JPS59159997A - Manufacture of steel sheet electroplated with ironzinc on one side - Google Patents

Manufacture of steel sheet electroplated with ironzinc on one side

Info

Publication number
JPS59159997A
JPS59159997A JP3505283A JP3505283A JPS59159997A JP S59159997 A JPS59159997 A JP S59159997A JP 3505283 A JP3505283 A JP 3505283A JP 3505283 A JP3505283 A JP 3505283A JP S59159997 A JPS59159997 A JP S59159997A
Authority
JP
Japan
Prior art keywords
plating
current
thin
steel sheet
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3505283A
Other languages
Japanese (ja)
Inventor
Tetsuaki Tsuda
津田 哲明
Atsuyoshi Shibuya
渋谷 敦義
Kazuo Asano
和夫 浅野
Shigeru Wakano
若野 茂
Takeji Watanabe
渡辺 竹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3505283A priority Critical patent/JPS59159997A/en
Publication of JPS59159997A publication Critical patent/JPS59159997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To improve the suitability of a surface of a steel sheet to chemical conversion treatment after removing a thin plated film by electrolysis by supplying DC contg. a prescribed percentage of an AC component (ripple current) to carry out Fe-Zn alloy plating on one side of the steel sheet. CONSTITUTION:A steel sheet is fed to a plating vessel, where thick plating is carried out on a surface to be plated by supplying large electric current, and thin Fe-Zn alloy plating is carried out on a surface not to be palted. Electric current for the thin plating is supplied by superposing an AC component on a DC component so as to regulate the ripple percentage represented by a formula (DELTAI/Iavg)X100 (where DELTAI is electric current of only the AC component, and Iavg is average electric current) to 20-300%. The suitability of the surface of the steel sheet to chemical conversion treatment after removing the thin plated film by electrolysis is improved.

Description

【発明の詳細な説明】 この発明は非メッキ面の化成処理性の向上を図った片面
電気メツキ鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single-sided electroplated steel sheet in which the chemical conversion treatment property of the non-plated surface is improved.

片面電気メツキ鋼板は自動車鋼板の分野での要求に応え
る素材として広く用いられる。自動車等に用いられるメ
ッキ鋼板は一般に電気塗装を行いさらに中塗り上塗シ塗
装を施して使用されるためこれらの塗装の下地処理とし
てリン酸塩処理等の化成処理か行なわれるのが通例であ
る。化成処理を行なうに際しては、化成皮膜結晶の核発
生を阻害しない性状にしておく必要がある。鉄亜鉛合金
系片面電気メツキ鋼板ではメッキ浴中には通常高濃度の
Fe3+を含んでいる・片面メッキの非メッキ面はFe
3+によシ浸食溶解をこうむシ、甚だしく化成処理性が
劣化する。この傾向は鋼板として、高張力鋼板が使用さ
れるにつれて、大きな問題となる。その対策として非メ
ッキ面に鋼素地保護のため薄く電気メッキを施し、メッ
キ後非メッキ面を陽極として電解し薄メッキを除去する
方法をさきに提案した(特願昭57−207417号)
。片面電気メツキ鋼板の製造に際しては水洗後の鋼板を
メンキ槽を通して、メッキ面には陰極大電流による厚メ
ッキを、非メッキ面には陰極小電流による薄メッキを施
すことになり、次の工程での処理槽ではメッキ面は無ま
だは陰極微少電流により、非メッキ面は陽極大電流によ
りメッキ層を除去し化成性向上が計られる。
Single-sided electroplated steel sheets are widely used as materials that meet the demands of the automotive steel sheet field. Since plated steel sheets used in automobiles and the like are generally electrically coated and further coated with an intermediate coat and a top coat, a chemical conversion treatment such as phosphate treatment is usually performed as a base treatment for these coats. When carrying out a chemical conversion treatment, it is necessary to have properties that do not inhibit the generation of nuclei of chemical conversion coating crystals. For iron-zinc alloy single-sided electroplated steel sheets, the plating bath usually contains a high concentration of Fe3+.
3+ causes erosion and dissolution, resulting in severe deterioration of chemical conversion properties. This tendency becomes a big problem as high tensile strength steel plates are used as steel plates. As a countermeasure, we proposed a method in which a thin layer of electroplating is applied to the non-plated surface to protect the steel substrate, and after plating, the thin plating is removed by electrolysis using the non-plated surface as an anode (Japanese Patent Application No. 57-207417).
. When manufacturing single-sided electroplated steel sheets, the steel sheets after washing are passed through a coating bath, and the coated side is plated thickly using a large cathode current, and the non-plated side is plated thinly using a small cathode current. In this treatment tank, the plating layer is removed by a small cathode current on the unplated surface and a large anodic current on the non-plated surface to improve chemical conversion properties.

本発明は鉄−亜鉛合金系メッキのメッキ槽での非メッキ
面に薄メッキを施すための交流成分を含んだ直流(リン
プル電流〕の陰極電流に関するものである。
The present invention relates to a direct current (ripple current) cathode current containing an alternating current component for applying thin plating to a non-plated surface in an iron-zinc alloy plating bath.

交流成分としては、三相、六相また半波、全波いずれで
もよく、また、電源から、電解槽までの間の導線リアク
タンス等によって波形が変化しても、リップル率が適正
であれば、本特許の範ちゅうに入いるものである。従来
はメッキ槽で非メッキ面に保護薄メッキを施す陽蝋電流
のメッキ電流密度に制約を生じていた。即ち鉄−亜鉛合
金電気メツキ槽で非メツキ鋼板素地を保護する薄メッキ
(1〜5iii’/m”程度)を行ない、メッキ後に処
理槽にて該薄メッキ層を陽極電流で電解除去するに際し
て、従来法の交流会のない直流ではメッキ電流密度が後
に示す卯く10〜40及び80以上(A/dm”)の範
囲内では薄メッキの除去が不充分で部分的な皮膜溶は残
りムラが発生していた。しかし生産ラインの場合は、。
The AC component may be three-phase, six-phase, half-wave, or full-wave.Also, even if the waveform changes due to the reactance of the conductor between the power source and the electrolytic tank, as long as the ripple rate is appropriate, This falls within the scope of this patent. Conventionally, there were restrictions on the plating current density of the positive waxing current used to apply protective thin plating to non-plated surfaces in a plating bath. That is, when performing thin plating (approximately 1 to 5iii'/m") to protect the unplated steel sheet base in an iron-zinc alloy electroplating tank, and electrolytically removing the thin plating layer with an anodic current in a treatment tank after plating, When the plating current density is within the range of 10 to 40 and 80 or more (A/dm") as shown later in the conventional direct current method without alternating current, thin plating is insufficiently removed and partial film dissolution remains and unevenness occurs. It was occurring. However, in the case of a production line.

使用するメッキ槽の数、ストリップのライン速度によっ
てメッキ電流密度が変動することが多い。従ってすべて
のメッキ電流密度範囲で処理槽での薄メツキ皮膜の電解
除去処理が完全であり、電解除去後の表面に溶は残りを
生じない方法が必要であった。即ちメッキ電流密度が1
0〜40及び80以上(A/drn”)の範囲内でも、
う捷く薄メツキ電解除去できる方法として、メッキ槽で
のメッキ電流をして直流成分に交流電流を重畳せしめて
、そのリップル率を20〜200条となるように調製す
ることによって、薄メツキ皮膜除去が完全で溶は残りム
ラがなくなることを本発明者は見出し−た。
Plating current density often varies depending on the number of plating baths used and the strip line speed. Therefore, there was a need for a method that would allow complete electrolytic removal of the thin plating film in the treatment bath over all plating current density ranges and would not leave any residue on the surface after electrolytic removal. That is, the plating current density is 1
Even within the range of 0 to 40 and 80 or more (A/drn"),
As a method for removing thin plating electrolytically, the plating current in the plating bath is superimposed on the DC component, and the ripple rate is adjusted to 20 to 200 lines. The inventors have discovered that the removal is complete and no dissolution remains and there is no unevenness.

本発明においてリップル率の値を20〜200%の範囲
内に限定する理由は次の通りである。
The reason why the value of the ripple rate is limited within the range of 20 to 200% in the present invention is as follows.

■下限が20係未満では電流の変動によるメッキ層重畳
効率が薄く、薄メツキ皮膜除去のときに溶解ムラに起因
する化成不良か生じる。
(2) If the lower limit is less than 20 coefficients, the plating layer superposition efficiency due to current fluctuations will be low, and formation defects may occur due to uneven dissolution when removing a thin plating film.

■上限を200%とした理由はリップル率か200%よ
り多いと薄メツキ皮膜効率の面では特に制約を生じない
かメッキ電力哨費が過大とガる。
■The reason why the upper limit was set at 200% is because the ripple rate is higher than 200%, and there is no particular restriction in terms of thin plating film efficiency, or the plating power consumption is excessive.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

従来技術である保訛薄メッキを直流の陰極電流で行った
場合について、電流密度とメッキ後のメッキ層の電解除
去でのメッキ溶は残りムラとの関係を確めるだめのメッ
キ浴試験を行った。即ち保護薄メッキを鉄−亜鉛合金系
電気メッキ浴で行ったが・メッキ電流密度が高い程メッ
キ皮膜は鉄分の多い組成であった。平滑な直流電流(リ
ップル率3チ以下)でメッキ電流密度を変化させて、メ
ッキ付着量約2f?/+mFの薄メッキを施しだ後に、
陽極電解除去を80A/dm”X2秒の通電をして行っ
た実験結果を第1表に示す。
In the case of conventional thin plating with a direct current cathode current, a plating bath test was conducted to confirm the relationship between the current density and the residual unevenness caused by electrolytic removal of the plating layer after plating. went. That is, protective thin plating was performed in an iron-zinc alloy electroplating bath, and the higher the plating current density, the higher the iron content of the plating film. By changing the plating current density with a smooth DC current (ripple rate of 3 inches or less), the amount of plating deposited is about 2F? After applying a thin plating of /+mF,
Table 1 shows the results of an experiment in which anodic electrolytic removal was carried out by applying a current of 80 A/dm'' for 2 seconds.

第1表(従来技術の平滑直流薄メッキのとき)では陰極
薄メツキ電流密度を5より120A/dm”の量変化さ
せて化成外観を判定した結果を示す。化成外観はメッキ
層を陽極電解によって除去しだ後に化成処理をして、化
成付着ムラ、結晶ムラ(粗大化)等によって判定した結
果で、◎印・・・優、○印・・・良(焼鈍済み冷延鋼板
の化成性の許容下限〕、Δ印・・・可、×印・・・不可
とする。この結果よりメッキ電流密度が10〜40及び
80以上(A/drn”)の範囲のメッキ層電解除去後
の化成外観がよくないことが確められた。
Table 1 (for smooth DC thin plating using conventional technology) shows the results of evaluating the chemical appearance by changing the cathode thin plating current density from 5 to 120 A/dm. After removal, chemical conversion treatment is performed, and the results are judged based on chemical adhesion unevenness, crystal unevenness (coarsening), etc. Allowable lower limit], Δ mark: acceptable, × mark: unacceptable. From these results, the chemical appearance after electrolytic removal of the plating layer where the plating current density is in the range of 10 to 40 and 80 or more (A/drn") It was confirmed that this was not good.

第1表の結果より次のことを考察した。従来の平滑直流
メッキ法ではメッキ電流密度、鉄−亜鉛合金系メッキ液
組成に対応したほぼ一定の鉄含有率を荷するメッキ皮膜
を得ていた。そしである範囲の鉄含有係の薄メッキ皮B
’A (ri、陽極電解処理の際に溶は残りのムラを生
じた。電解除去(80A/drn”×2秒〕の時間を増
しただけではムラの改善につながらず、メッキ電流密度
を周期的に増加することがムラ除去に効果かあると考え
、平滑直流成分に交流成分を重ね合せたメッキ電流(以
下リップル電流と称す)波形を適用することにより、完
全々陽極除去が可能であろうと推定した。これは薄メツ
キ皮膜組成をメッキ厚み方向に多様化させることによっ
て、異った多数のガルバニック電位をもった複合組成の
薄メツキ皮膜とすることができるからである。
Based on the results in Table 1, the following points were considered. The conventional smooth direct current plating method has produced a plating film with a substantially constant iron content that corresponds to the plating current density and the composition of the iron-zinc alloy plating solution. Thin plated skin B with iron content in a certain range
'A (RI, during the anodic electrolytic treatment, the solution caused residual unevenness. Simply increasing the electrolytic removal time (80A/drn" x 2 seconds) did not lead to improvement of the unevenness, and the plating current density was changed periodically. We thought that increasing the plating current would be effective in removing unevenness, and that it would be possible to completely remove the anode by applying a plating current (hereinafter referred to as ripple current) waveform in which an alternating current component is superimposed on a smooth direct current component. This is because by diversifying the composition of the thin plating film in the direction of the plating thickness, it is possible to create a thin plating film with a composite composition having many different galvanic potentials.

ここに云うリップル電流とは例えば第4図に示す電気回
路図により得られるものである。図で左端HよりAC三
相440vが入力し、スイッチSを経て三相整流器Aに
より三□相交流の各相の電流が整流されて半波電流とな
る。三相単相変圧回路Bを経て三相半波か重畳した六相
半波電流となり、単相整流器Cにより整流されて直流分
を含む電流となり、可変リアクトルDによってその内の
交流会が部分的洗除かれて、六相半波交流に直流分が加
った六十目半波リップル電流となシ薄メッキ槽Gに入る
。電流計測Fで平均電流を計り電圧計測Eで平均電圧を
測定する。
The ripple current referred to here is obtained, for example, from the electric circuit diagram shown in FIG. In the figure, AC three-phase 440v is input from the left end H, and the current of each phase of the three-phase AC is rectified by the three-phase rectifier A through the switch S to become a half-wave current. The current becomes a three-phase half-wave or a superimposed six-phase half-wave current through the three-phase single-phase transformer circuit B, and is rectified by the single-phase rectifier C to become a current containing a DC component. After being washed away, it enters the thin plating bath G where it becomes a 60-phase half-wave ripple current, which is a six-phase half-wave alternating current with a direct current added. Current measurement F measures the average current, and voltage measurement E measures the average voltage.

第2図は第1図の電気回路により得られだ六相半波リッ
プル電流の電流波形の測定結果の一例を巣体的に示す。
FIG. 2 shows an example of the measurement result of the current waveform of the six-phase half-wave ripple current obtained by the electric circuit shown in FIG. 1.

図のしは周期を示し六相半波交流サイクル数60X2X
3の逆数−秒である。
The box in the figure indicates the period, and the number of six-phase half-wave AC cycles is 60X2X.
It is the reciprocal of 3 - seconds.

60 第3図はとの六相半波リップル電流のリップル率の説明
図で図のACは交流成分をDCは直流成分を示し、図の
△IとIavli’(平均電流)とによりリップル率は
定義される。
60 Figure 3 is an explanatory diagram of the ripple rate of the six-phase half-wave ripple current. AC in the figure indicates an alternating current component and DC indicates a direct current component. The ripple rate is defined.

リップル率−二1−×100(9)) Iavり 鉄−亜鉛合金メッキ浴に保護薄メッキを施すのに陰極に
六相半波リップル電流のリップル率がその化成性にどの
ように影響するかを確める実験を行った。その結果を第
2表に示す。
Ripple rate - 21 - x 100 (9)) How does the ripple rate of the six-phase half-wave ripple current on the cathode affect its chemical formability when applying protective thin plating to an iron-zinc alloy plating bath? We conducted an experiment to confirm this. The results are shown in Table 2.

平滑直流での保護薄メッキの化成外観が悪く化成性が不
良の範囲とされるメッキ平均電流密度10−40、及び
80以上(A/drn”X前出第1表〕について実験し
た。即ち陰極メッキ平均電流として10.15.20.
40.80.100.120 (A/dm2)Kついて
、リップル率を変化させて保護薄メッキを行い各々の化
成評価を求めた。
Chemical formation of protective thin plating with smooth direct current Experiments were conducted at plating average current densities of 10-40 and 80 or more (A/drn" 10.15.20 as plating average current.
40, 80, 100, 120 (A/dm2) K, protective thin plating was performed while changing the ripple rate, and the respective chemical formation evaluations were determined.

一般的にメッキ槽では鉄−亜鉛系含金電気メツキの片面
メッキ方法のメッキ面については、■鉄亜鉛系主成分に
少量のC01Cr、fVIn、Ni、 Snx Cu、
Ti、Pb、I n、 Mo等の1種又は2種以上を含
んでいてもよい。
Generally, in a plating tank, the plating surface of the single-sided plating method of iron-zinc metal-containing electroplating is as follows: ■ Iron-zinc-based main component with small amounts of C01Cr, fVIn, Ni, Snx Cu,
It may contain one or more of Ti, Pb, In, Mo, and the like.

■メッキ槽については縦型、横型、ラディアル、セル型
等の方式を問わない。
■The plating tank may be of vertical type, horizontal type, radial type, cell type, etc.

■鉄すンチな鉄−亜鉛浴はメッキ面の上層用メッキのと
きに使われその成分ばFe≧60%である。
■An iron-free iron-zinc bath is used when plating the upper layer of a plated surface, and its composition is Fe≧60%.

亜鉛リッチな亜鉛−鉄浴はメッキ面の下層用メッキのと
きに使われその成分はZr≧6鏝である。
A zinc-rich zinc-iron bath is used for plating the lower layer of a plated surface, and its composition is Zr≧6.

このどちらも使われる。Both of these are used.

第2表の実験では鉄、亜鉛合金メッキ浴としては亜鉛リ
ンチ浴−Fe”50VN(硫酸塩)、Zn”30V/l
@酸塩)、温度50’C,Na25o450 Vl。
In the experiments shown in Table 2, the iron and zinc alloy plating baths were zinc lynch bath - Fe"50VN (sulfate), Zn"30V/l.
@acid), temperature 50'C, Na25o450 Vl.

鉄すンチ浴・Fe”50VA(硫酸塩〕、Zn”3r/
βQrN、?塩ユ温度55−C,Na2so450 V
Aの両方の場合について試験し保護薄メツキ付着量は2
 ?/mになるように通電時間を調整した。各試料は同
一条件で3枚づつ試作して調査した。
Iron dip bath/Fe”50VA (sulfate), Zn”3r/
βQrN,? Salt temperature 55-C, Na2so450V
The amount of protective thin plating deposited was 2 when tested for both cases of A.
? The energization time was adjusted so that it was /m. Three samples of each sample were manufactured and investigated under the same conditions.

保護薄メツキ後は別の槽にて陽極電解により薄メッキ層
を除去した後尾化成評価した。
After the protective thin plating, the thin plating layer was removed by anodic electrolysis in a separate tank, and the chemical formation was then evaluated.

一般的に処理槽での陽極電解のときは次の通りとされて
いる。
Generally, the following is the procedure for anodic electrolysis in a treatment tank.

■陽極電解浴は酸性、中性、アルカリ性を問わないがメ
ッキ面が溶解する危険度とか、除去された薄メツキ皮膜
中のFe5Znイオンが蓄積して問題を生じる点でpH
6〜10程度の浴が常用されている。
■The pH of the anodic electrolytic bath does not matter whether it is acidic, neutral, or alkaline, but the risk of dissolving the plated surface and the accumulation of Fe5Zn ions in the removed thin plating film may cause problems.
Approximately 6 to 10 baths are commonly used.

■陽極電解電流密度により薄メツキ除去効率はほとんど
変化を受けない。低電流密度では陽極除去装置規模か過
大となり、一方高電流密度では陽極電解の際の′電力原
単位が悪化する。
■Thin plating removal efficiency hardly changes depending on the anodic electrolysis current density. At low current densities, the scale of the anode removal equipment becomes too large, while at high current densities, the unit power consumption during anodic electrolysis worsens.

第2表の実験での陽極電解条件はメッキ浴は1モルNa
2SO4の液でpH8とし温度50°Cとし電解電流密
度80A/dm’X通電時間2秒としだ。また陽極電解
後のリン酸塩処理上しては、最初に表面処理剤で処理し
次に化成処理剤で処理した。表面処理剤ハ日本パーカラ
イジング社製パーコレンZTの20秒スプレィを使用し
、化成処理剤は日本パーカライジング社製ホンテライト
+3030の20秒浸漬を使用した。
The anodic electrolysis conditions in the experiments shown in Table 2 were as follows: The plating bath was 1 mol Na.
The pH was adjusted to 8 using a 2SO4 solution, the temperature was set to 50°C, and the electrolytic current density was set to 80 A/dm' and the current flow time was set to 2 seconds. In addition, for the phosphate treatment after anodic electrolysis, the material was first treated with a surface treatment agent and then treated with a chemical conversion treatment agent. As the surface treatment agent, a 20-second spray of Percolene ZT manufactured by Nippon Parkerizing Co., Ltd. was used, and as a chemical conversion treatment agent, a 20-second immersion of Hontelite +3030 manufactured by Nippon Parkerizing Co., Ltd. was used.

第2表の実験結果では化成評価の判定方法としては、薄
メッキを陽極電解除去した後に化成処理をして、そのと
き化成付着ムラが2個所以上発生したとき化成結晶粒が
直径が大きく粗大粒でまばらに付着する形態のときにつ
き、化成処理性が悪いと判定した。化成評価の良いもの
から悪いものの順に◎○△×とした。
According to the experimental results in Table 2, the method for determining chemical conversion evaluation is that when chemical conversion treatment is performed after thin plating is removed by anodic electrolysis, and at that time, chemical conversion deposition unevenness occurs in two or more places, the chemical conversion crystal grains have a large diameter and are coarse grains. It was determined that the chemical conversion treatment properties were poor when the coating adhered sparsely. The chemical formation evaluation was rated ◎○△× in order from good to bad.

第2表によると ■メッキ平均電流密度10 A//drn”の場合はリ
ップル率が15係のときは化吠評何ばΔ印であまりよく
ないが、リンプル率20%、100%のときは化成評価
ば○印、◎印で化成評価は平滑直流に比し改善される。
According to Table 2, when the plating average current density is 10 A//drn, when the ripple rate is 15, the evaluation is not so good with a Δ mark, but when the ripple rate is 20% and 100%, The chemical evaluation is marked with ○ and ◎, indicating that the chemical evaluation is improved compared to smooth DC.

■メッキ平均電流密度15A/dm’の場合はリップル
率10%のときはX印で悪いが、20%、50%、のと
きは○印、◎印で化成評価は改善される。
■When the plating average current density is 15 A/dm', when the ripple rate is 10%, it is bad with an X mark, but when it is 20% and 50%, the chemical formation evaluation is improved with an ○ mark and a ◎ mark.

■メッキ平均電流密度20A/drr]″の場合リップ
ル率18%のときは△印であまりよくないが、25%、
45%のときは共に○印で化成評価は改善される。
■When the plating average current density is 20A/drr]'', when the ripple rate is 18%, it is marked △, which is not very good, but at 25%,
When it is 45%, the chemical evaluation is improved with a circle mark.

■メッキ平均電流冨度401Vdm2ではリップル率1
7飴のときはΔ印であまりよくないが、24%、65%
では○印、◎印で化成評価は改善される。
■Ripple rate is 1 at plating average current density of 401Vdm2
When there are 7 candies, it is marked Δ, which is not so good, but 24% and 65%.
Then, the chemical evaluation is improved by marking ○ or ◎.

■メッキ平均電流密度80A/dm”ではリップル率1
0%のときはΔ印であまりよくないが、35係、80%
では○印、◎印で化成評価は改善される。
■Ripple rate is 1 at plating average current density of 80A/dm.
When it is 0%, it is marked Δ, which is not very good, but 35th section, 80%
Then, the chemical evaluation is improved by marking ○ or ◎.

■メッキ平均電流密度100 A/dm2ではリップル
率15係のときはΔ印であまりよくないが、35係、1
50係では○印、◎印で化成評価fd改善される。
■At a plating average current density of 100 A/dm2, when the ripple rate is 15, it is marked Δ, which is not very good, but when the ripple rate is 15, it is not very good.
For section 50, the chemical evaluation fd is improved with ○ and ◎ marks.

■メッキ平均電流密度120 A/dm’でi−j: 
l)ップル率10%ではX印でよくないが、30%では
○印で化成評価は改善される。
■Plating average current density 120 A/dm' i-j:
l) At a pull rate of 10%, it is marked with an X, which is not good, but at a pull rate of 30%, it is marked with an O, and the chemical conversion evaluation is improved.

故に非メツキ面化成処理性の悪い直流のメッキ電流密度
範囲10−40.80以上(A/d m2)においても
(第1表)リップル電流を加えるとき、リップル率20
〜200%であれば薄メツキ除去後の非メツキ面化成処
理性は顕著に改善されることか見出される。
Therefore, even in the direct current plating current density range of 10-40.80 or more (A/d m2), which has poor chemical conversion treatment properties on non-plated surfaces (Table 1), when applying ripple current, the ripple rate is 20.
It has been found that if it is 200%, the chemical conversion treatment property of the non-plated surface after removing the thin plating is significantly improved.

本発明は上述した如く片面電気メツキ鋼板の製造に際し
、電解処理後における非メッキ面の化成処理性をよくす
ることかでき、従って片面電気メツキ鋼板の良質高能率
の生産を可能にする。
As described above, in the production of single-sided electroplated steel sheets, the present invention can improve the chemical conversion properties of the non-plated surface after electrolytic treatment, and therefore enables high-quality, high-efficiency production of single-sided electroplated steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半波六相リップル電流を得る電気回路図、第2
図は半波穴(・目’Jソプル電流の具体的波形の例の測
定図(リップル率40%、リップル率75チ、リップル
率200%)、第3図はリップル率の説明図である。 第1図 第3図 時閉 第2図
Figure 1 is an electric circuit diagram for obtaining half-wave six-phase ripple current, Figure 2
The figure is a measurement diagram of an example of a specific waveform of a half-wave hole current (ripple rate 40%, ripple rate 75ch, ripple rate 200%), and Fig. 3 is an explanatory diagram of the ripple rate. Figure 1 Figure 3 When closed Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  片面電気メツキ鋼板の製造において、非メッ
キ面沈保護薄メッキをFe−ZH系合金電気メッキ槽内
で行なう際に、メッキ電流として直流成分に交流成分を
重畳せしめてそのリップル率を20〜200%となるよ
うに調整することを特徴とする鉄−亜鉛系片面電気メツ
キ鋼板の製造方法。
(1) In the production of single-sided electroplated steel sheets, when carrying out thin protective plating on the non-plated surface in a Fe-ZH alloy electroplating tank, an AC component is superimposed on a DC component as a plating current to reduce the ripple rate to 20%. A method for producing an iron-zinc single-sided electroplated steel sheet, the method comprising: adjusting the iron-zinc single-sided electroplated steel sheet to 200%.
JP3505283A 1983-03-02 1983-03-02 Manufacture of steel sheet electroplated with ironzinc on one side Pending JPS59159997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3505283A JPS59159997A (en) 1983-03-02 1983-03-02 Manufacture of steel sheet electroplated with ironzinc on one side

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3505283A JPS59159997A (en) 1983-03-02 1983-03-02 Manufacture of steel sheet electroplated with ironzinc on one side

Publications (1)

Publication Number Publication Date
JPS59159997A true JPS59159997A (en) 1984-09-10

Family

ID=12431263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3505283A Pending JPS59159997A (en) 1983-03-02 1983-03-02 Manufacture of steel sheet electroplated with ironzinc on one side

Country Status (1)

Country Link
JP (1) JPS59159997A (en)

Similar Documents

Publication Publication Date Title
JPS6121317B2 (en)
JPS59232275A (en) Cold rolled steel sheet having excellent phosphate treatability and its production
EP0889147A1 (en) Tin plating method and bath having wide optimum current density range
JP5671566B2 (en) Manufacturing method of surface-treated steel sheet
JP6098763B2 (en) Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPS59159997A (en) Manufacture of steel sheet electroplated with ironzinc on one side
JPS58210194A (en) Production of surface treated steel plate
JPS6144158B2 (en)
JPS6024381A (en) Steel sheet plated on one surface and having excellent chemical convertibility and its production
JP5941525B2 (en) Manufacturing method of surface-treated steel sheet
JPH0369996B2 (en)
JPH0676675B2 (en) Method for producing galvanized steel sheet with excellent chemical conversion treatability and post-painting performance
KR20220153008A (en) Method for passivating tin strip and apparatus for producing passivated tin strip
JPS6144157B2 (en)
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JPS59116391A (en) Production of steel sheet electroplated on one side
Horvick Zinc in the World of Electroplating
JPH0340116B2 (en)
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet
Lindsay et al. Decorative Chromium Plating
JPH0430476B2 (en)
JPH06280085A (en) Galvanized aluminum and aluminum alloy excellent in adhesion and production thereof
JPH04110496A (en) Production of zinc electroplated steel sheet
JPH06280088A (en) Galvanized aluminum and aluminum alloy excellent in adhesion property and production thereof