JPS59159921A - Adding method of ca alloy into molten steel - Google Patents

Adding method of ca alloy into molten steel

Info

Publication number
JPS59159921A
JPS59159921A JP3340983A JP3340983A JPS59159921A JP S59159921 A JPS59159921 A JP S59159921A JP 3340983 A JP3340983 A JP 3340983A JP 3340983 A JP3340983 A JP 3340983A JP S59159921 A JPS59159921 A JP S59159921A
Authority
JP
Japan
Prior art keywords
alloy
molten
molten steel
addition
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3340983A
Other languages
Japanese (ja)
Inventor
Keimei Onuma
大沼 啓明
Nagayasu Bessho
別所 永康
Masao Oguchi
征男 小口
Yasuhiro Kakio
垣生 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3340983A priority Critical patent/JPS59159921A/en
Publication of JPS59159921A publication Critical patent/JPS59159921A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent

Abstract

PURPOSE:To add a molten Ca alloy into molten steel at a high yield by feeding under pressure the molten Ca alloy contained in a hermetic vessel into the molten steel without contact with air and slag. CONSTITUTION:A molten Ca alloy is contained in a hermetic vessel 1 and the vessel is sealed hermetically. The target value of the molten Ca alloy to be added to molten steel 5 and the speed of addition are set in a control device 9. A pressurized gas is fed through a feed pipe 7 into the vessel 1 and the device 9 is operated. A shutter 3a is opened by a driving device 10 to feed and add the molten Ca alloy via a feed pipe 6 into the molten steel 5. The amt. of the molten Ca alloy to be added is detected at all times by a detector 8 during this time and is outputted to the device 9. The opening degree of a shutter 3a is adjusted by a driving device 10 according to the output signal from the device 9 so that the speed of addition is maintained at a prescribed speed. When the amt. of addition attains the target value, the shutter 3a is closed and pressurized gas is fed through a feed pipe 11 into the pipe 6 so that the entire volume of the molten Ca alloy in the pipe 6 is fed into the steel 5.

Description

【発明の詳細な説明】 この発明は、溶鋼中へのCa合金の添加方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adding Ca alloy to molten steel.

転炉から出鋼された溶鋼中の硫黄分は、鋼の熱間強度を
劣化させ、また、溶鋼中のFe,ljnと結合してFe
 、 Mnの硫化物もしくは硫酸化物系の、伸延性に富
む介在物を形成する。そのため、このような介在物を有
する鋼に圧延加工を施すと、その圧延方向に介在物も伸
延し、圧延後の板状素材の板厚方向の強度が著しく劣化
する。そこで、硫化物等の介在物によるこのような悪影
響をなくすため、従来から、Ca合金を溶鋼中に添加し
、それにより鋼の精錬段階において極力硫黄分を除去す
るとともに残存する硫黄分により形成される鋼中介在物
を伸延し難い形状に制御することが行なわれている。
The sulfur content in the molten steel tapped from the converter deteriorates the hot strength of the steel, and also combines with Fe and ljn in the molten steel to produce Fe.
, Mn sulfide or sulfide-based inclusions with high extensibility are formed. Therefore, when steel having such inclusions is subjected to rolling, the inclusions are also elongated in the rolling direction, and the strength in the thickness direction of the plate material after rolling is significantly deteriorated. Therefore, in order to eliminate such negative effects caused by inclusions such as sulfides, Ca alloys have traditionally been added to molten steel, thereby removing as much sulfur as possible during the refining stage of the steel, and reducing the amount of sulfur formed by the remaining sulfur. Efforts are being made to control inclusions in steel so that they are difficult to elongate.

Ca合金を溶鋼中に添加するには、Ca合金が活性であ
り、高温でスラグや空気−に接触すると容易に酸化して
しまうことから、スラグや空気と接触しないようにして
添加する必要があり、そのために従来、C(1合金粉吹
込み法、ワイヤー添加法、08弾投射法などの技術が開
発され実用に供されている。
When adding Ca alloy to molten steel, it is necessary to avoid contact with slag or air as Ca alloy is active and easily oxidizes when it comes into contact with slag or air at high temperatures. To this end, techniques such as the C(1 alloy powder injection method, wire addition method, and 08 bullet projection method) have been developed and put into practical use.

しかし、これらの従来方法には各々以下のような欠点が
あった。
However, each of these conventional methods has the following drawbacks.

先ず、Ca合金粉吹込み法は、溶鋼中へ浸漬したランス
を通してCa合金粉をキャリヤガスと共に溶鋼中に吹込
むことによってCa合金を溶鋼に添加するものであり、
添加されたCa合金中の08分は溶鋼中で一大ガス化し
た後、溶鋼中に溶解する。しが旦 し、そのCaガスの溶鋼に対する溶解度はCaガスの分
圧に基づき変化し、このCa合金粉吹込み法においては
、上記キャリヤガスの存在により溶鋼中に生成されたC
aカスの分圧が小さくなり、溶鋼に対するCaカスの溶
解度が低下することがら、溶鋼中に吹込まれたCa合金
中の08分のFIJtA中への歩留りが低くなり、7〜
10%程度になってしまう。また、この方法においては
、Ca合金粉と共に溶鋼中に吹込まれたキャリヤガスに
よって、溶鋼が盛り上がり、その盛り上がった部分が直
接空気に接触して熱放射し、溶鋼の温度低下が著しいと
いう欠点がある。
First, in the Ca alloy powder injection method, Ca alloy powder is added to molten steel by injecting the Ca alloy powder together with a carrier gas into the molten steel through a lance immersed in the molten steel.
The added Ca in the alloy is gasified in a large scale in the molten steel and then dissolved in the molten steel. However, the solubility of Ca gas in molten steel changes based on the partial pressure of Ca gas, and in this Ca alloy powder injection method, the solubility of Ca gas in molten steel changes due to the presence of the carrier gas.
Since the partial pressure of a dregs becomes smaller and the solubility of Ca dregs in molten steel decreases, the yield of 08 min in the Ca alloy injected into molten steel into FIJtA becomes low, and 7~
It becomes about 10%. In addition, this method has the disadvantage that the molten steel swells due to the carrier gas injected into the molten steel together with the Ca alloy powder, and the swollen portion directly contacts the air and radiates heat, resulting in a significant drop in the temperature of the molten steel. .

また、前記ワイヤー添加法は、Ca合金を「eテープで
被覆して形成したワイヤーを高速度で溶鋼中に送り込む
方法であり、前記08弾投射法はCa合金を封入したカ
プセルを高速で溶鋼中に打込む方法である。 これ等の
方法においては、溶鋼中に送り込んだワイヤーや溶鋼中
に打込んだカプセルがいずれもスラグ層に一部トラップ
されてCa歩留りが10〜15%程度に低下するという
問題がある。更に、これ等の方法では、Ca合金をFe
テープで被覆したり、あるいはカプセルに封入するとい
う繁雑な事前処理が必要となり、そのためコストが高く
なるという問題があった。
In addition, the wire addition method is a method in which a wire formed by coating Ca alloy with e-tape is fed into molten steel at high speed, and the 08 bullet projection method is a method in which a capsule containing Ca alloy is fed into molten steel at high speed. In these methods, both the wire fed into the molten steel and the capsules inserted into the molten steel are partially trapped in the slag layer, resulting in a decrease in Ca yield to about 10 to 15%. Furthermore, in these methods, Ca alloy is
There is a problem in that complicated pre-processing such as covering with tape or encapsulating in a capsule is required, which increases the cost.

この発明は以上の従来技術の問題に鑑みてなされたもの
であり、低コストで歩留りが高く、溶鋼の温度降下等の
不都合が生じない溶鋼中へのCa合金添加方法を提供す
ることを目的とする。
This invention was made in view of the above-mentioned problems of the prior art, and aims to provide a method for adding Ca alloy to molten steel, which is low cost, has a high yield, and does not cause disadvantages such as temperature drop in molten steel. do.

すなわちこの発明は、溶融Ca合金を密閉容器に収容し
、この密閉容器内の溶融Ca合金に一端を浸漬しかつ他
端を溶鋼中に開口させに注入管を介して、上記密閉容器
内の溶融Ca合金を溶鋼中へ加圧注入することを特徴と
する溶鋼中へのCa合金添加方法である。
That is, in this invention, a molten Ca alloy is stored in a closed container, and one end is immersed in the molten Ca alloy in the closed container, and the other end is opened into the molten steel through an injection pipe. This is a method of adding Ca alloy to molten steel, which is characterized by injecting Ca alloy into molten steel under pressure.

以下にこの発明のCa合金添加方法を更に詳細に説明す
る。
The method of adding Ca alloy according to the present invention will be explained in more detail below.

第1図は、この発明の実施に使用するCa合金添加装置
を示す。このCa合金添加装置は、密閉容器1と、この
密閉容器1の底部開口部2に取付けられた開閉装置3と
、この開閉装置3に上端が連結され、下端は取鍋4内の
溶鋼5に開口して、それにより開閉装置3を介して密閉
容器1内側と溶銅5を連通ずる注入管6とを有してなる
。上記密閉容器1には加圧気体供給管7が取付けられ、
またこの密閉容器1には例えばロードセル等の添加最検
出装@8が付設され、この添加量検出装置8からの出力
信号が制御@置9に入力される。上記1閉装ぼ3はシャ
ッター33を有し、このシャッター3aの駆動装置10
が上記制御装置9によって制御駆動される。また、この
開閉装@3にはシャッター38の下部位記から注入性6
内に加圧気体を供給する加圧気体送給管11が連結され
、この加圧気体送給管11に設けられた弁12が上記駆
動装置10と共に上記制御装置9により制(社)開閉さ
れる。
FIG. 1 shows a Ca alloy addition device used to carry out the present invention. This Ca alloy addition device includes a closed container 1, a switch device 3 attached to the bottom opening 2 of the closed container 1, an upper end connected to the switch device 3, and a lower end connected to the molten steel 5 in a ladle 4. It has an injection pipe 6 which is opened and communicates the inside of the closed container 1 with the molten copper 5 via the opening/closing device 3. A pressurized gas supply pipe 7 is attached to the sealed container 1,
Further, this closed container 1 is provided with an addition detection device @8 such as a load cell, and an output signal from this addition amount detection device 8 is inputted to a control @8. The first enclosure 3 has a shutter 33, and a drive device 10 for this shutter 3a.
is controlled and driven by the control device 9. In addition, from the lower part of the shutter 38 to this opening/closing device @3, there is an injector 6.
A pressurized gas supply pipe 11 for supplying pressurized gas is connected therein, and a valve 12 provided on this pressurized gas supply pipe 11 is controlled to be opened and closed by the control device 9 together with the drive device 10. Ru.

この発明では上記Ca合金添添加冒を用いて次のように
してCa合金の添加が行なわれる。
In this invention, Ca alloy is added in the following manner using the Ca alloy addition process described above.

先ず、密閉容器1内へ溶融Ca合金を収容し密閉する。First, a molten Ca alloy is placed in a sealed container 1 and sealed.

また溶鋼5に対する溶融Ca合金の添加目標値及び添加
速度を制御装置9にセットする。そして、加圧気体供給
管7から密閉容器1内に加圧気体を送給し、密閉容器1
内を加圧するとともに制御装@9を作動すると、駆動装
置10によってシャッター38が開かれ、密閉容器1か
ら注入管6を通じて溶鋼5中に溶融Ca合金が注入添加
される。
Further, the target value and addition rate of molten Ca alloy to the molten steel 5 are set in the control device 9. Then, pressurized gas is supplied into the closed container 1 from the pressurized gas supply pipe 7, and
When the inside is pressurized and the control device @9 is activated, the shutter 38 is opened by the drive device 10, and molten Ca alloy is injected into the molten steel 5 from the closed container 1 through the injection pipe 6.

時検出され、その出力信号に基づき制御装置9に備えら
れた演算回路が、密閉容器1から溶鋼5への溶融Ca合
金の添加速度を演算し、その結果に°基づき制御装置9
からの出力信号を受けて駆動装置   □10によりシ
ャッター3aの開度が調整され、溶融Ca合金の添加速
度が予め制御装置9にセットした速度に保持される。そ
して、密閉容器1からの添加量が予めセットした添加目
標値に達すると、制御装置9からの出力信号を受けて駆
動装置10によりシャッター3aが閉じられ、それと共
に加圧気体送給管11から注入管6内に加圧気体が供給
され、注入管6内の溶融Ca合金の全量が溶鋼5中に注
入され、溶a45中への溶融Ca合金の添加が終了する
Based on the output signal, a calculation circuit provided in the control device 9 calculates the addition rate of molten Ca alloy from the closed container 1 to the molten steel 5, and based on the result, the control device 9
The opening degree of the shutter 3a is adjusted by the drive device □10 in response to an output signal from the control device 10, and the addition speed of the molten Ca alloy is maintained at the speed set in the control device 9 in advance. When the addition amount from the closed container 1 reaches the preset addition target value, the shutter 3a is closed by the drive device 10 in response to an output signal from the control device 9, and at the same time, the pressurized gas feed pipe 11 Pressurized gas is supplied into the injection pipe 6, the entire amount of molten Ca alloy in the injection pipe 6 is injected into the molten steel 5, and the addition of the molten Ca alloy into the molten a45 is completed.

次に、前記Cδ合金添加装置を用いて上述の方法により
溶鋼へのCa合金の添加を行なった実施例を説明する。
Next, an example will be described in which Ca alloy was added to molten steel by the method described above using the Cδ alloy addition apparatus.

この実施例は200 janの溶鋼にCa純分にして3
0kg相当のcasi (97kg)及びCaAΩ(1
19kg)を添加して行なったものであり、ca合金添
加前の上記溶鋼の温度及び組成を第1表に示す。
In this example, 200 jan of molten steel has a Ca purity of 3.
casi (97kg) and CaAΩ (1
Table 1 shows the temperature and composition of the molten steel before addition of the ca alloy.

温度を第2表に示す。The temperatures are shown in Table 2.

そして、密閉容器から溶鋼中への溶融Ca合金の添加速
度を、Ca純分にして0.1kQ/Sec 〜1.4J
l/ 5f3Cの範囲で設定し、各場合について溶融C
a合金添加後の溶鋼中へのCa歩留りと溶融Ca合金添
加中の溶鋼の温度降下速度を調べた。その結果を第2図
及び第3図に示す。
Then, the addition rate of the molten Ca alloy from the closed container to the molten steel is 0.1 kQ/Sec to 1.4 J based on Ca pure content.
l/5f3C, and melting C for each case.
The Ca yield in the molten steel after addition of the a-alloy and the temperature drop rate of the molten steel during the addition of the molten Ca alloy were investigated. The results are shown in FIGS. 2 and 3.

尚、第2図及び第3図にはこの発明の実施例と同等の条
件で、従来法りCa合金粉吹込み法)を用いて溶鋼中に
ca si 、 ca A(!を添加したときの溶鋼中
へのCa歩留りレベルと溶鋼の温度降下速度のレベルを
比較例として示した。また、特に第3図には、Ca合金
等の添加を行なわず、溶鋼を静置したときの温度降下速
度を示した。
In addition, FIGS. 2 and 3 show the results when ca si and ca A (!) were added to molten steel using the conventional Ca alloy powder injection method under the same conditions as the embodiment of the present invention. The Ca yield level in molten steel and the level of temperature drop rate of molten steel are shown as a comparative example.In particular, Figure 3 shows the temperature drop rate when molten steel is left standing without adding Ca alloy etc. showed that.

第2図から明らかなように、この発明のCa合金添加方
法によれば、Ca純分添加速度が1.0kQ/seCぐ
越える場合、Ca歩留りが従来法と同等のレベルまで低
下するが、それ以下の場合従来法と比較してCa歩留り
が高く、特にCa純分添加速度が0.3kQ/sec以
下の場合、Ca歩留りはほぼ100%となり、添加速度
0−4kQ/ 3eCテもCa歩留りは90%程度であ
る。したがって、この発明のCa合金添加方法を実施す
る場合、溶鋼中へのCa純分添加速度を1.0kQ/ 
sec以下とするのが有効であり、特に90%以上のC
a歩留りを達成するには0.4ka/ sea以下の速
度で添加するのが望ましい。
As is clear from Fig. 2, according to the Ca alloy addition method of the present invention, when the pure Ca addition rate exceeds 1.0 kQ/secC, the Ca yield decreases to the same level as the conventional method; In the following cases, the Ca yield is higher than that of the conventional method. In particular, when the pure Ca addition rate is 0.3 kQ/sec or less, the Ca yield is almost 100%, and even when the addition rate is 0-4 kQ/3eC, the Ca yield is low. It is about 90%. Therefore, when implementing the Ca alloy addition method of the present invention, the Ca pure addition rate to molten steel is set at 1.0 kQ/
It is effective to keep the C sec or less, especially if the C
It is desirable to add at a rate of 0.4 ka/sea or less to achieve a yield of .

このように、この発明の方法においてCa純分添加速度
を速くするとCa歩留りが低下するのは、溶融Ca合金
の添加速度を大きくすると、それに従い注入管先端にお
いて生成するCa蒸気の気泡径が大きくなり、Ca蒸気
と溶鋼との界面における比表面積が減少し、そのため、
Ca蒸気が溶鋼中に充分溶解しきらない間に、Ca蒸気
の気泡が溶鋼中を浮上し溶鋼表面に到達してしまうこと
が原因であると推論される。
As described above, the reason why the Ca yield decreases when the Ca pure content addition rate is increased in the method of this invention is that when the addition rate of molten Ca alloy is increased, the bubble diameter of Ca vapor generated at the tip of the injection tube increases accordingly. As a result, the specific surface area at the interface between Ca vapor and molten steel decreases, and therefore,
It is inferred that the cause is that Ca vapor bubbles float in the molten steel and reach the surface of the molten steel while the Ca vapor is not fully dissolved in the molten steel.

また第3図から明らかなように、この発明のCa合金添
加方法によれば、Ca純分添加速度が1,0kQ/ s
ecを越える場合、Ca合金添加に伴う溶鋼の温度降下
速度は従来法と同等のレベルとなるが、それ以下の場合
従来法と比較して上記温度降下速度は遅くなり、特に、
caIili分添加速度が0.4kQ/ seC以下の
場合、上記温度降下速度は溶鋼静置時のする場合、溶鋼
中へのCall1分添加速度を1.0kQ/sec以下
とするのが有効であり、望ましくは0.4kQ/sec
以下とするのがよいことがわかる。
Furthermore, as is clear from FIG. 3, according to the Ca alloy addition method of the present invention, the Ca pure addition rate is 1.0 kQ/s.
If it exceeds ec, the temperature drop rate of molten steel due to Ca alloy addition will be at the same level as the conventional method, but if it is less than that, the temperature drop rate will be slower than that of the conventional method, and in particular,
When the addition rate of caIili is 0.4 kQ/sec or less, and the above temperature drop rate is when the molten steel is left standing, it is effective to set the Call 1 minute addition rate to the molten steel to be 1.0 kQ/sec or less, Preferably 0.4kQ/sec
It turns out that it is better to do the following.

以上のようにこの発明によれば、溶融状態のCa合金を
溶鋼中に添加するようにしたことにより、添加する過程
においてCa合金がスラグ層にトラップされるようなこ
とはなく、またCa合金の添加に際してキャリヤガスを
用いないので、キャリヤガスを用いる場合のように溶鋼
中に生成されたCaガスの分圧がキャリヤガスの存在に
より低下してCaガスの溶鋼への溶解度が低下するよう
なことはなく、したがって高い歩留りが達成できる。ま
た、溶融状態のCa合金を添加しても、溶鋼がスラグ層
を突き破って盛りあがるというような極度の乱流が溶鋼
中に生じるようなことはなく、更に、添加される溶融状
態のCa合金自体が大きな顕熱を有しているため、この
発明の方法によればCa合金が添加される溶鋼が顕著に
温度降下するという事態を防止することができる。また
、この発明の方法によれば、溶融状態のCa合金を添加
するので、Ca合金を予め「e等で被覆してワイヤーに
したり、Ca合金をカプセルに封入したりする等の繁雑
な事前処理(ま必要なく、コストを低くすることができ
る。
As described above, according to the present invention, by adding molten Ca alloy to molten steel, the Ca alloy is not trapped in the slag layer during the addition process, and the Ca alloy is not trapped in the slag layer. Since a carrier gas is not used during addition, unlike when a carrier gas is used, the partial pressure of Ca gas generated in the molten steel decreases due to the presence of the carrier gas, and the solubility of Ca gas in the molten steel decreases. Therefore, high yields can be achieved. In addition, even if molten Ca alloy is added, extreme turbulence such as molten steel breaking through the slag layer and rising will not occur in molten steel, and furthermore, the molten Ca alloy itself Since Ca has a large sensible heat, the method of the present invention can prevent the temperature of molten steel to which Ca alloy is added from dropping significantly. In addition, according to the method of the present invention, since a molten Ca alloy is added, complicated pretreatments such as coating the Ca alloy with e or the like to form a wire or encapsulating the Ca alloy in capsules are required. (Well, it's not necessary and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に供するCa合金添加装置の断
面図、第2図はこの発明を実施した場合のCa純分添加
速度とCa歩留りの関係を示す図、第3図はこの発明を
実施した場合のCa純分添加速度と溶鋼温度降下速度と
の関係を示す図である。 1・・・密閉容器、 3・・・開閉装置、 4・・・取
鍋、6・・・注入管、 7・・・加圧気体供給管、 8
・・・添加母検出装置、 9・・・制御装置、 11・
・・加圧気体送給管。 出願人  川崎製鉄株式会社 代理人  弁理士 豊田武久 (ほか1名) 第1図 第2図 C^線分奈〃D速−友(とグZsco)手   続  
 補   正   書  く方式)昭和58年6月30 特許庁長官 若杉和夫殿 1、事件の表示 昭和58年特許願第33409号 2、発明の名称 溶損中へのCa合金添加方法 3、補正をする者 事件との関係 特許出願人 住 所  兵庫県神戸市中央区北本町通1丁目1番28
号名称 < 125’)川崎製鉄株式会社4、代理人 住  所  東京都港区三田3丁目4番18@5、補正
命令の日付 昭和58年5月31日(発送日) 6、補正の対象 明細書の発明の詳細な説明の欄および代理権を証明する
書面               よくて;=≧S7
、補正の内容 (1)明細書第1頁第14行目の「2、特許請求の範囲
」を臼   「3、発明の詳細な説明]に訂正する。 (2)別紙の通り委任状を提出する。
Fig. 1 is a cross-sectional view of a Ca alloy addition device used to implement this invention, Fig. 2 is a diagram showing the relationship between pure Ca addition rate and Ca yield when this invention is implemented, and Fig. 3 is a diagram showing the relationship between Ca pure content addition rate and Ca yield when this invention is implemented. It is a figure which shows the relationship between Ca pure content addition rate and molten steel temperature fall rate in the case of implementation. DESCRIPTION OF SYMBOLS 1... Airtight container, 3... Switching device, 4... Ladle, 6... Injection pipe, 7... Pressurized gas supply pipe, 8
... Added mother detection device, 9... Control device, 11.
...Pressurized gas supply pipe. Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Takehisa Toyota (and one other person) Figure 1 Figure 2
Amendment writing method) June 30, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 33409 of 1982, Title of the invention, Method of adding Ca alloy during melting, 3, amended. Relationship with the patent case Patent applicant address 1-1-28 Kitahonmachi-dori, Chuo-ku, Kobe, Hyogo Prefecture
Title: <125') Kawasaki Steel Corporation 4, Agent address: 3-4-18@5, Mita, Minato-ku, Tokyo Date of amendment order: May 31, 1980 (shipment date) 6. Details subject to amendment Column for detailed explanation of the invention in the document and document certifying authority of representation At best;=≧S7
, Contents of the amendment (1) "2. Scope of claims" on page 1, line 14 of the specification is corrected to "3. Detailed description of the invention." (2) Submit a power of attorney as shown in the attached document. do.

Claims (2)

【特許請求の範囲】[Claims] (1)溶融Ca合金を密閉容器に収容し、この密閉容器
内の溶融Ca合金に一端を連通しかつ他端を溶鋼中に開
口させた注入管を介して、上記口開容器内の溶融Ca合
金を溶鋼中へ加圧注入することを特徴とする溶鋼中への
Ca合金添加方法。
(1) The molten Ca alloy is stored in a closed container, and the molten Ca in the open-mouth container is poured into A method for adding Ca alloy to molten steel, which comprises injecting the alloy into molten steel under pressure.
(2)溶鋼中への溶融Ca合金の注入をCa純分にして
1.0kg/sec以下の添加速度で行なうことを特徴
とする特許 へのCa合金添加方法。
(2) A patented method for adding Ca alloy to molten steel, characterized in that molten Ca alloy is injected into molten steel at a rate of addition of pure Ca at a rate of 1.0 kg/sec or less.
JP3340983A 1983-02-28 1983-02-28 Adding method of ca alloy into molten steel Pending JPS59159921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340983A JPS59159921A (en) 1983-02-28 1983-02-28 Adding method of ca alloy into molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340983A JPS59159921A (en) 1983-02-28 1983-02-28 Adding method of ca alloy into molten steel

Publications (1)

Publication Number Publication Date
JPS59159921A true JPS59159921A (en) 1984-09-10

Family

ID=12385790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340983A Pending JPS59159921A (en) 1983-02-28 1983-02-28 Adding method of ca alloy into molten steel

Country Status (1)

Country Link
JP (1) JPS59159921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183721A (en) * 1989-12-12 1991-08-09 Nippon Steel Corp Calcium treatment of molten steel
WO2020255917A1 (en) 2019-06-17 2020-12-24 Jfeスチール株式会社 METHOD FOR ADDING Ca TO MOLTEN STEEL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183721A (en) * 1989-12-12 1991-08-09 Nippon Steel Corp Calcium treatment of molten steel
JPH0645816B2 (en) * 1989-12-12 1994-06-15 新日本製鐵株式会社 Calcium treatment method for molten steel
WO2020255917A1 (en) 2019-06-17 2020-12-24 Jfeスチール株式会社 METHOD FOR ADDING Ca TO MOLTEN STEEL
KR20220008897A (en) 2019-06-17 2022-01-21 제이에프이 스틸 가부시키가이샤 Ca Addition Method to Molten Steel

Similar Documents

Publication Publication Date Title
US3467167A (en) Process for continuously casting oxidizable metals
CN1985012A (en) Cored wire
TW325499B (en) Method and device for operating dual-container electric arc furnace
US4210442A (en) Argon in the basic oxygen process to control slopping
JPS63227712A (en) Composite material for treating molten metal bath having tublar casing
US4481032A (en) Process for adding calcium to a bath of molten ferrous material
JPS59159921A (en) Adding method of ca alloy into molten steel
CN108559860B (en) A kind of device and method for nickel-base alloy vacuum induction melting high-efficiency desulfurization
CN108425063B (en) A kind of preparation method of the high manganese intermediate alloy of high cleanliness
SU882416A3 (en) Method and device for steel treatment
US3922166A (en) Alloying steel with highly reactive materials
JPS6164811A (en) Desulfurizing method of molten steel
CN108950130A (en) A kind of mass production smelting process of low oxygen and high purity steel
JPS56150118A (en) Refining method of molten steel in vessel
JPS6144118A (en) Refining method of molten metal
SU789591A1 (en) Method of producing low-carbon steel
KR20220029543A (en) Steel ingot manufacturing method
JPS56108839A (en) Inserter for introducing additive into molten metal
US5306329A (en) Phosphorous deoxidation of metal
JPH10298629A (en) Method for melting extra-low carbon steel having high cleanliness
US3761246A (en) Process of preconditioning a chamber and deoxidizing a metal therein
Deryabin Features of Spinellide Formation in Vanadium Slags During Pulsed Blowing of Pig Iron
JPS61272310A (en) Method for slagging slag forming agent in arc process
Abratis et al. Treatment of Steel Melts in the Ladle With Solid Materials
JPS6112815A (en) Method for adding alloying or refining agent to molten steel degassing vessel