JPS59160368A - Electrostatic image reading method - Google Patents

Electrostatic image reading method

Info

Publication number
JPS59160368A
JPS59160368A JP58035034A JP3503483A JPS59160368A JP S59160368 A JPS59160368 A JP S59160368A JP 58035034 A JP58035034 A JP 58035034A JP 3503483 A JP3503483 A JP 3503483A JP S59160368 A JPS59160368 A JP S59160368A
Authority
JP
Japan
Prior art keywords
electrostatic image
electrostatic
image
layer
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58035034A
Other languages
Japanese (ja)
Inventor
Tadaharu Fukuda
福田 忠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58035034A priority Critical patent/JPS59160368A/en
Publication of JPS59160368A publication Critical patent/JPS59160368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To obtain stably an electrostatic latent image with the close amount of information by providing a surface insulating layer, semiconductor layer which conducts by being excited by an electromagnetic wave, and conductor layer. CONSTITUTION:The polarity of uniform electrostatic charge in a primary process (a) is made negative when a photoconductor 2 is a P type semiconductor or negative when it is an N type semiconductor, and corona charge is performed. Then, corona charge with the polarity opposite to that of the primary charge is performed by a corona charger 5 in the 2nd process (b) and irradiation with an original image L1 is carried out at the same time; the photoconductive layer 2 conducts at light parts to charge the surface of the insulating layer 1 positively, and negative charges remain at dark parts. When an electrostatic holder 10 is irradiated with light L2 uniformly in the 3rd process (c), the photoconductive layer 2 conducts, so an electrostatic latent image corresponding to the original picture is formed on the insulating layer 1. The surface of the electrostatic latent image holder is discharged successively in the 4th process (d) by a roller 6 having the surface grounded to transfer the electrostatic image to between semiconductor layers. The transferred electrostatic image is scanned in the 5th process (e) by an electromagnetic wave L3 to discharge static charges, whose discharging current is read out as a signal.

Description

【発明の詳細な説明】 本発明は画像情報を静電像保持体に静゛毛的に記録し、
その記録された静電像を電気信号として読出す方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention electrostatically records image information on an electrostatic image carrier;
The present invention relates to a method of reading out the recorded electrostatic image as an electrical signal.

静電像保持体上に画像を静電像として記録し、その静電
像を時系列の電気48号として読出す彷法は、例えは特
開昭54−31219号公報、特表昭5[(−50(1
704号公報等に記載されている。
The wandering method of recording an image as an electrostatic image on an electrostatic image holder and reading out the electrostatic image as a time-series Denki No. 48 is disclosed, for example, in Japanese Patent Application Laid-Open No. 54-31219 and Japanese Patent Application Publication No. 1983 [1983]. (-50(1
It is described in Publication No. 704, etc.

従来知られている静電像読出しブラ法は、上記公報に開
示されているように、絶縁層と光導電層を導電層で挾ん
だ構成の静電像保持体の絶縁層に保持された記録静電像
を、二つの導電層を外部で短絡させることにより光導電
層に転位させ、転位した静電像を光走査して放電させ、
放電電流を信号として読出すものである。このように導
電層が絶縁層と光導電層を全面に渡り覆っており、導電
層を外部短絡させると瞬時に全面に渡って静電像の転位
が起り、次いで走う〒されるまでに時間的な遅れがある
。特に静電像保持体の面積か広い場合に走査終端に近づ
くほど遅れか酷くなり、その間に静電電荷が減衰してし
まい、十分なS/N比か得られないことになる。一方、
走査速度を上けることは、光導電層のキャリアの移動時
間や、光導電層の暗比抵抗率と誘電率で決まる暗放電時
定数等の制限から限界がある。それゆえ解像性−をあげ
ようとして光点走査富度を大きくすることにも限界がで
てくる。
As disclosed in the above-mentioned publication, the conventionally known electrostatic image reading blur method is based on an electrostatic image holder having an insulating layer and a photoconductive layer sandwiched between an insulating layer and a photoconductive layer. A recorded electrostatic image is transferred to a photoconductive layer by short-circuiting two conductive layers externally, and the transferred electrostatic image is discharged by scanning with light.
The discharge current is read out as a signal. In this way, the conductive layer covers the entire surface of the insulating layer and the photoconductive layer, and when the conductive layer is short-circuited externally, dislocation of the electrostatic image occurs instantaneously over the entire surface, and then it takes time for the electrostatic image to be dislocated. There is a delay. Particularly when the area of the electrostatic image holder is large, the delay becomes more severe as the scanning end approaches, and during this time the electrostatic charge decays, making it impossible to obtain a sufficient S/N ratio. on the other hand,
There are limits to increasing the scanning speed due to limitations such as the travel time of carriers in the photoconductive layer and the dark discharge time constant determined by the dark specific resistivity and dielectric constant of the photoconductive layer. Therefore, there is a limit to increasing the light spot scanning richness in an attempt to improve resolution.

例えば、光導電層にSeを使用した場合、Seの暗比抵
抗率は約1012Ω・m、比誘電率は約6.3て、真空
の誘電率は8.855X 10−”であるから、暗時定
数tcとすると、tc−真空の誘電率×比誘電率×比抵
抗率= 8.855X t O−12X 6 。
For example, when Se is used for the photoconductive layer, the dark specific resistivity of Se is approximately 1012 Ω・m, the relative dielectric constant is approximately 6.3, and the dielectric constant of vacuum is 8.855 Assuming the time constant tc, tc - dielectric constant of vacuum x specific dielectric constant x specific resistivity = 8.855X t O-12X 6 .

3X10’ 2 =60 C秒)となる。今、静電像保
持体の面積を300+nmX 300mmとし1odo
t/mmの光点走査をすると、全面で(300×10)
2−9XIO6ケ所の光点照射をする必要がある。
3×10′ 2 =60 C seconds). Now, let us assume that the area of the electrostatic image holder is 300 + nm x 300 mm.
When scanning the light spot at t/mm, the entire surface is (300 x 10)
2-9XIO It is necessary to irradiate light spots at 6 locations.

一方、光点が照射されて、放電電流が流れ終るまでに約
5 X I O−6秒必要とするから、静電像保持体の
全面積の光点走査を終えるのにt = 9 X 10’
X 5 X 10−’″−45(秒)の時間が必要とな
る。
On the other hand, since it takes about 5 x IO-6 seconds for the discharge current to finish flowing after the light spot is irradiated, it takes t = 9 x 10 to complete the light spot scanning of the entire area of the electrostatic image holder. '
A time of X 5 X 10-'''-45 (seconds) is required.

この時間tと暗時定数tcを比較した場合、略同程度と
なる。従って、光点走査が後で行なわれる箇所から検出
される電気信号については、暗放電によって失われた電
荷量を補止する必要か生ずる。また、同一ケ所を数回走
査して夫りの箇所の潜像強度に応じたアナログ量に変換
しようとする場合も、時間的余裕がなくなる。総じて、
静電潜像を転位後直ちに光点走査して、電気信号に変換
することを完了させなければならないという不都合があ
る。
When this time t and the dark time constant tc are compared, they are approximately the same. Therefore, it is necessary to compensate for the amount of charge lost due to dark discharge for electrical signals detected from locations where light spot scanning will be performed later. Moreover, when the same area is scanned several times and converted into an analog quantity according to the latent image intensity of the edge area, there is no time leeway. Overall,
There is a disadvantage that the electrostatic latent image must be scanned for a light spot immediately after the electrostatic latent image is transposed to complete the conversion into an electrical signal.

本発明は上記の不都合を解消することを目的とする。The present invention aims to eliminate the above-mentioned disadvantages.

この目的を達成するだめの本発明は、少なくとも表面絶
縁層・1と、電磁波により励起されて導電性を持つ半導
体層2と、導電体層3とを持つ静電像保持体10の表面
に、一様に帯電する一次工程(a)と、静電像保持体1
0に像形成の電磁波L1を照射すると共に前記−次工程
の帯電極性と逆極性又は交流の帯電をして静電像を形成
する二次工程(b)と、静電像保持体に一様に電磁波L
2を照射して半導体層間の電荷を消滅させる三次工程(
C)と、静電像保持体の表面を順次を除電して該静電像
を半導体層間に転位させる四次工程(cl)と、転位さ
れた静電像を電磁波L3で走査して静電電荷を放電させ
その放電電流を信号として読出す三次工程(e)とから
なる静電像読出し方法である。
In order to achieve this object, the present invention has a surface insulating layer 1, a semiconductor layer 2 which is excited by electromagnetic waves and becomes conductive, and a conductive layer 3. Primary step (a) of uniformly charging the electrostatic image carrier 1
A secondary step (b) of forming an electrostatic image by irradiating electromagnetic waves L1 for image formation and charging the electrostatic image carrier with a polarity opposite to that of the previous step or with alternating current; electromagnetic wave L
The tertiary step (
C), a quaternary step (cl) in which the surface of the electrostatic image holder is sequentially destaticized and the electrostatic image is transferred between the semiconductor layers, and the transferred electrostatic image is scanned with an electromagnetic wave L3 to eliminate the electrostatic charge. This electrostatic image reading method includes a tertiary step (e) of discharging charges and reading out the discharge current as a signal.

以下本発明を図面の記載に基き詳細に説明する。The present invention will be explained in detail below based on the drawings.

第1図は絶縁層1、光導電層2及び導電性基板3を基本
構成とする静電像保持体10に絶縁層l側から像照躬す
る場合を示している。
FIG. 1 shows a case where an image is illuminated from the insulating layer l side on an electrostatic image holder 10 whose basic structure is an insulating layer 1, a photoconductive layer 2, and a conductive substrate 3.

先ず一次工程(a)の一様帯電の極性は、光導電層2か
P型半導体のときは負に、n型半導体のときは正に選択
してコロナ帯電する。実施例ではn型半導体を使用し、
コロナ帯電器4により負に帯電する。このとき導電性基
板3からの電荷注入が不十分のために光導電層2内の分
極が十分でない場合、帯電と略同時に光照射を行なう。
First, the polarity of uniform charging in the primary step (a) is selected to be negative when the photoconductive layer 2 is a P-type semiconductor, and positive when it is an N-type semiconductor, and corona charging is performed. In the example, an n-type semiconductor is used,
It is negatively charged by the corona charger 4. At this time, if the polarization within the photoconductive layer 2 is insufficient due to insufficient charge injection from the conductive substrate 3, light irradiation is performed substantially simultaneously with charging.

次に第二工程(b)として、−次帯電と逆極性のコロナ
帯電即ち正又は交流AC帯電をコロナ帯電器5により施
すと同時に、原画像L1を照射する。右半分が明部で左
半分が暗部であることを示す。明部では光導電層2が導
通しているため帯電による正電荷が絶縁層lの表面に帯
電されるが、暗部では光導電層2は導通していないため
光導電層2の正電荷に引かれた絶縁層1の表面の負電荷
が残る。
Next, as a second step (b), corona charging with a polarity opposite to the -order charging, that is, positive or alternating current AC charging is applied by the corona charger 5, and at the same time, the original image L1 is irradiated. The right half is the bright area and the left half is the dark area. In bright areas, the photoconductive layer 2 is electrically conductive, so positive charges are generated on the surface of the insulating layer l; however, in dark areas, the photoconductive layer 2 is not electrically conductive, and is therefore attracted to the positive charges of the photoconductive layer 2. Negative charges on the surface of the insulating layer 1 remain.

次の第三工程(C)で、静電像保持体10に一様に光L
2を照射すると光導電層2は導通するため、原画像に応
じた静電潜像が、絶縁層1上に形成される。
In the next third step (C), light L is uniformly applied to the electrostatic image carrier 10.
When irradiated with 2, the photoconductive layer 2 becomes conductive, so that an electrostatic latent image corresponding to the original image is formed on the insulating layer 1.

この静電潜像を読出す場合第四工程(d)て、接地され
た導電性ゴムローラ6を絶縁層1の表面に押圧して回転
移動させると、絶縁層1の表面の電荷が除電され、新た
に電界が誘起され静電像の電荷が光導電層2に転位され
る。第五工程(e)に示すように除電された部分から直
ちに光L3により走査していくと、原画像の明暗に応じ
た放電が起り、電気信号が導電層3から出力される。電
気信号は原画像の暗部の濃度が大きいところほど、電気
信号は大きtなる。
When reading out this electrostatic latent image, in the fourth step (d), when the grounded conductive rubber roller 6 is pressed against the surface of the insulating layer 1 and rotated, the charge on the surface of the insulating layer 1 is removed. A new electric field is induced and the charges of the electrostatic image are transferred to the photoconductive layer 2. As shown in the fifth step (e), when the portion from which the static electricity has been removed is immediately scanned by the light L3, a discharge occurs depending on the brightness and darkness of the original image, and an electric signal is output from the conductive layer 3. The greater the density of the dark part of the original image, the greater the electrical signal t.

この信号はオペアンプ(図示せず)等に入力して増IJ
され画像信号源となる。
This signal is input to an operational amplifier (not shown) etc. to increase the IJ.
and becomes an image signal source.

以上説明したごとく本発明の静電像読出し方法によれば
、絶縁層1が導電性物質と接触して′いな聾〉 いため、工程(C)の段階での全露光は従来の方法のよ
うに光点走査をする必要がない。工程(d)及び(e)
ては静電像電荷を光導電層・2に転位させたところから
順次読み出してゆくため、大面積の画像でも、暗減衰の
補正をする必要かない。
As explained above, according to the electrostatic image reading method of the present invention, since the insulating layer 1 is not in contact with the conductive substance, the total exposure in step (C) is not performed as in the conventional method. There is no need to scan the light spot. Steps (d) and (e)
Since the electrostatic image charge is sequentially read out from the point where it is transferred to the photoconductive layer 2, there is no need to correct dark decay even in the case of a large-area image.

また光点走査音度を必要なだけ細かくすることか可能で
、情報量の密な電気信号を1)ることが出来、解像力の
高い画像の読出しが可能である。ざらに静′711!:
潜像が絶縁層上に形成されており、導電性物質と接触し
ていないため、静電潜像電荷か長期に亘って安定であり
、画像メモリとして使用した場合に有益な方法である。
In addition, it is possible to make the light spot scanning sound intensity as fine as necessary, and it is possible to generate electrical signals with a high amount of information (1), making it possible to read out images with high resolution. Zarani Shizuka'711! :
Since the latent image is formed on an insulating layer and is not in contact with a conductive material, the electrostatic latent image charge is stable over a long period of time, making this method advantageous when used as an image memory.

なお静電潜像か形成された後、信号を読み出す際に前述
例では導電性ローラ6で除電したが他の除電手段例えば
コロナ放電器、溶剤含浸布による拭しよく、針状電極等
の手段で行っても良い。
After the electrostatic latent image is formed, when reading out the signal, the static electricity is removed using the conductive roller 6 in the above example, but other static electricity removal means such as a corona discharger, wiping with a solvent-impregnated cloth, needle electrodes, etc. You can go there.

前述例に於ける光L1・L2・L3は、可視光に限られ
るものではない。光導電層2に照射された場合に、光導
電層2を励起して導電性を持たせるような波長の電磁波
であれば良い。
The lights L1, L2, and L3 in the above example are not limited to visible light. Any electromagnetic wave with a wavelength that excites the photoconductive layer 2 and makes it conductive when irradiated onto the photoconductive layer 2 may be used.

第2図にはこのような光り、をX線にした実施例を示し
ている。
FIG. 2 shows an embodiment in which such light is converted into X-rays.

前述例の第二工程(b)で像形成の電磁波の照射光がX
線である場合、像のぼけを防ぐため被写体を像保持体に
出来るだけ近づけて置く必要かある。従ってコロナ帯電
器5側に被写体が置かれる場合は帯電器の高さ、被写体
の置き台と帯電器との空げき、帯電器と静電像保持体と
の間の空げきの分だけ被写体か静電像保持体から離れて
解像度が悪くなってしまう。それゆえ、第2図に示すよ
うに静電像保持体11の基板9側に被写体○を置くよう
にすると解像度の高いX線透過像が得られる。
In the second step (b) of the above example, the electromagnetic wave irradiation light for image formation is
In the case of a line, it is necessary to place the subject as close as possible to the image holder to prevent blurring of the image. Therefore, when a subject is placed on the side of the corona charger 5, the height of the charger, the gap between the subject stand and the charger, and the gap between the charger and the electrostatic image holder will affect the distance of the subject. The resolution deteriorates as the image moves away from the electrostatic image holder. Therefore, if the subject ○ is placed on the substrate 9 side of the electrostatic image holder 11 as shown in FIG. 2, an X-ray transmission image with high resolution can be obtained.

また静電像保持体11の構造としては基板9側からX線
を照射するとの理由から、基板9はX線透過率の高いも
のを選択する必要がある。基板9が絶縁性のものであれ
ば、導電層8を積層する必要がある。さらに光導電層2
と導電層8の間には電荷が導電層8に流出するのを防止
するため、障壁層7を挿入する必要がある。
Further, as for the structure of the electrostatic image holder 11, since the X-rays are irradiated from the substrate 9 side, it is necessary to select a substrate 9 having high X-ray transmittance. If the substrate 9 is insulating, it is necessary to laminate the conductive layer 8. Furthermore, the photoconductive layer 2
It is necessary to insert a barrier layer 7 between the conductive layer 8 and the conductive layer 8 in order to prevent charges from flowing into the conductive layer 8.

潜像形成方法は、基板9側から像照射する場合は一次工
程(a)で、光導電層2がp型なら1次帯電の極性を正
に選択し、絶縁層1側から一様に光照射しながら、コロ
ナ帯電する。次に第二工程(b>で−次帯電とは逆極性
コロナ帯電又はAC帯電をすると同時にX線Lxを被写
体Oを通して静電像保持体に照射する。一様に光を11
((則する工程(C)、静電潜像を読み出す工程(d)
、(e)は第1図に示す実施例ど同様である。
The latent image forming method is the primary step (a) when the image is irradiated from the substrate 9 side, and if the photoconductive layer 2 is p-type, the polarity of the primary charge is selected to be positive, and the light is uniformly applied from the insulating layer 1 side. Corona charging occurs during irradiation. Next, in the second step (b>), corona charging or AC charging is performed with a polarity opposite to the -order charging, and at the same time, X-rays Lx are irradiated through the object O to the electrostatic image holder.
(Step (C) of adjusting, step (d) of reading out the electrostatic latent image)
, (e) are the same as in the embodiment shown in FIG.

上記各実施例では像担持体の半導体層かp型半導体であ
る場合について説明したがn型半導体である場合は帯電
電荷は正負を°逆にすることが〃1′ましい。
In each of the above embodiments, a case has been described in which the semiconductor layer of the image carrier is a p-type semiconductor, but if it is an n-type semiconductor, it is preferable that the polarity of the charged charges be reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する静電像読出し方法の実施例の
工程説明図、第2図は別な実施例の工程説明図である。 ■は絶縁層、2は半導体層、3は導電層、10は静電像
保持体である。 代    理    人    イ晶       1
)      勧 、−−ユ:(Ct)       
 、(b) 第2図 (o)(b)(c) 第1図 (c)    (d)    (e) (d)    (e)
FIG. 1 is a process explanatory diagram of an embodiment of an electrostatic image reading method to which the present invention is applied, and FIG. 2 is a process explanatory diagram of another embodiment. 2 is an insulating layer, 2 is a semiconductor layer, 3 is a conductive layer, and 10 is an electrostatic image holder. Agent Ikki 1
) Recommendation, --yu: (Ct)
, (b) Figure 2 (o) (b) (c) Figure 1 (c) (d) (e) (d) (e)

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも表面絶縁層と、電磁波により励起され
て導電性を持つ半導体層と、導電体層とを持つ静電像保
持体の表面に、一様に帯電する一次工程と、 該静電像保持体に、像形成の電磁波を照射すると共に、
前記−次工程の帯電極性と逆極性又は交流の?f′I電
をして静電像を形成する二次工程と、該静電像保持体に
、一様に′・E磁波を照射する三次」工程と、 該静電像保持体の表面を順次除電して該静電像を米導体
層間に転位させる四次工程と、転位°された静電像を電
磁波で走査して静゛1に電荷を放電させ、その放電電流
を信号として読出す五次工程とからなる静電像読出し方
法。
(1) A primary step of uniformly charging the surface of an electrostatic image holder having at least a surface insulating layer, a semiconductor layer excited by electromagnetic waves to become conductive, and a conductive layer; and the electrostatic image. While irradiating the holding body with electromagnetic waves for image formation,
Is the charging polarity of the previous and next steps opposite or alternating current? a secondary step of forming an electrostatic image by applying f'I electrons; a tertiary step of uniformly irradiating the electrostatic image carrier with '·E magnetic waves; A quaternary process in which static electricity is removed in sequence and the electrostatic image is transferred between the conductor layers, and the transferred electrostatic image is scanned with electromagnetic waves to discharge the charge onto the static image, and the discharge current is read out as a signal. An electrostatic image reading method consisting of a fifth step.
JP58035034A 1983-03-03 1983-03-03 Electrostatic image reading method Pending JPS59160368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58035034A JPS59160368A (en) 1983-03-03 1983-03-03 Electrostatic image reading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035034A JPS59160368A (en) 1983-03-03 1983-03-03 Electrostatic image reading method

Publications (1)

Publication Number Publication Date
JPS59160368A true JPS59160368A (en) 1984-09-11

Family

ID=12430766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035034A Pending JPS59160368A (en) 1983-03-03 1983-03-03 Electrostatic image reading method

Country Status (1)

Country Link
JP (1) JPS59160368A (en)

Similar Documents

Publication Publication Date Title
US3536483A (en) Method of making electrographs wherein the resultant electrostatic image is not effected by further light exposure
US4233386A (en) Method of removing residual toner from surface of photoconductive member for use in electrostatic copying apparatus of the transfer type
US3734609A (en) Electrophotographic process and apparatus
CN1087447C (en) Charging device and image forming apparatus
JPS59160368A (en) Electrostatic image reading method
US3942080A (en) Method and apparatus for applying a uniform electrostatic charge to electrophotographic film
US4756992A (en) Full tone electrophotographic imaging reproduction
JPH0428306B2 (en)
JP2704956B2 (en) Charging method that does not require static elimination of electrophotographic equipment
US3673595A (en) Apparatus for electrostatic image-forming and processes for use therewith
JPS5898746A (en) Image forming method
JPS6230432B2 (en)
JPS58107554A (en) Formation of image
US3853553A (en) Method for image transfer using persistent internal polarization
CA1249945A (en) Full tone electrophotographic imaging system
EP0171273B1 (en) Full tone electrophotographic imaging reproduction
JPH06105956B2 (en) Image recording / playback system
JPS5912460A (en) Picture recording device
JPS6355707B2 (en)
SU572751A1 (en) Method for obtaining electrophotographic image on photoconductive layers with dielectric fi
US3700436A (en) Electrode configuration for electrophotography
JPS6279475A (en) Image recording device
US3597073A (en) Electrode configuration for electrophotography
JPS62184486A (en) Image forming device
KR950011875B1 (en) Separate voltage drum in an electrophotographic recording process