JPS59159414A - Plastic drive shaft - Google Patents

Plastic drive shaft

Info

Publication number
JPS59159414A
JPS59159414A JP3094383A JP3094383A JPS59159414A JP S59159414 A JPS59159414 A JP S59159414A JP 3094383 A JP3094383 A JP 3094383A JP 3094383 A JP3094383 A JP 3094383A JP S59159414 A JPS59159414 A JP S59159414A
Authority
JP
Japan
Prior art keywords
frp
drive shaft
joint sleeve
metal joint
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3094383A
Other languages
Japanese (ja)
Inventor
Hideo Watanabe
英雄 渡辺
Ichiro Kobayashi
一朗 小林
Masataka Kumada
熊田 正隆
Kazuo Emori
江森 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yokohama Rubber Co Ltd
Original Assignee
Honda Motor Co Ltd
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yokohama Rubber Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3094383A priority Critical patent/JPS59159414A/en
Publication of JPS59159414A publication Critical patent/JPS59159414A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin

Abstract

PURPOSE:To improve tortional strength and fatigue resistance by adhesively fixing the inner surface of a metal joint sleeve to the outer surface of the both ends of an FRP cylindrical pipe. CONSTITUTION:An FRP drive shaft consists of an FRP pipe 2 and a metal joint sleeve 3. The inner surface of the metal joint sleeve 3 is adhesively fixed to the outer surface of the both ends of the FRP pipe 2 through a layer of an adhesive 4. In this case, the end part outer surface of the FRP pipe 2 is brought in contact with pressure to the inner surface of the metal joint sleeve 3, with pressurized air, etc. being introduced in the hollow part of the FRP pipe 2, and utilizing, as necessary, a rubber bladder, etc. while the FRP pipe 2 and the adhesive 4 are heated and hardened by means of a heating oven, etc., thereby easily obtaining a drive shaft with strong adhesive force. And, thus, a drive shaft with improved tortional strength and fatigue resistance can be obtained.

Description

【発明の詳細な説明】 捩り強興にすぐれ、かつ、広範囲の繊維巻き角度に応じ
ることのできる軽量な繊維強化合成樹脂製の駆動伝達軸
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lightweight drive transmission shaft made of fiber-reinforced synthetic resin that has excellent torsional strength and can accommodate a wide range of fiber winding angles.

車両の軽量化のだめに、車両用ドライブシャフト等の一
部を軽量な繊維強化合成樹脂(以下、FRPと称する)
の管で構成することは、一般に知られている。この種の
樹脂製,駆動軸は、FRP管の一端部或いは両端部に駆
動軸、従動軸と結合されるだめの金属製継手部材を接合
一体化したもので、トルク伝達時には継手部材とFRP
管との接合部分に応力が集中し易く、したがって該接合
部分には所定の捩り強+qか要求される,、従来、FR
P利を用いたこの1Φ(7靭1ルス動軸と1,一(は、
例えば、F R 1)管の両端の内1f[1に金に製(
代表的にはスチールイオ)継手スリーブの外面をエボキ
ン樹脂等の接着剤を介し2て屁,合したものか用いられ
ている。この−例を詑1図に示す。この図において、F
RP製駆長駆動軸1FRP管2(中空体)と、このFi
什管2の両端部にそれぞれ軸心を合致させ接合一体化さ
れた管状の金属継手スリーブ6とからなる。なお、FR
P管2の端部内面と金属継手スリーブ乙の外面とは、接
着剤4cつノ錫を介して接着さノ1ている。
In order to reduce the weight of vehicles, parts of vehicle drive shafts, etc. are made of lightweight fiber-reinforced synthetic resin (hereinafter referred to as FRP).
It is generally known that the structure is composed of a tube. This type of resin drive shaft is made by integrating a metal joint member that is connected to the drive shaft and driven shaft at one end or both ends of the FRP pipe, and when transmitting torque, the joint member and FRP
Conventionally, FR
This 1Φ (7-button 1-lus movement axis and 1,1) using P utilization is
For example, 1f [1] of both ends of the pipe is made of gold
Typically, the outer surface of a steel joint sleeve is bonded together with an adhesive such as Evoquin resin. An example of this is shown in Figure 1. In this figure, F
RP long drive shaft 1 FRP tube 2 (hollow body) and this Fi
It consists of a tubular metal joint sleeve 6 which is integrally joined to both ends of the main pipe 2 with their axes aligned with each other. In addition, FR
The inner surface of the end of the P-pipe 2 and the outer surface of the metal joint sleeve B are adhered to each other via a tin adhesive.

l一かし7ながら、このような従来のF R I)製、
駆動軸1は、」一部のようにFRP管2と金属継手スリ
ーブ6とが接着しているので、++h.p H 2に接
1′る部分の金属継手スリーブ乙の径が小さくなり、こ
の/乙め、接着面積が低下するので必然的に接着長さを
増やさざるを得す、したがって金属継手スリーブ60重
量増をきたす欠点がある。
However, such conventional FRI) products,
Since the drive shaft 1 has the FRP pipe 2 and the metal joint sleeve 6 bonded to each other as in some parts, ++h. The diameter of the metal joint sleeve A at the part in contact with pH 2 becomes smaller, and the bonding area decreases, so the bonding length must be inevitably increased.Therefore, the weight of the metal joint sleeve 60 There are disadvantages that increase.

また、li’RP製、駆動軸1は、上述したように接着
剤4の層を介してFRP管2と金属継手スリーブ6とを
接合するために、その接着効果を最大(/ζ介1揮させ
るへく金属継手スリーブ3上に接着剤を介して樹脂含浸
ノイラ、ノント・ワインティニック−やブリプt/クシ
ートを用いたテープ・ワインディング等の成形手段によ
り繊維を捲回し7てF B I?積層体層を積層してい
る。しかし、この場庁、金属継手スリーブ3とFRP積
層体との熱膨張率の相違から、FRP積層体層は加熱に
よる樹脂硬化過程での熱歪(拉1脂の硬化収縮も含む)
の影響をうけ、駆動軸に必要な捩り強度や疲労肪性を著
しく低下せ17めてしまい、さらにこれらの関係は繊維
の巻き角度によって犬きく左右さJするという欠点があ
る。このことは、−例として補強繊維に連続炭素繊維(
CF)を使用し7.7トリソクス樹脂にエポキン樹脂を
用いた申−交叉積層(−七〇゛巻き)駆動軛1について
の第2図に示される下記の考察から明らかである。
In addition, the drive shaft 1 made by li'RP maximizes the adhesive effect (/ζ The fiber is wound 7 onto the metal joint sleeve 3 using an adhesive using a forming method such as tape winding using resin-impregnated Noira, non-wintinic, or Blip sheet. However, due to the difference in coefficient of thermal expansion between the metal joint sleeve 3 and the FRP laminate, the FRP laminate layer suffers from thermal distortion (La 1 resin) during the resin curing process due to heating. (including curing shrinkage)
As a result, the torsional strength and fatigue resistance required for the drive shaft are significantly reduced, and there is a further drawback that these relationships vary greatly depending on the winding angle of the fibers. This means that - for example, continuous carbon fibers (
This is clear from the following discussion, shown in FIG. 2, of the cross-laminated (-70° winding) driving yoke 1 using Epoquine resin in addition to 7.7 trisox resin (CF).

第2図はCFの巻き角度(θ°)と得られる連続炭素繊
維強化合成樹脂゛(以下、CFRPと称する)積層体の
純膨張係数(X 10−6/”C)との関係をクシフて
示しンχ説明図で、図中Aはスチールを人わず。第2図
から判る上うに、CFRP債層体は交叉巻き角度(/ヤ
フト長さ[軸基準)が士:3 t)’〜±90°の範囲
では7〜\′フト半径力向の熱膨張率がスチール製継手
スリーブより小さいので、樹j柘加熱硬化後室温剤でに
冷却する過程てCFRP債層体とスリーブとの熱膨張率
の差に帰因する熱歪みをうけることになり、この結果、
スリ==フ上のCI”Rp積層体層は円周方向に層状の
クツ・ツクが発生し、捩り強度および疲労強電が著しく
低下することになる。この傾向は、C]” RP積バカ
体層の熱膨張率(純膨張係数)が最小となる巻き角度、
+−60”の」烏合に著しい1、しまたがって、スリー
フ山付は構造(金縁1継手スリーフロ0夕t、 ’(f
IiをFRPR2O3部内面1に接地させる414造)
の場合には、巻き角度が主O″〜±30゛の狭い範囲の
もののほかは2駆動軸として適さないことになり、最犬
捩シ強度を得る±45°の・ものや壱き角度を大きくす
ることにより軸長さ方向の軸・・不常数を低下させてダ
ンピンク効果を発揮させる巻き角度のものは、スリーブ
山付は構造では実用的にばL、19了槁することができ
ない。
Figure 2 shows the relationship between the winding angle (θ°) of CF and the net expansion coefficient (X 10-6/''C) of the resulting continuous carbon fiber reinforced synthetic resin (hereinafter referred to as CFRP) laminate. In the explanatory diagram, A in the diagram does not include steel.As can be seen from Figure 2, the cross-winding angle (/yaft length [axis reference)] of the CFRP bond layer is 3 t)'~ In the range of ±90°, the coefficient of thermal expansion in the radial force direction is smaller than that of the steel joint sleeve, so the heat between the CFRP bond layer and the sleeve is It will be subject to thermal distortion due to the difference in expansion coefficient, and as a result,
The CI"Rp laminate layer on the sleeve will have layered cracks in the circumferential direction, resulting in a significant decrease in torsional strength and fatigue strength. This tendency is The winding angle at which the thermal expansion coefficient (net expansion coefficient) of the layer is the minimum,
+ - 60"" with a remarkable 1, straddle, sleeve threaded structure (gold edge 1 joint sleeve flow 0 t, '(f
(414 construction to ground Ii to the inner surface 1 of FRPR2O3 part)
In this case, it is not suitable as a second drive shaft unless the winding angle is within a narrow range of 0'' to ±30°, and a winding angle of ±45° or a winding angle of ±45° to obtain the maximum torsional strength is recommended. For those with a winding angle that reduces the axial irregularity in the shaft length direction and exhibits the dumping effect by increasing the length, the sleeve thread cannot be practically achieved with L, 19 in terms of structure.

−、t、’: HL’の第2図に示される例では、単一
交叉積層体について記述しだが、金用継手スリーブの熱
膨張率よりもCFRP債層体の半径方向の熱膨張率が小
さければ、巻き角度、積層構成に無関係に上述した欠点
が生じるのである。さらに、(二(]つことば、CF 
RI)積層体を予じめ成形し、硬てヒ1後、ぞiに接危
剤により金に継手スリーブを’Ji: 、′!Jl、 
1ilJ+化接着さぜる後句は接着、去による構造のも
、、!、)−6も同様である。
-,t,': In the example shown in Figure 2 of HL', a single cross laminate is described, but the coefficient of thermal expansion in the radial direction of the CFRP bond layer is higher than that of the metal fitting sleeve. If it is small, the above-mentioned drawbacks will occur regardless of the winding angle or laminated structure. Furthermore, (two words, CF
RI) Pre-shape the laminate, and after it hardens, attach the joint sleeve to the metal using a sealant. Jl,
After 1ilJ + adhesion, the structure due to adhesion and removal is also...! , )-6 is also the same.

さらに、このような欠点を有するものを1駆動(lli
llJ−シて1史用し/こ」烏合には、特(で、イ氏温
域でf吏用した場合にr、111、常温域での使用に比
してより熱T「のイし谷をつけることになるので、この
点からも金属継手スリーブの熱膨張率より低い熱膨’J
k *全一イ1する積層構成体のもの(−しijとして
一中−交叉積層体てはニー30’〜±90°)では実用
に供しイ:)ないことにな6゜ その他としては、継手スリーブの内外面に二重にFBI
)管の端部を装着する例かあるが(特開昭55−907
95号)、これては継手C)重石1が茗ドアく増加する
欠点がある。
Furthermore, one drive (lli
When used in the temperature range of 2 degrees Fahrenheit, the heat resistance is 111%, which is higher than that at room temperature. Since a valley will be formed, from this point of view, the thermal expansion coefficient is lower than that of the metal joint sleeve.
k * A laminated structure with all-in-one (1-in-1 cross-laminated structure with knee 30' to ±90°) is not practical. Double FBI on the inner and outer surfaces of the fitting sleeve
) There is an example of attaching the end of the tube (Japanese Patent Application Laid-Open No. 55-907)
No. 95), this has the disadvantage that the weight 1 of the joint C) increases considerably.

本発明は、−上述した諸欠点を解消する/ζめになされ
たものであって、捩り強度と而」疲労性を向上させた樹
脂製、駆動軸を提供することを目的とづ゛る。
The present invention has been made to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a drive shaft made of resin that has improved torsional strength and fatigue resistance.

このため、本発明の樹脂製、駆動l抽は、FRP l’
+1筒管■筒管0外端面に、金属相手スリーブの内表面
舎接着固定してなることを−1,1徴とする。
For this reason, the resin-made, driven latch of the present invention is FRP l'
+1 cylindrical pipe ■ cylindrical pipe 0 The inner surface of the metal mating sleeve is adhesively fixed to the outer end face of the cylinder pipe -1,1.

以下、図[nlに基づいて本発明の実施例について部門
する。、なお、第ご3図において、第1図におけると同
一の箇所d、同一の)1)−ひて表わ−ず。
Hereinafter, embodiments of the present invention will be described based on FIG. In addition, in FIG. 3, the same location d as in FIG.

第3図は、本発明に係る樹脂製1駆!IfIIiill
bの一例の1則断面を示したもので、図中、l=” R
)’製部動軸1は、第1図におけると同様(で、P R
P盾2(中空体)と金属継手スリーブ6とか−)乙゛る
。J=’■<汗)管2の両澗の外表面には、金7(−f
曾、(ネ手スリー〕゛6の内表面が接着剤4の層を介し
、て接着固定されでいる。
Figure 3 shows a resin 1WD vehicle according to the present invention! IfIIiill
This shows a one-law cross section of an example of b, and in the figure, l=” R
)'The production part moving shaft 1 is the same as in FIG.
There is a P shield 2 (hollow body) and a metal joint sleeve 6). J='■<sweat) Gold 7 (-f
The inner surface of the (hand three) 6 is adhesively fixed via a layer of adhesive 4.

このF Ri)製、駆動’I’lll 1を得るには、
例えは、エボギ/(立1脂雪をマトリックスとした連続
炭素縁1イr等のプリゾレグンートをマンドレル(1ス
1示せず゛)に巻き伺けて、積層体を形成する。うその
後、マンドレルを引きぬくと中空の積層体、すなわちF
R))管2か得ら才する。つさ゛に、FRP管2の両端
の外表面に接着剤4を塗布1〜、金属継手スリーブ6を
、その内表面が接着剤4に接するように、FRP i’
q’ 2の両端にそれぞれ装着固定する。
To obtain this F Ri), drive 'I'llll 1,
For example, a laminate is formed by winding a continuous carbon edge 1r etc. with a continuous carbon edge 1r made of Ebogi/(Tachi 1 fat snow as a matrix) around a mandrel (1st 1 not shown).After that, the mandrel is When pulled out, a hollow laminate, namely F
R)) Obtain tube 2. First, apply adhesive 4 to the outer surfaces of both ends of the FRP pipe 2. Then, attach the metal joint sleeve 6 to the FRP i' so that its inner surface is in contact with the adhesive 4.
Attach and fix to both ends of q'2.

この場合、FRI)管2の中空部に加圧空気等を導入し
、必要に応じてコノ、ブラタ−一等を利用してFRP 
F 2の端部外表面を金属継手スリーブ乙の内表面に加
圧圧着させながらFRP管2および接着剤4を加熱オー
ブン等で加熱硬化させることにより、強固な接着力を有
する。駆動軸が容易に得られる。、また、FRP管2を
ノイラメンY・ワインテインク法などにより予じめ成形
し、硬化後、その端部外人向に金属継手スリーブ6を接
着させてもよい。さらに、必要に応じて、FRP管2の
端部外表面および金属継手スリーブの内表面をテーパー
にとり、これらを嵌合さげて丁−バー接着させてもよい
In this case, pressurized air, etc. is introduced into the hollow part of the FRI pipe 2, and if necessary, the FRP is
Strong adhesive strength is achieved by heating and curing the FRP pipe 2 and adhesive 4 in a heating oven or the like while pressing the outer surface of the end of the F 2 to the inner surface of the metal joint sleeve B. A drive shaft can be easily obtained. Alternatively, the FRP pipe 2 may be formed in advance by the Neiramen Y-Weinteink method, and after hardening, the metal joint sleeve 6 may be adhered to the outer end of the FRP pipe 2. Furthermore, if necessary, the outer surface of the end of the FRP pipe 2 and the inner surface of the metal joint sleeve may be tapered, and these may be fitted together and bonded with a bar.

上述しまたように、本発明の樹脂製、駆動+IQt+は
、■・”RP円筒管の両端の外表面に金ス(継手スリー
 ブの内表面を接着同定することによって構成されるた
めに、−ト記のような特長をイ1する。
As mentioned above, the resin drive+IQt+ of the present invention is constructed by bonding metal strips (the inner surface of the joint sleeve) to the outer surface of both ends of the RP cylindrical tube. It has the following features.

(1)  広範囲の繊維巻き角度に応しること〃\でき
る。例えば、連続炭素繊維を用いた弔−交叉積層構造(
1層すつ交互に七〇〇積層することおよび複数層ずつ交
互に積層することの両方を含む)のものでは、巻き角度
が、f30”〜+ 9(1’の広範囲に亘るものが安定
して得ることかできる。
(1) Can accommodate a wide range of fiber wrapping angles. For example, a cross-layered structure using continuous carbon fibers (
(including both one-layer alternating 700-degree lamination and multiple layer-by-layer lamination), the winding angle is stable over a wide range of f30'' to +9 (1'). You can get it.

なお1.駆動軸としての必要捩り強度の関係士、単−交
叉巻きにあっては巻き角度の上限はグイシトしくは±7
5°才でのものがよく、ま/こ、振動減衰の面からダン
ピング性を考慮し7だ場合、軸・・ネ常数を成る程度低
目に設定する必安かあり、この点から下限の巻き角度は
+45’以上のものが好ましい。単に捩れ強度だけか必
要ならば±30′〜−1−75°−まての範囲てよい。
Note 1. Regarding the torsional strength required for the drive shaft, the upper limit of the winding angle is ±7 for single-cross winding.
The one at 5 degrees is good, but if it is 7 considering the damping property from the perspective of vibration damping, it is necessary to set the axis constant as low as possible, and from this point on, the lower limit The winding angle is preferably +45' or more. It may be merely the torsional strength or, if necessary, within the range of ±30' to -1-75°.

また、雫−巻き構成に限らず角度違いの積層構成で、金
属紹)手スIJ−ブの熱膨張率よりもFRP円筒管の熱
膨張率が低い場合でも適用1)]能である。
In addition, it is applicable not only to the droplet-wound configuration but also to a laminated configuration with different angles, and even when the coefficient of thermal expansion of the FRP cylindrical tube is lower than that of the metal tube.

(2)金属継手スリーブかl”RP円筒管の外表面に装
酒さねているのでスリーフ山付は構造の場合に比し2て
より優位にイ葡重設剖紮行なうことができる。
(2) Since the metal joint sleeve is attached to the outer surface of the RP cylindrical pipe, the sleeve with threaded structure allows for easier installation and analysis.

例えは、FRP 眉2の内径(2r)を50mmφ、厚
さく1)を4 mmと15、接満長さくIりおよび剪断
捩り強度(τ)を一定にし、た場合、内句けおよび外付
けのそれぞれの発生最大トルク(7max )を剖碧し
、5てみると、 外付は夕1プ〜’l’max−2πτe (r + t
 )2−528]τl内1ス1けタイプ〜’r’max
 = 2 L T i r2−3925τ111なろ1
、し、たがって、外信(ヴタイプのものは内1′・jυ
−jタイプのものに比して実に35%も多くトルクに:
発生させるC、L−ができる13ずなわち、外付はタイ
プのもの(・」1、Ii’RP * 2の肉厚分だけ優
位に召]Eljの設定がijJ能となる。
For example, if the inner diameter (2r) of FRP eyebrow 2 is 50 mmφ, the thickness 1) is 4 mm and 15, and the joint length and shear torsional strength (τ) are constant, then Analyzing the maximum generated torque (7max) of each of the
)2-528] 1 space 1 digit type in τl ~ 'r'max
= 2 L T i r2-3925τ111 Naro1
, therefore, foreign news (V type is in 1′・jυ
-In fact, 35% more torque compared to the J type:
13 pieces that can generate C and L-, that is, the external attachment is of the type (・1, Ii'RP * 2 thickness is superior) Elj setting becomes ijJ function.

さらに、金属継手スリーブ6の構造も内伺はタイプのも
のに比し、て次の=−t 39−により軽量に設計する
ことができる。
Furthermore, the structure of the metal joint sleeve 6 can also be designed to be lighter than that of the inner opening type due to the following =-t39-.

必要荷重(T)および剪断捩り強度(τ)を−・定にし
てそれぞれのスリーブの厚さ旧灼をr]な・)と、 から、内付はタイプのもののスリーブの厚さを4mm、
 FRP管の厚さを4開とすると、外信はタイプのもの
のスリーブの厚さは約50Sfj度薄くすることができ
る。−まだ、この結果からEF量についても内付はタイ
プのもののスリーブに比し7て約30%程度軽くするこ
とができる1つ上述したように、本発明に上れは、一般
に夫用的に使用さねる単一交叉16層構造の場合−でも
広範囲の巻き角度のものが安定して得られると共に、駆
動軸としての重、Mもより!By :i什となるノ(き
な利点かあるので請訓の白山庶か、虱り拡大されること
になる。1/こ、本発明によれば、金属継モスリーブの
熱膨張率より低い熱膨張率を有するI”R,P円筒管(
中空でも中実状でもよい)の両瑞外表面に金属継手スリ
ーブを配することにより、熱膨張差に基づく強固な締め
効果をうけることになるので、捩り強度や疲労性を著し
く向上させることができる。
With the required load (T) and shear torsional strength (τ) constant as -, the thickness of each sleeve is r].
If the thickness of the FRP pipe is 4 mm, the thickness of the sleeve of the foreign type can be reduced by about 50 Sfj degrees. -This result also shows that the amount of EF can be reduced by about 30% compared to the internal type sleeve.As mentioned above, the advantages of the present invention are generally Even in the case of a single crossed 16-layer structure, it is possible to stably obtain a wide range of winding angles, and the weight and M of the drive shaft are also much lower! By: i (There is a great advantage, so the Hakusanjo of the request will be expanded. 1/According to the present invention, the thermal expansion coefficient is lower than that of the metal joint moss sleeve. I”R,P cylindrical tube with expansion coefficient (
By arranging metal joint sleeves on the outer surfaces of both ends (which may be hollow or solid), a strong tightening effect is achieved based on the difference in thermal expansion, which can significantly improve torsional strength and fatigue resistance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の樹脂製、駆動軸の一例の要部を示す断面
側面図、第2図は連続炭素繊維の巻き角度と得られる積
層体の線膨張係数との関係をグラフで示した説明図、第
3図は本発明に係る樹脂製駆動軸の一例の要部の断面側
面図である。 1・・FRP製駆動駆動軸・・・FRl)管、3・・金
属路」−・スリーブ、4・・接着剤、A・・・スチール
。 代理人 弁理士 小 川 イ言 − 弁理士 野 口 賢 照 弁理士 愈 下 和 彦
Figure 1 is a cross-sectional side view showing the main parts of an example of a conventional resin drive shaft, and Figure 2 is a graph showing the relationship between the winding angle of continuous carbon fibers and the coefficient of linear expansion of the resulting laminate. 3 are cross-sectional side views of essential parts of an example of a resin drive shaft according to the present invention. 1. FRP drive shaft...FRl) pipe, 3. Metal path - sleeve, 4. Adhesive, A... Steel. Agent: Patent Attorney Igo Ogawa − Patent Attorney: Masaru Noguchi Patent Attorney: Kazuhiko Yushita

Claims (1)

【特許請求の範囲】[Claims] 繊、Gイf強化合成樹脂円筒管の両端の外表面に、金属
継手スリーブの内表面を接着固定1〜たことを特徴とす
る泣j脂製駆動軸。
1. A drive shaft made of plastic, characterized in that the inner surface of a metal joint sleeve is adhesively fixed to the outer surface of both ends of a reinforced synthetic resin cylindrical tube.
JP3094383A 1983-02-28 1983-02-28 Plastic drive shaft Pending JPS59159414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094383A JPS59159414A (en) 1983-02-28 1983-02-28 Plastic drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094383A JPS59159414A (en) 1983-02-28 1983-02-28 Plastic drive shaft

Publications (1)

Publication Number Publication Date
JPS59159414A true JPS59159414A (en) 1984-09-10

Family

ID=12317757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094383A Pending JPS59159414A (en) 1983-02-28 1983-02-28 Plastic drive shaft

Country Status (1)

Country Link
JP (1) JPS59159414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236944A (en) * 2010-05-07 2011-11-24 Hitachi Constr Mach Co Ltd Bearing device
EP2527781A1 (en) * 2011-05-24 2012-11-28 MBDA France Joining element for a body made of a composite material of a military penetrating projectile
KR102067126B1 (en) * 2018-08-23 2020-01-16 효림산업 주식회사 Carbon fiber reinforced plastic propeller shaft for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236944A (en) * 2010-05-07 2011-11-24 Hitachi Constr Mach Co Ltd Bearing device
EP2527781A1 (en) * 2011-05-24 2012-11-28 MBDA France Joining element for a body made of a composite material of a military penetrating projectile
WO2012160271A1 (en) * 2011-05-24 2012-11-29 Mbda France Connecting element for a body made of composite material of a piercing military projectile
FR2975770A1 (en) * 2011-05-24 2012-11-30 Mbda France JUNCTION ELEMENT FOR A BODY OF A COMPOSITE MATERIAL OF A PERFORATION MILITARY PROJECTILE
US9347752B2 (en) 2011-05-24 2016-05-24 Mbda France Connecting element for a body made of composite material of a piercing projectile
KR102067126B1 (en) * 2018-08-23 2020-01-16 효림산업 주식회사 Carbon fiber reinforced plastic propeller shaft for vehicle

Similar Documents

Publication Publication Date Title
US4664644A (en) Fiber reinforced plastic drive shaft and method of manufacturing thereof
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
US4385644A (en) Composite laminate joint structure and method and apparatus for making same
CA2851824C (en) Composite columnar structure having co-bonded reinforcement and fabrication method
US4238539A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a knurl interlock
US7874925B2 (en) Transmission shaft joint design
JPS6219639B2 (en)
IL27800A (en) Composite reinforced plastic pipe and method for fabricating this pipe
US5261991A (en) Composite tubular elements and methods of fabrication
GB2127938A (en) Method of forming a composite drive shaft tube
JPS59159414A (en) Plastic drive shaft
JPS5950216A (en) Drive shaft of fiber reinforced synthetic resin and manufacture thereof
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPS63199915A (en) Power driving shaft made of fiber reinforced plastic
EP0093012B1 (en) Filament wound interlaminate tubular attachment and method of manufacture
JPH0560122A (en) Drive shaft made of composite material
JPS6137850Y2 (en)
JPH0742974B2 (en) Manufacturing method of transmission shaft made of fiber reinforced plastic
JP3191234B2 (en) Joint structure and joining method between FRP shaft and joint
JPH041374Y2 (en)
JPS5916125B2 (en) Fiber reinforced resin propeller shaft
JPH0296044A (en) Joint construction of fiber-reinforced resin reinforcing wire and reinforcing bar
JPH0742719Y2 (en) Synthetic resin composite pipe
Haruna et al. Strength prediction of adhesively bonded carbon/epoxy joints