都合であつた。こ
れに対し本発明方法において用いられるプレポリマ一、
例えば、ビスフエノールAタイプジグリシジルエーテル
(シエル社、エピコート1004)とアクリル酸を反応
させて得られる分子量、2000のプレポリマ一とエチ
ルアクリレートの混合比25:75(重量比)の混合液
を板紙に含浸させ、電子線を5Mrad照射して重合硬
化させると湿潤ノ時のリングクラツシユ強度10k9に
達するに要するポリマー附着量は99/イであり、また
乾折曲強度は360回であつた。
(The ring crush strength of untreated paper when wet is only 2 kg.) The number of folds required to cause a break when dry (hereinafter sometimes abbreviated as ゜5 dry fold strength 1f) is the same as for untreated paper. Compared to 850 times for paper, treated paper with the above polymer adhesion amount was only 30 times. When styrene is used instead of methyl methacrylate, the ring crush strength when wet is 1.
The amount of polystyrene attached to reach 0 kg is 189/
The dry bending strength was 100 times with this amount of polymer adhesion. Acrylonitrile also obtained almost the same results as styrene. Practically speaking, the performance of paperboard required for such processing is a wet ring crushing strength of 10 kg and a dry bending strength of 200 times or more.
In conventional methods, it has been difficult to satisfy such requirements. Although polystyrene is quite effective as a polymer for improving wet compressive strength, styrene has a very slow radiation polymerization rate and the above dose rate (0.
Even after irradiation with 10 Mrad of electron beam (25 Mrad/Sec), the polymerization rate was only 65%, and it was difficult to completely polymerize styrene. That is, styrene is not suitable as a monomer to be polymerized by electron beams. Acrylonitrile has a fairly high polymerization rate with electron beams, reaching a polymerization rate of 90% or more with irradiation of 5 Mrad, but the surface of paper to which acrylonitrile polymer is attached is uneven, which is inconvenient for obtaining a uniform and smooth surface. In contrast, the prepolymer used in the method of the present invention,
For example, a mixture of a prepolymer with a molecular weight of 2,000 obtained by reacting bisphenol A type diglycidyl ether (Ciel Corp., Epicote 1004) with acrylic acid and ethyl acrylate in a mixing ratio of 25:75 (weight ratio) is applied to paperboard. When the material was impregnated and polymerized and cured by 5 Mrad electron beam irradiation, the amount of polymer adhesion required to reach a wet ring crush strength of 10k9 was 99/I, and the dry bending strength was 360 times.

また上記プレポリマーーエチルアクリレート系混合物は
3Mradにより90%以上の重合率に達し、電子線照
射によつて重合処理するのに好都合である。これは本発
明方法の大きな利点の1つである。さらにプレポリマー
ーエチルアタリレート系混合物を用いるポリマー処理で
得られた板紙は従来法によるメタクリル酸メチル、スチ
レン、アクリロニトリルなどのモノマーの重合処理によ
つて得られる加工紙に比べ大きい吸水性をもつていると
いう特徴がある。
Further, the above prepolymer-ethyl acrylate mixture reaches a polymerization rate of 90% or more at 3 Mrad, and is convenient for polymerization treatment by electron beam irradiation. This is one of the major advantages of the method of the invention. Furthermore, paperboard obtained by polymer processing using a prepolymer-ethyl arylate mixture has greater water absorption than paperboard obtained by conventional polymerization of monomers such as methyl methacrylate, styrene, and acrylonitrile. There is a characteristic that there is

未処理板紙試料を20℃の水中に10分間浸漬し、これ
をひきあげて重量増加を測定して得られた吸水率は64
%であつた。スチレンあるいはメタクリル酸メチルのポ
リマーをそれぞれ109/イ附着した板紙の吸水量は3
0%、32%であつた。これに対し上記プレポリマーエ
チルアクリレート(25:75)の混合物を重合附着さ
せた板紙の吸水量は46%であり、吸水性がかなりある
のにもかかわらずすぐれた湿潤時におけるリングクラツ
シユ強度を示すことは明らかである。スチレンポリマー
の場合リングクラツシユ強度10k9を得るに要する附
着量は199/イであるからこのさいの吸水性は11%
にすぎない。すなわち満足すべき湿潤時の圧縮強度を得
るのに必要なポリマー附着量で比較すると、本発明方法
で得られた板紙はかなり大きい吸水性をもつているとい
う特徴を示す。従来の方法では湿潤時における圧縮強度
を増大するには吸水性を少なくすることが必要であると
の考え方が基本となつていたが、本発明方法では従来の
概念とは全く異なり、かなり吸水性を保有しながらかつ
すぐれた湿潤抗張強度、湿潤圧縮強度をもつた加工板紙
が製造できるのである。本発明方法において満足すべき
湿潤圧縮強度を得るに要するポリマー附着量はかなり小
さい。ポリマー附着量を調節するためにはアセトン、メ
タノールあるいはその他の有機溶剤などで適当濃度に稀
釈すればよい。プレポリマーーエチルアクリレートの混
合物のみではかなり粘性が大きいので上記溶剤を用いて
稀釈するのは板紙に均一に含浸、塗布するためにも有効
な手段である。
The water absorption rate obtained by soaking an untreated paperboard sample in water at 20°C for 10 minutes and measuring the weight increase after pulling it up was 64.
It was %. The water absorption of paperboard coated with styrene or methyl methacrylate polymers at 109/l each is 3
0% and 32%. On the other hand, the water absorption of paperboard to which the mixture of prepolymer ethyl acrylate (25:75) was polymerized was 46%, and despite its considerable water absorption, it had excellent ring crush strength when wet. The indication is clear. In the case of styrene polymer, the adhesion amount required to obtain a ring crush strength of 10k9 is 199/i, so the water absorption in this case is 11%.
It's nothing more than that. That is, when comparing the amount of polymer adhesion required to obtain a satisfactory compressive strength when wet, the paperboard obtained by the method of the present invention exhibits a characteristic of having a considerably high water absorbency. In conventional methods, the basic idea was that it was necessary to reduce water absorption in order to increase the compressive strength when wet, but the method of the present invention is completely different from the conventional concept. It is possible to produce processed paperboard that has excellent wet tensile strength and wet compressive strength while retaining the same properties. The amount of polymer coverage required to obtain satisfactory wet compressive strength in the process of the present invention is fairly small. In order to adjust the amount of polymer attached, it may be diluted with acetone, methanol or other organic solvent to an appropriate concentration. Since the prepolymer-ethyl acrylate mixture alone has a fairly high viscosity, diluting it with the above solvent is an effective means for uniformly impregnating and coating the paperboard.

本発明方法においてプレポリマ一あるいはメチルアクリ
レート、エチルアクリレート、ブチルアクリレートそれ
ぞれ単独に用いたのでは加工板紙に満足すべき性能は期
待できない。
In the method of the present invention, if the prepolymer or methyl acrylate, ethyl acrylate, or butyl acrylate is used alone, satisfactory performance of the processed paperboard cannot be expected.

プレポリマ一とメチルアクリレート、エチルアクリレー
ト、ブチルアクリレートの群から選ばれた少なくとも1
種のモノマーの混合比は重量比で10:90〜40:6
0であり、好ましくは20:80〜30:70である。
この組成比によりプレポリマ一成分が多くなると満足す
べき湿潤圧縮強度を得るために要するポリマー附着量に
おいて加工板紙の乾折曲強度が充分でなく、またアクリ
レートモノマー成分が多くなると満足すべき湿潤圧縮強
度をもつた加工板紙を得ることが困難となる。本発明方
法に用いられるプレポリマ一としてはその分子量が30
0〜3,000好ましくは500〜2,000の範囲の
ものが適当である。
a prepolymer and at least one selected from the group of methyl acrylate, ethyl acrylate, and butyl acrylate
The mixing ratio of seed monomers is 10:90 to 40:6 by weight.
0, preferably 20:80 to 30:70.
Due to this composition ratio, if the amount of one prepolymer component increases, the dry bending strength of the processed paperboard will be insufficient at the amount of polymer adhesion required to obtain a satisfactory wet compressive strength, and if the acrylate monomer component increases, the wet compressive strength will not be satisfactory. It becomes difficult to obtain processed paperboard with The prepolymer used in the method of the present invention has a molecular weight of 30
A range of 0 to 3,000, preferably 500 to 2,000 is suitable.

分子量が300より低いものは満足すべき湿潤圧縮強度
を得るのに要するポリマー附着量が増大しまた電子線照
射による重合速度が低下する。また分子量が高すぎると
含浸塗布のさいに粘度が高くて取扱い難いのみならず、
満足すべき湿潤圧縮強度を得るのに要するポリマー附着
量が増大する。本発明で用いるプレポリマ一は不飽和塩
基酸とビスフエノールAタイプジグリシジルエーテル又
はエポキシ化合物の反応生成物にして同一分子中に、エ
ステル結合を直接介して分子末端に少くとも1個のα,
β一エチレン性不飽和2重結合を有しかつ該エステル結
合に対してβ位置に少くとも1個の水酸基を有し分子量
が300〜3,000の範囲の不飽和のビニルエステル
プレポリマ一であり、一般には、CH2=CH−0CC
H2CHsM成る構造を少くとも1個有する化合物であ
つて例えば下記に示すような構造式の化合物である。
If the molecular weight is lower than 300, the amount of polymer attached to obtain a satisfactory wet compressive strength increases and the polymerization rate by electron beam irradiation decreases. In addition, if the molecular weight is too high, the viscosity will not only be high and difficult to handle during impregnation coating, but also
The amount of polymer coverage required to obtain satisfactory wet compressive strength increases. The prepolymer used in the present invention is a reaction product of an unsaturated basic acid and a bisphenol A type diglycidyl ether or an epoxy compound, and in the same molecule, at least one α, α,
An unsaturated vinyl ester prepolymer having a β-ethylenically unsaturated double bond, at least one hydroxyl group at the β position relative to the ester bond, and having a molecular weight in the range of 300 to 3,000. Yes, generally CH2=CH-0CC
It is a compound having at least one structure consisting of H2CHsM, for example, a compound having the structural formula shown below.

(n=0,1,2,−ー一) これらプレポリマ一は1個以上のエポキシ基を1分子中
に有する化合物であつて、例えばエピハロヒドリンとポ
リヒドロキシフエノール又はポリオールの反応により合
成されるグリシジルエーテルまたはグリシジルエステル
、または、分子中に2重結合を有しその酸化によつて得
られるエポキシ化合物などから選ばれた少くとも1種の
エポキシ化合物とアクリル酸、メタクリル酸で代表され
る不飽和一塩基酸の反応によつて得られ、または本発明
のプレポリマ一はポリヒドロキシフエノールかまたはポ
リカルボン酸とグリシジルアクリレートかグリシジルメ
タクリレートとの反応によつて得られる。
(n=0,1,2,--1) These prepolymers are compounds having one or more epoxy groups in one molecule, such as glycidyl ether synthesized by the reaction of epihalohydrin and polyhydroxyphenol or polyol. or glycidyl ester, or at least one epoxy compound selected from epoxy compounds having a double bond in the molecule and obtained by oxidation thereof, and an unsaturated monobase represented by acrylic acid or methacrylic acid. The prepolymers of the invention are obtained by reaction of polyhydroxyphenols or polycarboxylic acids with glycidyl acrylate or glycidyl methacrylate.

さらに本発明に用いられるプレポリマ一としては特公昭
45−1465に開示された変性エポキシアクリレート
も含む。本発明方法において使用しうる電子線はバンデ
グラーフ静電加速器、絶縁芯型変圧器型加速器などの加
速器よりの100KeV〜5KeV好ましくは500K
eV〜3KeVの電子線が用いられる。
Furthermore, the prepolymers used in the present invention also include modified epoxy acrylates disclosed in Japanese Patent Publication No. 1465-1983. The electron beam that can be used in the method of the present invention is 100 KeV to 5 KeV, preferably 500 K, from an accelerator such as a Vandegraaf electrostatic accelerator or an insulated core transformer type accelerator.
An electron beam of eV to 3 KeV is used.

照射量はとくに制限はないが、0.3〜10Mradが
最も普通に用いられる。電子線を用いる重合処理は周知
のごとく短時間・照射で反応を行うことができることで
あり、本発明方法においても乾湿圧縮強度のすぐれた板
紙類を高速度でしかも生産性よく製造できる。以下実施
例を挙げて本発明方法を詳細に説明する。実施例 1 段ボール紙(2209/M2、厚さ0.30m0(以下
5?板紙試料1゜と略記する)を長さ120m7!L幅
70mmのたんざく状に切断し、20℃65%相対湿度
(RH)の空気中で一定重量に達するまで調整しておく
There is no particular limit to the irradiation dose, but 0.3 to 10 Mrad is most commonly used. As is well known, polymerization treatment using electron beams allows the reaction to be carried out in a short time and with irradiation, and the method of the present invention also allows paperboard with excellent wet and dry compressive strength to be produced at high speed and with good productivity. The method of the present invention will be explained in detail below with reference to Examples. Example 1 Corrugated paperboard (2209/M2, thickness 0.30m0 (hereinafter abbreviated as 5?paperboard sample 1°) was cut into strips of length 120m7!L width 70mm, and heated at 20°C and 65% relative humidity ( Adjust the weight in the air at RH until it reaches a certain weight.

重量は1.8439であつた。ビスフエノールAタイプ
ジグリシジルエーテル(シエル社商品名エピコート10
01)とアクリル酸を重合禁止剤、エステル化触媒の存
在下で反応させ、反応率95%のプレポリマ一(1)(
平均分子量1100)を得た。このプレポリマ一(1)
とエチルアクリートおよびアセトンを混合し、重量比5
:15:80の混合液を調製した。板紙試料を上記混合
液に約10秒間浸漬させ、あらかじめ重量を測定してお
いたポリエチレンで裏ばりしたアルミニウム袋に入れた
。この袋に窒素ガスを約20秒間吹き込み、空気を追出
してから袋を溶封した。袋ごと重量を測定し、アルミニ
ウム袋の重量を差し引いて求めた板紙に含浸された混合
液の重量は0.3279であつた。このようにして調製
されたアルミニウム袋に入れられた板紙試料を0.72
ル蝕の速度で移動するベルトコンベア一の上にのせて、
バンデグラーフ静電加速器(1.5MeV150μAl
2線量率0.25Mrad/Sec)よりの電子線で照
射し、5Mradの照射量を与えた。照射終了試料をア
ルミニウム袋より取り出し、70℃の真空乾燥器に日2
4時間入れ、未反応のモノマー及び溶剤を除去した。つ
いで20℃、65%RHの空気中で調整し、重量を測定
したところ、1.9079であつた。含浸されたエチル
アクリレートの重合率は99%であり、板紙にポリマー
が7.29/イ附着していることがわかつた。このよう
な処理後の板紙の表面は滑らかであった。このようにし
て処理した板紙試料の乾燥引張強さ(注1)、乾燥リン
グクラツシユ(注2)を測定したところそれぞれ34.
7kg、35.0k9であり、原板紙のそれぞれ31.
81<9、32,1k9に比べて幾分増大していた。次
に処理板紙の湿潤引張強さ(注3)、湿潤リングクラツ
シユ(注4)を測定したところそれぞれ10.3k9、
8.0k9であり、原板紙の3.2k9、2.5k9に
比べて著しく改善されていることがわかつた。処理板紙
の乾燥時の折曲強度(注5)は400回であり、これは
原板紙の850回にくらべて減少しているが、実用上差
支えなかつた。全く同様な操作で混合液の含浸量ならび
に照射量を変え種々のポリマー附着量の処理板紙を作成
し、湿潤引張強度、湿潤リングクラツシユ、乾折曲強度
および吸水性(注6)を試験した。試験の結果は表−1
の如くである。比較のためエチルアクリレートを含まな
いプレポリマ一(1)とアセトンの比が10:90(重
量比)の混合液およびプレポリマ一(1)を含まないエ
チルアクリレートとメタノールの比が60:40(重量
比)の混合液を用いて全く同様の操作で板紙を処理し、
その性能を試験した結果を参考として表−2に掲げる。
The weight was 1.8439. Bisphenol A type diglycidyl ether (Ciel trade name Epicote 10)
01) and acrylic acid in the presence of a polymerization inhibitor and an esterification catalyst to produce a prepolymer (1) (with a reaction rate of 95%).
An average molecular weight of 1100) was obtained. This prepolymer (1)
and ethyl acrylate and acetone at a weight ratio of 5.
:15:80 mixture was prepared. The paperboard samples were immersed in the mixture for approximately 10 seconds and placed into pre-weighed polyethylene lined aluminum bags. Nitrogen gas was blown into the bag for about 20 seconds to expel the air, and then the bag was melt-sealed. The weight of each bag was measured and the weight of the aluminum bag was subtracted to find that the weight of the liquid mixture impregnated into the paperboard was 0.3279. A paperboard sample placed in an aluminum bag prepared in this way was
Place it on a conveyor belt that moves at the speed of an eclipse.
Vandegraaf electrostatic accelerator (1.5MeV150μAl
It was irradiated with an electron beam at a dose rate of 0.25 Mrad/Sec) to give an irradiation dose of 5 Mrad. After irradiation, the sample was removed from the aluminum bag and placed in a vacuum dryer at 70°C for 2 days.
The mixture was kept for 4 hours, and unreacted monomers and solvent were removed. Then, it was adjusted in air at 20° C. and 65% RH, and its weight was measured and found to be 1.9079. It was found that the polymerization rate of the impregnated ethyl acrylate was 99%, and that the polymer was attached to the paperboard at a rate of 7.29/I. The surface of the paperboard after such treatment was smooth. The dry tensile strength (Note 1) and dry ring crush (Note 2) of the paperboard sample treated in this manner were measured and were 34.
7kg, 35.0k9, and 31.9kg each of the original paperboard.
It was somewhat increased compared to 81<9, 32, and 1k9. Next, the wet tensile strength (Note 3) and wet ring crush (Note 4) of the treated paperboard were measured and found to be 10.3k9, respectively.
It was found that it was 8.0k9, which was significantly improved compared to the original paperboard's 3.2k9 and 2.5k9. The dry bending strength (Note 5) of the treated paperboard was 400 times, which was lower than the 850 times of the original paperboard, but it did not cause any practical problems. Treated paperboards with various amounts of polymer adhesion were prepared by changing the amount of impregnation of the mixed solution and the amount of irradiation using exactly the same procedure, and the wet tensile strength, wet ring crush, dry bending strength, and water absorption (Note 6) were tested. . The test results are shown in Table 1.
It's like this. For comparison, a mixed solution containing Prepolymer 1 (1) that does not contain ethyl acrylate and acetone in a ratio of 10:90 (weight ratio), and a mixture solution that does not contain Prepolymer 1 (1) and has a ratio of 60:40 (weight ratio) of ethyl acrylate and methanol ) in exactly the same manner using a mixture of
The results of testing its performance are listed in Table 2 for reference.

これらの結果をみるとプレポリマ一・(1)(平均分子
量1100)とエチルアクリレートの混合液を板紙に加
工したものは必要ポリマー量および乾折曲強度の点にお
いてそれぞれ単独に用いたものよりも明らかに改良され
ていることがわかる。
Looking at these results, it is clear that paperboard made from a mixture of prepolymer 1.(1) (average molecular weight 1100) and ethyl acrylate is superior to paperboard made using either material alone in terms of the required amount of polymer and dry bending strength. It can be seen that this has been improved.

注1 乾引張強度インストロン TM−M型を用い、次
の条件で測定した。
Note 1 Dry tensile strength was measured using an Instron TM-M model under the following conditions.

試料は20℃、65%RHの大気中にて調整したもの。The sample was adjusted in the atmosphere at 20°C and 65% RH.

注2乾リングクラツシユ インストロン TM−M型を用い、次の条件で測定した
Note 2 Measurement was carried out using a dry ring crush Instron TM-M model under the following conditions.

試料は20℃、65%RHの大気中にて調整したもの。The sample was adjusted in the atmosphere at 20°C and 65% RH.

注3湿潤引張強度 インストロン TM−M型を用いた。Note 3 Wet tensile strength Instron TM-M type was used.

20℃の水中に試料を10分間浸漬して後直ちに測定し
た。
The sample was immersed in water at 20° C. for 10 minutes and immediately measured.

その他の条件は乾引張強度のそれと荷重1k920℃、
65%RHの大気中にて調製したもの。注6吸水性 試料を20℃の水中に10分間浸漬してからフイルター
ペーパ一で過剰の水を除き、水中浸漬前後の重量差より
吸水性をみる。
Other conditions are that of dry tensile strength, load 1k920℃,
Prepared in air at 65% RH. Note 6 Water absorbency After immersing the sample in water at 20°C for 10 minutes, remove excess water with filter paper and check the water absorption by measuring the weight difference before and after immersion in water.

実施例 2 プレポリマ一(1)(平均分子量1,100)、エチル
アクリレートおよびアセトンの重量比8:12:80の
混合液を調製した。
Example 2 A mixed solution of prepolymer 1 (1) (average molecular weight 1,100), ethyl acrylate and acetone in a weight ratio of 8:12:80 was prepared.

板紙の処理方法および板紙の試験方法は実施例1と同様
に行なつた。処理板紙の試験の結果は表−3の如くであ
る。この結果よりプレポリマ一が多くなり、エチルアク
リレートの量が少なくなつた場合には実施例1の結果よ
りも湿潤時の必要ポリマー量が多くなり、乾折曲強度も
低下することがわかる。実施例 3 プレポリマ一(1)(平均分子量1100)、エチルア
クリレートおよびアセトンを混合し、5:35:60(
重量比)の混合液を調製した。
The paperboard treatment method and paperboard testing method were the same as in Example 1. The results of the tests on the treated paperboard are shown in Table 3. The results show that when the amount of prepolymer is increased and the amount of ethyl acrylate is decreased, the amount of polymer required in wet conditions becomes larger than the results of Example 1, and the dry bending strength also decreases. Example 3 Prepolymer 1 (1) (average molecular weight 1100), ethyl acrylate and acetone were mixed at a ratio of 5:35:60 (
A mixed solution (weight ratio) was prepared.

板紙の処理方法および板紙の試験方法は実施例1と同様
に行つた。処理板紙の試験の結果は表−4の如くである
。この結果よりエチルアクリレートの量が多くなつた場
合には実施例1よりも必要ポリマー量が多くなり、また
実施例2の乾折曲強度よりもや\改善されていることが
わかる。
The paperboard treatment method and paperboard testing method were the same as in Example 1. The test results for the treated paperboard are shown in Table 4. The results show that when the amount of ethyl acrylate is increased, the required amount of polymer is larger than in Example 1, and the dry bending strength is slightly improved compared to Example 2.

実施例 4 実施例1,2,3ではモノマーとしてエチルアクリレー
トを使用したが、実施例4ではモノマーメチルアタリレ
ート単独では湿潤引張強度、乾折曲強度は極度に低いこ
とがわかる。
Example 4 In Examples 1, 2, and 3, ethyl acrylate was used as a monomer, but in Example 4, it can be seen that the wet tensile strength and dry bending strength are extremely low when the monomer methyl arylate is used alone.

実施例 5 プレポリマ一(1)(平均分子量1,100)、ブチと
してメチルアクリレートを用いた。
Example 5 Prepolymer 1 (1) (average molecular weight 1,100), methyl acrylate was used as the filler.

プレポリマー(1)(平均分子量1,100)、メチル
アクリレートおよびアセトンを混合して重量比5:15
:80の混合液を調製した。板紙の処理方法および板紙
の試験方法は実施例1と同様に行つた。結果は表−5の
如くである。比較のためプレポリマ一(1)を含まない
メチルアクリレートとメタノールの比が40:60(重
量比の混合液を調製し、実施例1と全く同様の操作で板
紙を処理した結果を参考として表−6に示す。
Prepolymer (1) (average molecular weight 1,100), methyl acrylate and acetone were mixed at a weight ratio of 5:15.
:80 mixture was prepared. The paperboard treatment method and paperboard testing method were the same as in Example 1. The results are shown in Table-5. For comparison, a mixed solution of methyl acrylate and methanol containing no prepolymer (1) was prepared at a ratio of 40:60 (by weight), and paperboard was treated in exactly the same manner as in Example 1. 6.

上記混合液の結果は実施例1とほゞ同程度の値を示して
いるが、乾折曲強度が低下している。比較のためプレポ
リマ一を含まないブチルアクリレトートとメタノールの
比が40:60(重量比)の混合液を調製し、実施例1
と同様の操作で板紙を処理した結果を表−8に示す。ブ
チルアクリレート単独ではメチルアクリレートと同様、
湿潤引張強度、乾折曲強度は極度に低いことがわかる。
The results for the above mixed solution show values that are almost the same as in Example 1, but the dry bending strength is lower. For comparison, a mixture of butyl acrylate tote and methanol containing no prepolymer and methanol at a ratio of 40:60 (weight ratio) was prepared, and Example 1 was prepared.
Table 8 shows the results of processing paperboard in the same manner as above. Butyl acrylate alone, similar to methyl acrylate,
It can be seen that the wet tensile strength and dry bending strength are extremely low.

実施例 6 実施例1〜5に用いたプレポリマ一(1)は分子量が1
,100であつたが、実施例6ではビスフエノールAタ
イプジグリシジル−エーテル(チバガイギー社アラルダ
イト GY−250)とアクリル酸を重合禁止剤、エス
テル化触媒の存在下で反応させ反応率96%のプレポリ
マ一()(平均分子量530)を得た。
Example 6 The prepolymer (1) used in Examples 1 to 5 had a molecular weight of 1
, 100, but in Example 6, bisphenol A type diglycidyl ether (Ciba Geigy Araldite GY-250) and acrylic acid were reacted in the presence of a polymerization inhibitor and an esterification catalyst to produce a prepolymer with a reaction rate of 96%. 1 () (average molecular weight 530) was obtained.

このプレポリマ一(H)とエテルアクリレートおよびア
セトンを用いた重量比5:15:80の混合液を調製し
た。板紙の処理方法および試験方法は実施例1と同様に
行つた。結果を表−9に示す。この結果より10k9と
なる湿潤引張強度でのポリマー附着量が湿潤リングクラ
ツシユのそれよりもポリマーが多く必要とする点が実施
例1〜5とは異っている。実施例 7 ビスフエノールAタイプジグリシジルエーテル(シエル
社エピコート1004)とアクリル酸を:重合禁止剤、
エステル化触媒の存在下で反応し、反応率93%のプレ
ポリマー旧(平均分子量2,100)を得た。
A mixed solution of this prepolymer (H), ether acrylate and acetone was prepared in a weight ratio of 5:15:80. The paperboard treatment and testing methods were the same as in Example 1. The results are shown in Table-9. The difference from Examples 1 to 5 is that the amount of polymer deposited at a wet tensile strength of 10k9 from this result requires a larger amount of polymer than that of the wet ring crush. Example 7 Bisphenol A type diglycidyl ether (Ciel Epicote 1004) and acrylic acid: polymerization inhibitor,
The reaction was carried out in the presence of an esterification catalyst to obtain a prepolymer (average molecular weight 2,100) with a reaction rate of 93%.

プレポリマ一(mとエチルアクリレート、アセトンの混
合割合を5:15:80(重量比)とした混合液を調製
した。板紙の処理方法および試験方法は実施例1と同様
に行つた。結果は表10の如くである。実施例 8 脂肪族ジカルボン酸タイプジグリシジルエステル(昭和
電工(株)シヨウダイン550)とアクリル酸を重合禁
止剤、エステル化触媒の存在下で反応させ、反応率95
%のプレポリマ一(M(平均分子量475)を得た。
A mixed solution was prepared in which the mixing ratio of prepolymer (m), ethyl acrylate, and acetone was 5:15:80 (weight ratio). The paperboard processing method and test method were performed in the same manner as in Example 1. The results are shown in the table. 10. Example 8 Aliphatic dicarboxylic acid type diglycidyl ester (Syodyne 550, manufactured by Showa Denko K.K.) and acrylic acid were reacted in the presence of a polymerization inhibitor and an esterification catalyst, and the reaction rate was 95.
% prepolymer (M (average molecular weight 475)) was obtained.

プレポリマ一(資)、エチルアクリレートおよびメタノ
ールの混合割合が重量比5:15:80の混合液を調製
した。板紙の処理方法および試験方法は実施例1と同様
に行つた。結果は表−11の如くである。比較のためエ
チルアクリレートを用いずプレポリマ一(Mとメタノー
ルの混合比が10:90(重量比)となる混合液を調製
し、板紙を実施例1と同様に処理して試験を行つた。
A mixed solution containing prepolymer, ethyl acrylate, and methanol in a weight ratio of 5:15:80 was prepared. The paperboard treatment and testing methods were the same as in Example 1. The results are shown in Table-11. For comparison, a mixed solution was prepared in which the mixing ratio of prepolymer M and methanol was 10:90 (weight ratio) without using ethyl acrylate, and a paperboard was treated in the same manner as in Example 1 for testing.

表−12がその結果である。実施例 9 ポリエピクロロヒドリンジグリシジルエーテル(日東化
成エポニツト012)とアクリル酸を重合禁止剤、エス
テル化触媒の存在下で反応し、反応率95%のプレポリ
マ一(V(平均分子量400)を得た。
Table 12 shows the results. Example 9 Polyepichlorohydrin diglycidyl ether (Nitto Kasei Eponite 012) and acrylic acid were reacted in the presence of a polymerization inhibitor and an esterification catalyst to obtain prepolymer V (average molecular weight 400) with a reaction rate of 95%. Ta.

プレポリマ一(、エチルアクリレートおよびメタノール
が7:21:72(重量比)の混合液を調製した。板紙
の処理方法および試験方法は実施例1と同様に行つた。
結果は表−13の如くである。実施例 10 一般式 で表されるダイマー酸変性ビスフエノールAジグリシジ
ルエーテル(シエル社、エピコート872)とアクリル
酸を重合禁止剤、エステル化触媒の存在下で反応し、反
応率95%のプレポリマ一(W)(平均分子量990)
を得た。
A mixture of prepolymer, ethyl acrylate, and methanol in a ratio of 7:21:72 (weight ratio) was prepared. The paperboard treatment and testing methods were the same as in Example 1.
The results are shown in Table-13. Example 10 Dimer acid-modified bisphenol A diglycidyl ether (Ciel Corporation, Epicote 872) represented by the general formula was reacted with acrylic acid in the presence of a polymerization inhibitor and an esterification catalyst to form a prepolymer with a reaction rate of 95%. (W) (average molecular weight 990)
I got it.

プレポリマ一(、工チルアクリレートおよびメタノール
が7:21:72(重量比)の混合液を調製した。板紙
の処理方法および試験方法は実施例1と同様に行った。
結果は表−14の如くである。実施例 11 下表に示す様にプレポリマ一(1)とエチルアクリレー
トの混合比率を変化させたことを除いては実施例1と同
じ方法を繰り返して製造された板紙類1の物性の変化を
見た。
A mixed solution of prepolymer, ethyl acrylate, and methanol in a ratio of 7:21:72 (weight ratio) was prepared. The paperboard treatment and testing methods were the same as in Example 1.
The results are shown in Table-14. Example 11 Changes in the physical properties of paperboard 1 manufactured by repeating the same method as Example 1 except that the mixing ratio of prepolymer 1 (1) and ethyl acrylate were changed as shown in the table below were observed. Ta.

以上の如くプレポリマ一とモノマーを10:90〜40
:60の範囲で混合した系の場合、板紙を段ボール箱に
した際に要求される耐折強度として200回以上得られ
、しかもプレポリマ一10%以上で吸水性が約40%以
上あり、段ボールとしての貼合適性及び包装内容物の保
全に効を奏することがわかる。
As above, mix the prepolymer and monomer in a ratio of 10:90 to 40.
: In the case of a system mixed in the range of 60, the folding strength required when paperboard is made into a corrugated box is more than 200 times, and the water absorption is about 40% or more when the prepolymer is 10% or more, and it can be used as a corrugated board. It can be seen that this method is effective in terms of adhesion compatibility and preservation of package contents.

Claims (1)

【特許請求の範囲】[Claims] 1 板紙類にポリマー等を含浸させ板紙内部で重合させ
て湿圧強度のすぐれた加工板紙類を製造する方法におい
て;不飽和塩基酸とビスフェノールAタイプグリシジル
エーテル又はエポキシ化合物の反応生成物にしてエステ
ル結合を直接介して分子末端に少くとも1個のα,β−
エチレン性不飽和2重結合を有しかつ該エステル結合に
対してβ位置に少くとも1個の水酸基を有し分子量が3
00〜3,000の範囲の不飽和のビニルエステルプレ
ポリマーとメチルアクリレート、エチルアクリレートお
よびブチルアクリレートから成る群より選ばれた少くと
も1種のモノマーを重量比10:90〜10:60の割
合で混合した混合物を板紙類に含浸およびまたは塗布し
て電子線を照射し重合させることを特徴とする増強され
た湿圧縮強度をもつ加工板紙類の製造方法。
1 In a method for producing processed paperboard with excellent wet pressure strength by impregnating paperboard with a polymer or the like and polymerizing it inside the paperboard; At least one α, β-
having an ethylenically unsaturated double bond, at least one hydroxyl group at the β position relative to the ester bond, and a molecular weight of 3
00 to 3,000 and at least one monomer selected from the group consisting of methyl acrylate, ethyl acrylate and butyl acrylate in a weight ratio of 10:90 to 10:60. 1. A method for producing processed paperboard having enhanced wet compressive strength, which comprises impregnating and/or coating a mixed mixture onto paperboard and polymerizing it by irradiating it with an electron beam.
JP48105880A 1973-09-21 1973-09-21 Method for producing processed paper with enhanced wet compressive strength Expired JPS5916038B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP48105880A JPS5916038B2 (en) 1973-09-21 1973-09-21 Method for producing processed paper with enhanced wet compressive strength
US05/686,217 US4091167A (en) 1973-09-21 1976-05-12 Method for preparing paper board having improved wet compression strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48105880A JPS5916038B2 (en) 1973-09-21 1973-09-21 Method for producing processed paper with enhanced wet compressive strength

Publications (2)

Publication Number Publication Date
JPS5058310A JPS5058310A (en) 1975-05-21
JPS5916038B2 true JPS5916038B2 (en) 1984-04-12

Family

ID=14419234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48105880A Expired JPS5916038B2 (en) 1973-09-21 1973-09-21 Method for producing processed paper with enhanced wet compressive strength

Country Status (1)

Country Link
JP (1) JPS5916038B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442412A (en) * 1977-09-06 1979-04-04 Nippon Dekishi Kk Production of paper container with excellent liquid impermeability
US4603812A (en) * 1978-06-27 1986-08-05 The Dow Chemical Company Foam-generating pump sprayer
US4463905A (en) * 1978-06-27 1984-08-07 The Dow Chemical Company Foam-generating pump sprayer
JPS60155799A (en) * 1984-01-20 1985-08-15 日本合成化学工業株式会社 Paper making method
US4730775A (en) * 1986-01-10 1988-03-15 Afa Division Of Waynesboro Textiles, Inc. Two piece foamer nozzle assembly
US4925106A (en) * 1988-04-13 1990-05-15 Afa Products, Inc. Foam-off nozzle assembly with barrel screen insert for use in a trigger sprayer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868804A (en) * 1971-12-23 1973-09-19
JPS5083422A (en) * 1973-11-27 1975-07-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868804A (en) * 1971-12-23 1973-09-19
JPS5083422A (en) * 1973-11-27 1975-07-05

Also Published As

Publication number Publication date
JPS5058310A (en) 1975-05-21

Similar Documents

Publication Publication Date Title
EP0516074B1 (en) Aqueous dispersions of carbonylgroup-containing copolymers, further containing aminoxy-curing agents
JP3654534B2 (en) Alkyleneimine / organic barrier coating production method and its application
DE2206387B2 (en) Process for producing an unsaturated epoxy ester resin
JPH0774261B2 (en) Adhesion promoting composition for polyolefin substrate
US3600290A (en) Furan-stabilized beta-hydroxy ester coating compositions
US3968016A (en) Mixture of unsaturated polyester resins with an epoxy diacrylate and the actinic light treatment of same
JPS6227081A (en) Method of coating surface
US4129549A (en) Method of grafting a polymer to filler materials
US3847769A (en) Process for curing hydantoin-containing polyacrylates with ionising radiation
JPS5916038B2 (en) Method for producing processed paper with enhanced wet compressive strength
US4091167A (en) Method for preparing paper board having improved wet compression strength
JPS63314A (en) Hydrophilic polymer
JPS6241518B2 (en)
JPS5845151A (en) Cement composite material
US4322331A (en) Radiation polymerizable compounds and conductive coatings from same
EP0153375B1 (en) Hydrophobic and/or antiadhesive masses, reactive diluents, plasticizer and utilization thereof
JPS58162640A (en) Coating composition for polyolefin plastic
CN106459430B (en) It is used to prepare the finished product and process of semi-finished and the composition for it of such as prepreg based on composition epoxy resin
US3773547A (en) Production of coatings by curing with ionizing radiation
US3549510A (en) Polymer-treated irradiated bendable sheets of ligno-cellulose and method of making same
Len’shina et al. Photoreduction Reaction of Carbonyl-Containing Compounds in the Synthesis and Modification of Polymers
US2885383A (en) Reaction product of vinyltrichlorosilane, diethylene glycol, water and ammonia or anamine and method of making same
McGarvey et al. Chemistry in adsorbed monolayers. 2. Thermal and photochemical grafting reactions at the polymer-filler interface
US4252713A (en) Method of grafting a polymer to filler materials
SU614753A3 (en) Method of manufacturing moulded articles