JPS5915856B2 - Forced air flow conveyance equipment for transport vehicles - Google Patents
Forced air flow conveyance equipment for transport vehiclesInfo
- Publication number
- JPS5915856B2 JPS5915856B2 JP4928376A JP4928376A JPS5915856B2 JP S5915856 B2 JPS5915856 B2 JP S5915856B2 JP 4928376 A JP4928376 A JP 4928376A JP 4928376 A JP4928376 A JP 4928376A JP S5915856 B2 JPS5915856 B2 JP S5915856B2
- Authority
- JP
- Japan
- Prior art keywords
- transport vehicle
- transport
- vehicle
- primary coil
- operation control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Non-Mechanical Conveyors (AREA)
Description
【発明の詳細な説明】
本発明は、ベルトコンベ苓やローラコンベヤなどその搬
送経路の全長に亘って運搬車推進のための駆動源をはり
めぐらす必要のあるメカニカル搬送設備に比べて、構成
部材数の節減、施工の容易化などが可能で全体を設備的
に安価に構成し易いばかりでなく、土地条件的にも長距
離搬送を合理的、経済的に実現し易いもので、例えば、
鉄道や道路など高架構造体下の空間に沿って架構された
、或いは、ガス管や水道管のように地面下に埋設された
管路内に強制気流を発生させ、この強制気流を推力源と
して運搬車を管路内に沿って強制移動させるべく構成し
である運搬車の強制気流式搬送設備に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention reduces the number of components compared to mechanical conveyance equipment, such as belt conveyors and roller conveyors, which require a drive source to propel the transport vehicle over the entire length of the conveyance route. It is not only possible to reduce costs and simplify construction, making it easy to construct the entire equipment at a low cost, but also to realize long-distance transportation rationally and economically due to land conditions. For example,
Forced airflow is generated in pipes built along the space under elevated structures such as railways and roads, or buried underground such as gas pipes and water pipes, and this forced airflow is used as a thrust source. The present invention relates to forced air flow conveyance equipment for a transport vehicle, which is configured to forcibly move the transport vehicle along the inside of a pipe.
この種の強制気流式搬送設備において、殊に気送管路が
長い場合は、この気送管路内に複数の運搬車を入れてこ
れを同時に走行させることがある。In this type of forced air conveyance equipment, especially when the pneumatic pipeline is long, a plurality of carrier vehicles may be inserted into the pneumatic pipeline and run simultaneously.
この際、気送管路の発進箇所で一定の時間間隔をもって
次々に運搬車を発進させるタクト発進方式を採用するこ
とにより、各運搬車間の走行間隔の制(財)が試みられ
るが、これによる場合でも、複数の運搬車の重量差や走
行抵抗、抗力係数等のばらつきにより、運搬車間の間隔
は発進時の間隔に対して変化し、間隔が異常に縮まった
り、拡がった状態で気送管路の終端部又は途中に構成し
た中継ステー、ジョンや加速ステーションなどの到着1
−ンに到着することは免れ得ないのである。At this time, an attempt is made to control the running interval between each transport vehicle by adopting a tact start method in which transport vehicles are started one after another at fixed time intervals at the starting point of the pneumatic pipeline. Even in the case of transport vehicles, due to differences in weight, running resistance, drag coefficient, etc. of multiple transport vehicles, the spacing between the transport vehicles may change compared to the interval at the start, and the pneumatic pipe may become abnormally short or widened. Arrival of relay stations, stations, acceleration stations, etc. configured at the end of the road or in the middle 1
- It is inevitable that you will arrive at a certain point.
それ故に、到着ゾーンに到着する運搬車を、次のローデ
ィングやアンローディングなどの対運搬車作業部や次の
気送管路に所望の時間間隔で単位ごと安全、確実に送り
出すために必要な運行制御にあたり、前述のように発進
側での発進間隔を制御するだけでは不十分である。Therefore, the necessary operations are necessary to safely and reliably send the transport vehicles arriving at the arrival zone to the next transport vehicle work section such as loading and unloading, or to the next pneumatic pipeline at desired time intervals. For control purposes, it is not sufficient to simply control the starting interval on the starting side as described above.
そこで、到着ゾーンの到着ピッチを一定化するために、
気送管路内の走行中の運搬車に対して間隔を制御する指
令(信号)を与える方法と、途中で何ら制御することな
く到着ゾーンに到着したのちの運搬車を対象にして、そ
の間隔の狂いを吸収する方法などが考えられるが、前者
の方法は、運搬車毎に間隔検知装置および制動、加速装
置を付設するとか、或いは、それらの装置を気送管路側
に設置するなど多くの付帯設備を必要とするため、冒述
したようなこの種の強制気流式搬送設備のもつ特長を損
なう不都合があり、また、後者の従来の方法は、気送管
路の終端部や途中など到着ゾーンに相当する部分を、運
搬車の重力による下降移動が可能なグラビデイー路に形
成し、このグラビティー路に運搬車に制動力を与えるブ
レーキ機構および運搬車を停止可能なストッパー機構を
設けて、ローディングやアンローディングなどの対運搬
車作業部や次の気送管路への運搬車送り出し間隔を所望
間隔に制御する方法であって、この場合は、ブーキ機構
といったメカニカルな機械装置を要し、これに伴って運
搬車側々にもこれら機構に対応する機構が必要となり、
運搬車の構成に不利な結果を招く欠点がある。Therefore, in order to keep the arrival pitch of the arrival zone constant,
A method of giving a command (signal) to control the interval to a transport vehicle running in a pneumatic pipeline, and a method of giving commands (signals) to control the interval to the transport vehicle after it has arrived at the arrival zone without any control on the way. There are many ways to absorb this deviation, but the former method requires a number of methods, such as attaching a gap detection device, braking, and acceleration devices to each transport vehicle, or installing these devices on the pneumatic pipeline side. Because it requires incidental equipment, it has the disadvantage of detracting from the features of this type of forced air conveyance equipment as mentioned above.In addition, the latter conventional method The part corresponding to the zone is formed into a gravity road that allows the transport vehicle to move downward due to gravity, and a brake mechanism that applies braking force to the transport vehicle and a stopper mechanism that can stop the transport vehicle are installed on this gravity road to prevent loading. This is a method for controlling the intervals between transport vehicles such as work for transport vehicles, such as unloading, and the next pneumatic pipeline, to a desired interval. Along with this, mechanisms corresponding to these mechanisms are also required on the transport vehicle side.
There are drawbacks to the configuration of the transport vehicle that lead to adverse consequences.
このように従来の装置は、設計ならびに装置が極めて複
雑化、大型化して信頼性、実用性に問題があり、しかも
、メカニカルな接触、衝撃による騒音発生や耐久性低下
などの欠点があった。As described above, conventional devices have problems in reliability and practicality due to extremely complicated and large designs and devices, and also have drawbacks such as noise generation due to mechanical contact and impact, and reduced durability.
また、近年では、運搬車構成などに不利な結果を招くメ
カニカルな機械装置に代えて、運搬車に対してメカ的に
無接触な環流気体を用いて、運搬車を所望の間隔で送り
出すべく運行制御する方法が案出されている。In addition, in recent years, instead of using mechanical devices that would have disadvantageous effects on the structure of the transport vehicle, recycling gas that does not have mechanical contact with the transport vehicle has been used to transport the transport vehicle at desired intervals. A method of controlling it has been devised.
即ち、気送管路の終端部又は途中に、強制気流の非作用
領域で、且つ、運搬車の複数個を列状に収容可能な長さ
の運行制御管路を強制気流放出用の開口部を介して連設
し、この運行制(財)管路に、この管路に移入した運搬
車を単位ごとに段階的に推進させることが可能な複数個
の気体環流装置を設け、もって、前記運行制御用管路内
に、気送管内の強制気流とは別個の気流を発生させて、
この複数環流気体を適宜に作動制御することにより、到
着ゾーンである運行制(財)用管路内に移入してくる運
搬車移動を到着ゾーンに至るまでの気送管路内での走行
とは全く切離した条件下で制御すべく構成していたので
あるが、これによる場合は、運搬車側々の重量差や走行
抵抗抗力係数の格差などに起因して到着ゾーンへの到着
ピッチにいかなるばらつきが生じた場合であっても、こ
の到着ゾーンに移入した運搬車を単位ごとにほぼ所望の
間隔をもって確実、安全に搬送できる利点を有する反面
、前述のように運搬車側々の重量や走行抵抗抗力係数に
ばらつきがあって、そのために強制気流作用領域から脱
したのち、慣性により減速しながら進行して自然停止す
るとき、その位置に大きなばらつきを生じ易い状態にあ
る運搬車を、前記気体環流装置の環流気体による収斂作
用によって所定位置に停止させる際に、気体環流装置の
ポンプの作動を停止させても即時に環流気体流を遮断す
ることができないため、残存する気流によって運搬車の
停止位置が長くなることは免れ得なかったのである。That is, at the end of the pneumatic pipeline or in the middle thereof, an operation control pipe with a length that can accommodate a plurality of transport vehicles in a row is provided as an opening for releasing forced airflow, in an area in which the forced airflow does not work. A plurality of gas circulation devices are installed in this operation control conduit through the conduit, and are capable of propelling transport vehicles transferred to this conduit in stages, unit by unit. By generating an airflow in the operation control pipe that is separate from the forced airflow in the pneumatic pipe,
By controlling the operation of these multiple circulating gases as appropriate, the movement of transport vehicles entering the traffic control (goods) pipeline, which is the arrival zone, can be controlled by traveling within the pneumatic pipeline to reach the arrival zone. The system was configured to be controlled under completely separate conditions, but in this case, there would be no effect on the arrival pitch at the arrival zone due to differences in the weight of the transport vehicles or differences in running resistance drag coefficients. Even if variations occur, it has the advantage of being able to reliably and safely transport the transport vehicles that have arrived at the arrival zone at almost the desired intervals, but as mentioned above, the weight of each transport vehicle and the travel The drag coefficient varies, and as a result, when the vehicle decelerates due to inertia and comes to a natural stop after leaving the forced air flow area, the vehicle is likely to vary greatly in its position. When stopping the vehicle at a predetermined position due to the convergence effect of the recirculating gas of the recirculation device, the recirculating gas flow cannot be immediately shut off even if the pump of the gas recirculation device is stopped, so the remaining airflow may cause the vehicle to stop. It was inevitable that the location would be longer.
さらに、運搬車を列車形式にした場合、編成車輛の長さ
が変わった時、運搬車を移動させるために気体環流装置
では管路に環流気体の吸入口、吐出口を多数段けなけれ
ばならず、実際上、管路に多数の開口を設けることは不
可能である。Furthermore, if the transport vehicle is in the form of a train, the gas recirculation system must have multiple stages of intake and discharge ports for the recirculated gas in the pipe line in order to move the transport vehicle when the length of the vehicle configuration changes. First, it is actually impossible to provide a large number of openings in a conduit.
本発明は、上記の実情に鑑み、運搬車側々の重量差や走
行抵抗、抗力係数の格差など)こ起因して到着ゾーンへ
の到着ピッチにいかなるばらつきが生じた場合であって
も、この到着ゾーンに移入した運搬車を単位ごとに所望
の間隔をもって確実、安全に搬送することができるばか
りでなく、収斂作用による運搬車の停止位置を短くして
、運行制御用管路を可及的に短かく構成することができ
、さらに、列車形式の運搬車においても編成車輛の長さ
の変化に拘わらず、確実、安全に運搬車を移行させるこ
とができる運搬車の強制気流式搬送設備を提供せんとす
るものである。In view of the above-mentioned circumstances, the present invention has been developed to eliminate any variation in the arrival pitch at the arrival zone due to differences in weight, running resistance, drag coefficient, etc. between transport vehicles. Not only can transport vehicles transferred to the arrival zone be transported reliably and safely at the desired intervals for each unit, but also the stopping position of the transport vehicles can be shortened due to the convergence effect, and the conduit for operation control can be made as short as possible. We have developed a forced airflow conveyance system for transport vehicles that can be configured to be as short as possible, and that can reliably and safely move transport vehicles regardless of changes in the length of the train-type transport vehicles. This is what we intend to provide.
即ち、本発明による運搬車の強制気流式搬送設備は、運
搬車に推進力を与える強制気流を流動させる気送管路の
終端部又は途中に、前記強制気流の非作用領域で、且つ
、運搬車の複数個を列状に収容可能な長さの運行制御用
管路を強制気流放出用の開口部を介して連設し、この運
行制(財)用管路には、前記運搬車側を二次導体とし、
かつ、運行制御用管路側を一次コイル部として、該管路
内に移入した運搬車1を移行することが可能なリニアモ
ーターを付設レンルことを特徴とするものである。That is, the forced air flow type conveyance equipment for a transport vehicle according to the present invention is provided at the end of or in the middle of a pneumatic pipeline through which a forced air flow that provides a propulsion force to a transport vehicle is provided, in an area where the forced air flow does not act, An operation control conduit with a length capable of accommodating a plurality of vehicles in a row is connected through an opening for forced airflow discharge, and this operation control conduit has a length that can accommodate a plurality of vehicles in a row. is the secondary conductor,
In addition, the system is characterized in that the operation control conduit side is used as a primary coil part, and a linear motor that can move the transport vehicle 1 introduced into the conduit is attached.
つまり、本発明による時は、運行制御用管路側の一次コ
イル部を適宜に作動制御することによって、到着ゾーン
である運行制御用管路内に移入して運搬車を到着ゾーン
に至るまでの気送管路内での走行とは全く切離した条件
下で自由に移行することができるので、運搬車側々の重
量差や気送管路内での走行抵抗、抗力係数の格差などに
起因して、複数個の運搬車の運行制御用管路(到着ゾー
ン)内への到着ピッチがいかなるばらつきを生じている
場合であっても、運搬車の狂いを吸収して、単位ごとの
運搬車を所定箇所、らまりローディングやアレローディ
ングなどの対運搬車作業部や次の気送管路に確実安全に
搬出することができる。In other words, according to the present invention, by appropriately controlling the operation of the primary coil section on the side of the operation control conduit, the transport vehicle can be moved into the operation control conduit, which is the arrival zone, and transported to the arrival zone. Since it is possible to move freely under conditions that are completely separate from running in the pneumatic pipeline, it is possible to move freely under conditions that are completely separate from running in the pneumatic pipeline, so there are no problems caused by differences in the weight of the transport vehicles, running resistance in the pneumatic pipeline, differences in drag coefficient, etc. Even if there is any variation in the arrival pitch of multiple transport vehicles into the operation control conduit (arrival zone), the deviation of the transport vehicles can be absorbed and each unit of transport vehicles can be adjusted. It can be carried out reliably and safely to a predetermined location, to a work area for transport vehicles such as ramari loading or allerage loading, or to the next pneumatic pipeline.
しかも、前述のように運搬車側々の重量や走行抵抗、抗
力係数にばらつきがあって、そのために強制気流作用領
域から脱したのち、運行制御用管路内において生じるエ
アークッション作用により減速しながら進行して自然停
止するとき、その位置に大きなばらつきを生じ易い状態
にある運搬車をリニアーミータ−による収斂作用によっ
て所定位置に停止させるが故に、冒述した気体環流装置
を用いる方法に比して運搬車の停止位置が短くて済み、
運行制御用管路を可及的に短く構成することができる。Moreover, as mentioned above, there are variations in the weight, running resistance, and drag coefficient of each transport vehicle, so after it escapes from the forced air flow region, it decelerates due to the air cushion action that occurs in the operation control conduit. When the vehicle moves forward and comes to a natural stop, the vehicle, which tends to vary greatly in its position, is stopped at a predetermined position by the convergence effect of the linear meeter. The stopping position of the car can be shortened,
The operation control conduit can be configured to be as short as possible.
その上、運行制御用管路側の一次コイル部を適宜に作動
制御することができるが故に、列車形式の運搬車におい
ても編成車輛の長さの変化に拘わらず、確実、安全に運
搬車を移行させることができる。Furthermore, since the operation of the primary coil on the conduit side for operation control can be controlled appropriately, transport vehicles can be moved reliably and safely even in train-type transport vehicles, regardless of changes in the length of the vehicle formation. can be done.
更に、運搬車に対しては同等メカニカルな接触、衝撃な
どによる不当な力を与えないで済み、運搬車の構成を有
利にできるとともに、運搬車の耐久性向上にも効果を奏
するに至ったのである。Furthermore, it is not necessary to apply unreasonable force to the transport vehicle due to equivalent mechanical contact or impact, which makes the construction of the transport vehicle advantageous, and also has the effect of improving the durability of the transport vehicle. be.
以下、本発明の実施例を図面に基づいて詳述する。Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図は、気送管路2内に発生させた強制気流により運
搬車1を気送管路2の軸線に沿って推進させるべく構成
した強制気流式搬送設備のうち、気送管路2の一端を発
進ゾーンAとし、他端を到着ゾーンBとした単管型式の
ものの全体概略図を示し、発進ゾーンA側には、前記気
送管路2の発進ロアの対向外側位置に設けた運搬車移載
装置4にて所定箇所まで搬送されてきた運搬車1を管路
2内に移入させる運搬車移載装置五と、運搬車1を所望
の時間間隔で発進させる運搬車発進機横1とを備えてあ
り、前記運搬車移入装置5は、運搬車移載装置4上に位
置する運搬車1を管路2側に抑圧移動させるフイダ8か
ら構成されてあり、また、前記運搬車発進機構6は、強
制気流を発生するポンプPと、前記運搬車1側を二次導
体10とし、かつ管路2側を一次コイル部9aとして、
前記運搬車移入装置5によって管路2内に移入された運
搬車1を制動、停止、順送りすることが可能なリニアモ
ーター9Aとから構成されてあり、かつ、このリニアモ
ーター9Aの一次コイル部9aは、前記管路2の搬送始
端部に設けた開閉自在なゲートGユよりも運搬車移動方
向下手側の管路部分及び前記ゲートG、よりも運搬車移
動方向下手側の管路部分の一部に夫々運搬車移動方向に
等間隔を隔てて付設した複数個の一次コイルa・・から
構成されている。FIG. 1 shows a pneumatic pipe 2 of a forced air conveyance system configured to propel a carrier vehicle 1 along the axis of the pneumatic pipe 2 by forced airflow generated within the pneumatic pipe 2. This is an overall schematic diagram of a single pipe type with one end as a departure zone A and the other end as an arrival zone B. On the departure zone A side, a pipe is provided at a position outside opposite to the departure lower of the pneumatic pipe 2. A transport vehicle transfer device 5 that transfers the transport vehicle 1 that has been transported to a predetermined location by the transport vehicle transfer device 4 into the conduit 2, and a transport vehicle starting machine that starts the transport vehicle 1 at desired time intervals. 1, and the carrier transfer device 5 is composed of a feeder 8 that presses and moves the carrier 1 located on the carrier vehicle transfer device 4 toward the conduit 2 side, and the carrier vehicle The starting mechanism 6 includes a pump P that generates forced airflow, a secondary conductor 10 on the carrier vehicle 1 side, and a primary coil portion 9a on the conduit 2 side.
It is composed of a linear motor 9A capable of braking, stopping, and sequentially feeding the transport vehicle 1 transferred into the pipe line 2 by the transport vehicle transfer device 5, and a primary coil portion 9a of this linear motor 9A. is a part of the pipe line on the downstream side in the direction of movement of the transport vehicle than the gate G which can be opened and closed provided at the transport start end of the pipe line 2, and a part of the pipe line on the downstream side in the direction of movement of the transport vehicle than the gate G. It is composed of a plurality of primary coils a, which are attached to each section at equal intervals in the direction of movement of the transport vehicle.
而して、前記気送管路2終端部の到着ゾーンB側には、
運搬車送出し機能を有する運行制御装置11を装備して
おり、この運行制御装置11は次のように構成されてい
る。Therefore, on the arrival zone B side of the terminal end of the pneumatic pipe 2,
It is equipped with an operation control device 11 having a transport vehicle sending function, and this operation control device 11 is configured as follows.
即ち、管路2の終端部に、強制気流放出用の開口部12
を形成して前記強制気流の系内から系外に脱した運搬車
1の複数個を列状に収容可能な長さの運行制御用管路3
を連設し、この運行制(財)用管路3の終端部には、開
閉自在なゲートG2を設けるとともに、この運行制御用
管路3には、前記運搬車1に設けた前記二次導体10と
、前記ゲートG3よりも運搬車移動方向上手側の運行制
御用管路3部分及びゲートG2よりも運搬車移動方向下
手側の運行制(財)用管路3部分の一部に亘って設けた
複数個の一次コイルb・・からなる一次コイル部9bと
から構成されて、該管路3内に移入した運搬車1を制御
、停止、順送りするリニアモーター9Bを付設して構成
している。That is, an opening 12 for forced air flow discharge is provided at the end of the pipe line 2.
an operation control conduit 3 having a length capable of accommodating in a row a plurality of transport vehicles 1 that have escaped from the forced airflow system to the outside of the system;
A gate G2 which can be opened and closed is provided at the terminal end of the operation control conduit 3, and the operation control conduit 3 is connected to the secondary The conductor 10 and a portion of the operation control conduit 3 on the upper side in the direction of movement of the transport vehicle than the gate G3 and a part of the operation control conduit 3 on the lower side in the direction of movement of the transport vehicle than the gate G2. It is composed of a primary coil part 9b consisting of a plurality of primary coils b provided in the pipe line 3, and is equipped with a linear motor 9B for controlling, stopping, and sequentially transporting the transport vehicle 1 moved into the conduit 3. ing.
尚、図中13は、前記気送管路2の運搬車取出し口14
から管路外に搬出された運搬車1をロープロングやアン
ローディングなどの所定箇所に移送する運搬車移載装置
である。In addition, 13 in the figure is the carrier vehicle outlet 14 of the pneumatic pipe line 2.
This is a transport vehicle transfer device that transports the transport vehicle 1 carried out of the pipeline to a predetermined location such as a rope long or unloading area.
以上の如き構成した強制気流式搬送設備の作動を第2図
イ乃至ホおよび、第3図イ乃至へによって説明する。The operation of the forced air conveyance equipment constructed as described above will be explained with reference to FIGS. 2A to 3E and FIG.
■ 発進ゾーンAでの運搬車移載装置互と運搬車発進機
構6とによる発進作用について。■ Regarding the starting action by the transport vehicle transfer device and the transport vehicle starting mechanism 6 in the start zone A.
運搬車移載装置4によって、発進ロアまで発進準備され
た運搬車1は、フイダ8による押圧作用によって気送管
路2内に移入する。The carrier vehicle 1, which has been prepared for starting up to the starting lower part by the carrier transfer device 4, is transferred into the pneumatic pipe line 2 by the pressing action of the feeder 8.
この時、ゲートG1は閉の状態にある。At this time, gate G1 is in a closed state.
(第2図口参照)前記運搬車1が気送管路2内に移入し
たことに基づいて、該運搬車1に前進方向の推進力を付
与する状態に、一次コイル部9aの一次コイルa1〜a
7及び、ゲートG1よりも運搬車移動方向下手側に位置
する一次コイルa9〔運搬車移動方向上手側から順次に
番号を付記する。(Refer to Figure 2) Based on the fact that the carrier vehicle 1 has moved into the pneumatic pipeline 2, the primary coil a1 of the primary coil portion 9a is brought into a state that applies a propulsive force in the forward direction to the carrier vehicle 1. ~a
7, and a primary coil a9 located on the lower side in the direction of transport vehicle movement than gate G1 [numbers are added sequentially from the upper side in the direction of transport vehicle movement.
〕の電源をONに切換えるとともに、運搬車1に制動力
を付与する状態にゲートG1直前の一次コイルa6の電
源をONに切換えて、運搬車1をゲートG1まで移動さ
せて停止させる。) is switched ON, and the power of the primary coil a6 immediately before the gate G1 is switched ON to apply a braking force to the transport vehicle 1, and the transport vehicle 1 is moved to the gate G1 and stopped.
この時、後続の運搬車1は運搬車移載装置4によって発
進ロアまで発進準備されている。At this time, the following carrier vehicle 1 is prepared for departure up to the starting lower part by the carrier vehicle transfer device 4.
(第2図口参照)前記運搬車1がゲートG1の直前の所
定位置まで移動して停止したことに基づいて、この運搬
車1後部位置の一次コイルa7に隣接する運搬車移動方
向上手側の一次コイルa6を、運搬車1に制動力を付与
する状態に切換えたのち、後続運搬車1を前記フィーダ
8の抑圧作用とリニアモーター9Aとによって前記−次
コイルa6まで移動させて停止させる。(Refer to Figure 2) Based on the fact that the carrier 1 has moved to a predetermined position immediately in front of the gate G1 and stopped, a After switching the primary coil a6 to a state that applies braking force to the carrier vehicle 1, the subsequent carrier vehicle 1 is moved to the secondary coil a6 by the suppressing action of the feeder 8 and the linear motor 9A and is stopped.
(第3図口参照)前記後続運搬車1が前記の一次コイル
a6まで移動して停止したことに基づいて、ゲートG□
は開、ゲートG1の直前に位置する一次コイルa8は、
先行運搬車1に前進方向の推進力を付与する状態に夫々
切換えると、リニアモーター9Aと常時作動しているポ
ンプPの強制気流作用とによって、前記先行運搬車1が
ゲートG1の位置を通過移動する。(Refer to Figure 3) Based on the fact that the following transport vehicle 1 has moved to the primary coil a6 and stopped, the gate G□
is open, and the primary coil a8 located just before the gate G1 is
When switching to a state in which a forward propulsion force is applied to the preceding transport vehicle 1, the preceding transport vehicle 1 moves past the gate G1 due to the forced airflow action of the linear motor 9A and the constantly operating pump P. do.
(第3図口参照)先行運搬車1が、ゲートG1を通過移
動したことに基づいて、ゲートG1は閉、ゲートG1の
直前に位置する一次コイルa8は、運搬車1に制動力を
付与する状態に、後続台車1の前端部に位置する一次コ
イルa6は、運搬車1に前進方向の推進力を付与する状
態に夫々切換えると、リニアモーター9Aによって、後
続運搬車1が、ゲートG1 直前まで移動して停止する
。(See Figure 3) Based on the fact that the preceding transport vehicle 1 has passed through the gate G1, the gate G1 is closed, and the primary coil a8 located just in front of the gate G1 applies braking force to the transport vehicle 1. When the primary coil a6 located at the front end of the trailing truck 1 is switched to the state where it applies a forward propulsion force to the truck 1, the linear motor 9A moves the trailing truck 1 until just before the gate G1. Move and stop.
(第3図口参照)次に、到着ゾーンBまで運行制御装置
11による運行制(財)作用及び送出し作用について。(See the exit in Figure 3) Next, the operation control (goods) operation and sending operation by the operation control device 11 up to the arrival zone B will be explained.
運行制(財)用管路3内に運搬車1がない場合は、一次
コイル部9bの一次コイルb1〜b1□及び、ゲートG
2よりも運搬車移動方向下手側の一次コイルblO(運
搬車移動方向上手側から順次番号を付記する。If there is no transport vehicle 1 in the service conduit 3, the primary coils b1 to b1□ of the primary coil part 9b and the gate G
Primary coil blO on the lower side in the direction of movement of the transport vehicle than 2 (numerals are added sequentially from the upper side in the direction of movement of the transport vehicle.
〕が運搬車1に前進方向の推進力を付与する状態に、又
ゲートG3直前に位置する一次コイルb1oが運搬車1
に制動力を付与する状態に夫々設定されている。] is in a state where it applies a forward propulsion force to the transport vehicle 1, and the primary coil b1o located just before the gate G3 is in a state where the primary coil b1o is
The braking force is applied to each vehicle.
(第3図口参照)この条件下で強制気流作用領域から脱
出した運搬車1は、慣性によって運行制御用管路3内を
移動し、その走行抵抗及びゲートG2と運搬車との間の
エアーを圧縮することにより生ずるエアークッション作
用により第4図のダイヤグラム中のVで示す減速カーブ
を描きながら進行して、リニアモーター9Bの運搬車移
動方向始端部付近箇所で停止しようとするが、このとき
、リニアモーター9Bの一次コイル部9bの電源がON
されているため、運搬車1はこのリニアモーター9Bに
よって■1なる速度でゲートG2側に推進され、閉の状
態にある該ゲートG2の直前位置まで移動して前記の一
次コイルb1□の制動停止作用によりほぼ所定位置に停
止する。(See the entrance in Figure 3) Under these conditions, the carrier vehicle 1 that escapes from the forced air flow area moves within the operation control conduit 3 due to inertia, and due to its running resistance and the air between the gate G2 and the carrier vehicle. Due to the air cushion effect generated by compressing , the power to the primary coil section 9b of the linear motor 9B is turned on.
Therefore, the transport vehicle 1 is propelled by this linear motor 9B toward the gate G2 at a speed of ■1, moves to a position just in front of the closed gate G2, and stops by braking the primary coil b1□. The action causes it to stop almost at a predetermined position.
(第3図口参照)このように、運行制御用管路3内に移
入してきた運搬車1は、リニアモーター9Bによる収斂
作用を受けるため、運搬単個々の重量や走行抵抗、抗力
係数等にばらつきがあって、そのために強制気流作用領
域から脱出したのち、管路3内において生じるエアーク
ッション作用により減速しながら進行して自然停止する
とき、その停止位置に犬なるばらつきを生じ易い状態に
ある運搬車1を収斂作用により第4図で示すようにばら
つき少なくほぼ所定の位置に停止させることができる。(See Figure 3) In this way, the transport vehicle 1 that has entered the operation control conduit 3 is subjected to the convergence action by the linear motor 9B, so the weight, running resistance, drag coefficient, etc. of each transport vehicle are affected. Because of this, after escaping from the forced airflow area, when the vehicle progresses while decelerating due to the air cushion effect generated in the pipe 3 and comes to a natural stop, it is likely that there will be slight variations in the stopping position. Due to the convergence effect, the transport vehicle 1 can be stopped at approximately a predetermined position with little variation, as shown in FIG.
前記運搬車1がゲ−トG2直前の所定位置まで移動して
停止したことに基づいて、この運搬車1後端部に位置す
る一次コイルbttに隣接する運搬車移動方向上手側の
一次コイルb1oを、運搬車1に制動力を付与する状態
に切換えると、その後に移入してくる運搬車1は、前述
の場合と同様にリニアモーター9Bによる推力を受けて
vlなる速度でゲートG2側に推進され、先行運搬車1
近くまで移動して前記の一次コイルblOの制動、停止
作用によりほぼ所定位置に停止する。Based on the fact that the carrier 1 has moved to a predetermined position immediately before the gate G2 and stopped, the primary coil b1o on the upper side in the moving direction of the carrier is adjacent to the primary coil btt located at the rear end of the carrier 1. When the state is switched to a state where a braking force is applied to the transport vehicle 1, the transport vehicle 1 that enters after that receives the thrust from the linear motor 9B and is propelled toward the gate G2 side at a speed of vl, as in the case described above. and the preceding transport vehicle 1
It moves close and stops almost at a predetermined position due to the braking and stopping action of the primary coil blO.
(第3図口参照)
後続運搬車1が所定位置に停止したことに基づいて、前
記ゲートG2を開動するとともに、ゲートG2直前の一
次コイルb12を運搬車1に前進方向の推進力を付与す
る状態に切換えて、先行運搬車1をゲートG2を通過移
動させて運搬車移載装置13側に移行させる。(See Figure 3) Based on the fact that the following carrier vehicle 1 has stopped at a predetermined position, the gate G2 is opened, and the primary coil b12 in front of the gate G2 is applied to the carrier vehicle 1 with a forward driving force. Then, the preceding transport vehicle 1 is moved through the gate G2 and transferred to the transport vehicle transfer device 13 side.
(第3図口参照)先行運搬車1が運搬車移載装置13に
移入したことに基づいて、前記ゲートG2を閉動させる
とともに、−ゲートG2直前に位置する一次コイルb1
2及び後続運搬車1の前端部に位置する一次コイルb1
oを夫々運搬車1に制動力を付与する状態と運搬車1に
前進方向の推進力を付与する状態とに切換え、後続運搬
車1をゲートG2側に推進移動させて前記の一次コイル
b12の制動、停止作用によりほぼ所定位置に停止させ
る。(Refer to Figure 3) Based on the fact that the preceding transport vehicle 1 has been transferred to the transport vehicle transfer device 13, the gate G2 is closed, and the primary coil b1 located immediately before the gate G2 is moved.
2 and the primary coil b1 located at the front end of the following transport vehicle 1.
o to apply a braking force to the transport vehicle 1 and to apply a forward propulsion force to the transport vehicle 1, respectively, to propel the subsequent transport vehicle 1 toward the gate G2 side and turn the primary coil b12. It is stopped almost at a predetermined position by braking and stopping action.
(第3図ホ、へ参照)尚、これら後続の運搬車1を運搬
車移載装置13側に夫々移行させるには、前記同様の動
作を繰り返して行なえば良い。(Refer to FIG. 3E and 3) Note that in order to move these subsequent carrier vehicles 1 to the carrier vehicle transfer device 13 side, the same operations as described above may be repeated.
尚、前記運搬車1は第5図、第6図に示すように、荷物
収納部1人の前後端部に管路内部の横断面積よりも小な
る横断面積を有する気流受圧板1a、1aを連設し、こ
の気流受圧板1a、1aに夫々管路内壁に摺接転動する
走行車輪1bと対運搬車衝突緩和具1cとを設けるとと
もに、前記荷物収納部1人の底部に前記の二次導体10
を設けて構成している。As shown in FIGS. 5 and 6, the transport vehicle 1 has airflow pressure receiving plates 1a, 1a each having a cross-sectional area smaller than the cross-sectional area of the inside of the conduit at the front and rear ends of one baggage storage section. The airflow pressure receiving plates 1a, 1a are provided with a running wheel 1b that slides and rolls on the inner wall of the pipe, respectively, and a collision mitigating device 1c for a transport vehicle, and at the bottom of one person in the baggage storage section, the two Secondary conductor 10
It is configured with the following.
また、複数台の運搬車1・・がキャッチアップした状態
又は異常接近した状態で運行制御用管路3内に移入して
きた場合の運行制御作用の一例を第7図イ乃至ハに基づ
いて説明する。In addition, an example of the operation control effect when a plurality of transport vehicles 1 catch up or approach the operation control conduit 3 in an abnormally close state will be explained based on FIGS. 7A to 7C. do.
運行制御用管路3の所定箇所に設けた運搬車間隔検出具
15によって複数台の運搬車1・・がキャッチアップし
た状態又は異常接近した状態で移入してきていることを
検出したとき、この検出具15よりも運搬車移動方向下
手側に位置する一次コイルb3を、先行運搬車1が通過
移動した直後に運搬車1に制動力を付与する状態に切換
えるとともに、この制動状態を前記検出具15の検出結
果に基づいて演算された時間内保持して、後続運搬車1
を制動、停止させる又は運搬車1の推進力を低下させる
。When it is detected by the transport vehicle interval detector 15 provided at a predetermined location of the operation control conduit 3 that a plurality of transport vehicles 1 are catching up or approaching each other abnormally, this detection is performed. The primary coil b3 located on the downstream side in the direction of transport vehicle movement than the tool 15 is switched to a state that applies braking force to the transport vehicle 1 immediately after the preceding transport vehicle 1 has passed, and this braking state is switched to the state where the braking force is applied to the transport vehicle 1. The following transport vehicle 1 is held within the time calculated based on the detection result of
or reduce the propulsive force of the transport vehicle 1.
一方、先行運搬車1は他の一次コイルによる推進作用に
よってそのまま進行を続けてゲートC2側に移動する。On the other hand, the preceding transport vehicle 1 continues to move toward the gate C2 due to the propulsion effect of the other primary coils.
前記の一次コイルb3の制動保持時間が一定以上に達し
たとき、言換えれば、先行運搬車1と後続運搬車1との
間隔が所定間隔以上に達したとき、前記の一次コイルb
3を、運搬車1に前進方向の推進力を付与する状態に切
換えて、後続運搬車1をゲートG2側に推進させる。When the braking holding time of the primary coil b3 reaches a certain value or more, in other words, when the distance between the preceding transport vehicle 1 and the following transport vehicle 1 reaches a predetermined distance or more, the primary coil b3
3 is switched to a state in which a propulsion force in the forward direction is applied to the carrier vehicle 1, and the subsequent carrier vehicle 1 is propelled toward the gate G2.
その後の運搬車1の運行制御ば前述した通常時における
運行制御と同様である。The operation control of the transport vehicle 1 thereafter is the same as the operation control in normal times described above.
さらに、キャッチアップ状態又は異常接近状態の後続運
搬車があっても、同様に前記の一次コイルb3の制動、
停止作用によって分離されて行くこととなる。Furthermore, even if there is a following transport vehicle in a catch-up state or abnormally approaching state, braking of the primary coil b3,
They will be separated by the stopping action.
このことからも明らかなように、複数個の運搬車が異常
に接近した状態、又は、キャッチアップした状態で到着
ゾーン(運行制御用管路)に移入してきた場合であって
も、リニアモーターの制動停止、順送り作用によっても
運搬車は単位ごとに段階的にゲートG2側へ推進されて
運搬車移載装置側に送り込まれるような収斂作用を受け
ることにより、先行運搬車から単位ごとに確実に送り出
すことができる。As is clear from this, even if multiple transport vehicles enter the arrival zone (operation control conduit) in an abnormally close state or in a state of catch-up, the linear motor By braking stop and progressive action, the transport vehicle is propelled step by step to the gate G2 side unit by unit and is sent to the transport vehicle transfer device side by receiving a converging action, so that each unit is reliably moved from the preceding transport vehicle. can be sent out.
尚、前記コイル部の一次コイル長さ及び隣接する一次コ
イル間の間隔を夫々、運搬車1に設けた二次導体の全長
の1/2の寸法に設定して、運搬車1が一次コイルの全
推力を受けるべく構成している。The length of the primary coil in the coil section and the interval between adjacent primary coils are each set to 1/2 of the total length of the secondary conductor provided on the transport vehicle 1, so that the transport vehicle 1 It is configured to receive full thrust.
また、上述実施例では比較的、短距離搬送の場合に用い
られる単管型式の強制気流式搬送設備について説明した
が、同じ単管型式でも、長距離搬送の場合に用いられる
もののように、気送管路2の途中に、一つまたは複数の
中継或いは加速ステーションSを設けて構成する第8図
で示すような強制気送式搬送設備に適用しても良く、こ
の場合、中継或いは加速ステーションSに前記到着ゾー
ンBに装備した運行制(財)装置を装備し、かつ、その
運行制御装置は前記したものと同様な構成および作用を
有し、それら各構成部材には図面中、全て前記の部材番
号にダッシュ付す(例えば、ゲートG2 ’といった具
合)が、異なる点は、ステーションSの運搬車移動方向
上手側の気送管路2部分から下手側の気送管間2部分に
亘って気流バイパス路16を設けて、ステーションSよ
り下手側の気送管路2内の強制気流流れおよび運搬車移
動を保証すべく構成している。In addition, in the above embodiment, a single-tube type forced air conveyance equipment used for relatively short-distance conveyance was explained. It may be applied to forced pneumatic conveyance equipment as shown in FIG. 8, which is configured by providing one or more relay or acceleration stations S in the middle of the pipeline 2. In this case, the relay or acceleration stations S is equipped with the operation control device installed in the arrival zone B, and the operation control device has the same structure and function as the one described above, and all of the constituent members are shown in the drawings as described above. A dash is added to the part number (for example, gate G2'), but the difference is that it extends from the 2 parts of the pneumatic pipe on the upper side in the moving direction of the transport vehicle at station S to the 2 parts between the pneumatic pipes on the lower side. An airflow bypass path 16 is provided to ensure forced airflow in the pneumatic line 2 downstream of station S and transport vehicle movement.
第9図は、強制気流作用領域から脱出した運搬車1を、
該運搬車1の前後位置に設けた前記の対運搬車衝突緩和
具1c、1cを利用して衝突させながら運行制御用管路
3に順次停止させる制御方法を示す。Figure 9 shows the transport vehicle 1 that has escaped from the forced airflow area.
A control method is shown in which the transport vehicle 1 is caused to collide with the transport vehicle collision mitigation devices 1c, 1c provided at the front and rear positions of the transport vehicle 1, and the transport control conduit 3 is sequentially stopped.
即ち、リニアモーター9Bによって■1なるほぼ一定速
度で推進される運搬車1は、リニアモーター9Bの電源
が切られたのちも慣性によって運行制御用管路3内を移
動し、その走行抵抗などによりダイヤグラム中の■2で
示す減速カーブを描きながら進行して自然停止するので
あるが、この時、運搬車1の移動速度が対運搬車衝突緩
和具1Cの衝突許容速度に達した時点イでゲート側又は
先行運搬車に設けた対運搬車衝突緩和具に衝突するよう
にリニアモーター9Bの電源切断時期を予め設定してお
けば、強制気流作用領域から脱出した運搬車1は対運搬
車衝突緩和具1cの衝突緩和作用を受は乍らゲート又は
先行運搬車に接触する状態で停止する。In other words, the transport vehicle 1, which is propelled by the linear motor 9B at a substantially constant speed of ■1, continues to move within the operation control conduit 3 due to inertia even after the power of the linear motor 9B is turned off, and due to its running resistance, etc. It progresses while drawing a deceleration curve shown in 2 in the diagram and comes to a natural stop. At this time, when the moving speed of the transport vehicle 1 reaches the allowable collision speed of the collision mitigation device 1C for the transport vehicle, the gate is closed at I. If the power cut timing of the linear motor 9B is set in advance so as to collide with the anti-transportation vehicle collision mitigation device provided on the side or the preceding transportation vehicle, the transportation vehicle 1 that escapes from the forced air flow area will be able to mitigate the collision against the transportation vehicle. While receiving the collision mitigation action of the tool 1c, the tool 1c stops in contact with the gate or the preceding transport vehicle.
また、運行制(財)用管路3の所定位置に停止した運搬
車1を次の所定位置まで順送りする場合も、前述の場合
と同様に、リニアモーター9Bによつて所定速度まで増
速されたのち、慣性によって運行制御用管路3内を移動
して自然停止しようとする運搬車1の移動速度が対運搬
車衝突緩和具の衝突許容速度に達した時点イで、ゲート
側又は先行運搬車に設けた対運搬車衝突緩和具に衝突す
るようにリニアモーター9Bの電源切断時期を予め設定
すれば良い。Also, when the transport vehicle 1 that has stopped at a predetermined position on the traffic conduit 3 is sequentially transported to the next predetermined position, the speed is increased to a predetermined speed by the linear motor 9B, as in the case described above. Later, when the moving speed of the transport vehicle 1, which moves within the operation control conduit 3 due to inertia and attempts to come to a natural stop, reaches the allowable collision speed of the collision mitigation device for the transport vehicle, the gate side or the preceding transport The timing for turning off the power to the linear motor 9B may be set in advance so that the linear motor 9B collides with a vehicle collision mitigation device provided on the vehicle.
このように、リニアモーターによって推進されてくる運
搬車を、対運搬車衝突緩和具の衝突緩昭作用を利用して
ゲート又は先行運搬車に接触する状態で停止させる制(
財)方法を採用した場合には、運行側制用管路3のスト
レージゾーン長さが停止させようとする運搬車の長さ分
だけで済み、リニアモーターの一次コイル部を構成する
一次コイルの個数を減少することができるとともに、運
行制御用管路を短かく構成することができる利点がある
。In this way, the transport vehicle propelled by the linear motor is stopped in a state where it contacts the gate or the preceding transport vehicle by utilizing the collision mitigation effect of the collision mitigation device for the transport vehicle.
In the case of adopting the above method, the length of the storage zone of the control conduit 3 on the operating side only needs to be the length of the transport vehicle to be stopped, and the length of the primary coil that constitutes the primary coil part of the linear motor is reduced. There is an advantage that the number of pipes can be reduced and the operation control conduit can be configured to be short.
また、前記リニアモーター9Bの電源切断時期を設定す
る手段として、リニアモーター9Bの電源が切られたと
きから対運搬車衝突緩和具の衝突許容速度に達するまで
の時間に相当する運搬車の走行距離だけ所定の停止位置
から隔てた箇所に運搬車検出具を設け、この検出具の検
出結果に応答してリニアモーター9Bの電源を切断すべ
く構成しても良きものである。In addition, as a means for setting the time to turn off the power of the linear motor 9B, the traveling distance of the transport vehicle corresponding to the time from the time when the power of the linear motor 9B is turned off until the collision permissible speed of the collision mitigation device for the transport vehicle is reached is set. Alternatively, a carrier detection device may be provided at a location separated from a predetermined stop position, and the power to the linear motor 9B may be cut off in response to the detection result of this detection device.
尚、運搬車1の下側部(又は上側部、側面部)に取付け
られる二次導体10と発進ゾーンA側の気送管路2部分
又は運行制御用管路3側に設けられる一次コイルa又は
bを近接する状態で設ければ設ける程、リニアモーター
による加速、減速作用を確実に発揮することができる反
面、運搬車1が気送管路2途中のカーブ部分やグラビテ
イ一部分等を走行する際に、前記二次導体10が管路2
内壁に接触する恐れがあるため、この二次導体10の接
触防止対策として次の様に構成すると良い。In addition, the secondary conductor 10 attached to the lower part (or upper part, side part) of the transport vehicle 1 and the primary coil a provided in the pneumatic pipe 2 part on the starting zone A side or on the operation control pipe 3 side The closer they are provided, the more reliably the acceleration and deceleration effects of the linear motor can be achieved, but on the other hand, the transport vehicle 1 may run on a curved part or a gravity part in the middle of the pneumatic pipe 2. In this case, the secondary conductor 10 is connected to the conduit 2
Since there is a possibility that the secondary conductor 10 may come into contact with the inner wall, the following structure may be used to prevent the secondary conductor 10 from coming into contact with the inner wall.
■ 第10図又は第11図に示すように、運搬車1の荷
物収納部1人の下側部(又は上側部、側面部)と二次導
体10との間に、気送管路2での走行時には二次導体1
0を管路軸芯側に引退させ、かつ、運行制御用管路3で
の走行時に於いては管路内壁側に突出させる二次導体出
退機構17を設けて構成する。■ As shown in FIG. 10 or FIG. When running, the secondary conductor 1
A secondary conductor ejection/retraction mechanism 17 is provided for retiring the conductor 0 toward the pipe axis and protruding toward the inner wall of the pipe when traveling in the operation control pipe 3.
■ 前記気送管路2及び運行制御用管路3が角パイプか
ら構成されている場合には、第12図に示すように、運
搬車1の下側部に設ける二次導体10を管路軸芯側に入
り込む状態で取付けるとともに、運行制御用管路3側に
設ける一次コイルa又はbを管路2又は3内部・こ突出
する状態で取付けて構成している。■ When the pneumatic pipeline 2 and the operation control pipeline 3 are constructed of square pipes, as shown in FIG. The primary coil a or b provided on the operation control conduit 3 side is attached so as to protrude from inside the conduit 2 or 3, while the primary coil a or b is installed on the operation control conduit 3 side.
尚、上述実施例では、気送管路2の終端部又は途中に若
しくはその両箇所に連設した運行制御用管路3,3′を
パイプ状に形成して、このパイプ状の運行制御用管路3
,3′内に移入してきた運搬車をリニアモーターによっ
て制動、停止、順送りすべく構成したが、前記運行制御
用管路3,3′を、第13図に示すように大気に開口す
る半割状に形成して、この大気開放型の運行制御用管路
3,3′内に移入してきた運搬車をリニアモーターによ
って制動、停止、順送りすべく構成しても良きものであ
る。In the above-mentioned embodiment, the operation control conduits 3 and 3' are formed in a pipe shape and are connected to the terminal end of the pneumatic conveyance conduit 2, or in the middle, or both. Conduit 3
, 3' is configured to brake, stop, and sequentially transport the transport vehicles that have been moved into the system by a linear motor. It is also possible to form the transport vehicle into the atmosphere-open operation control conduit 3, 3' and use a linear motor to brake, stop, and sequentially transport the transport vehicle.
また、第13図で示す発進ゾーンAのように管路2を閉
塞するゲートを設置していない場合には、運搬車1の発
進間隔をリニアモーター9Aによって制御し乍ら運搬車
1を一旦停止させることなく気送管路2の始端部分にス
ムーズに移入させることができる。In addition, if a gate is not installed to block the conduit 2 as in the starting zone A shown in FIG. It can be smoothly transferred to the starting end portion of the pneumatic conduit 2 without causing any trouble.
また、上述実施例では、気送管路2の途中に構成し〆一
つまたは複数の制御ゾーンに移入してくる全ての運搬車
を、それらの搬送ピッチの狂いの大小に拘わらず制御ゾ
ーンに付設したリニアモーターによって制動、停止、順
送りすべく構成したものについて説明したが、これによ
る場合は、ピッチの狂いが運搬車走行上ならびにノウド
リング上、何等の支障もない程度のものであっても、運
搬車は必ず制御ゾーンで一旦停止されるため、殊に、長
距離搬送システムVこおいて、搬送効率を不当に低下す
る一因につながり、また、設備面においても、制御ゾー
ンに具備した種々の制御用機器を必要以上に作動させて
、それらの摩耗度を早め、かつ、機器故障率も高め、シ
ステム全体としても事故や搬送中断といった異常事態を
惹き起し易い問題がある。In addition, in the above-mentioned embodiment, all transport vehicles that are constructed in the middle of the pneumatic pipe line 2 and move into one or more control zones are placed in the control zone regardless of the magnitude of the deviation in their transport pitches. We have explained a configuration in which an attached linear motor is used to brake, stop, and advance sequentially, but in this case, even if the pitch deviation is such that it does not cause any problems in the running of the transport vehicle or in the noodling, Since the transport vehicle is always stopped once in the control zone, this can lead to an unreasonable reduction in transport efficiency, especially in long-distance transport systems. There is a problem in that the control equipment is operated more than necessary, accelerating their wear and tear and increasing the failure rate of the equipment, making the system as a whole more likely to cause abnormal situations such as accidents and transportation interruptions.
それ故に、上述の問題点を解消する手段として、□各制
御ゾーンならびに走行ゾーンに、運搬車位置検出器、運
搬車走行速度検出器、圧力計などを設け、これらから得
られる運搬車位置、速度などのデータを9−カル制御装
置、通信制御装置および通信ライン等を経由して集中制
御装置に伝送し、この集中制御装置において前記の伝送
データに基づいて演算処理された制御指令(走行間隔制
御、制御ゾーン部での運搬車運行制御、走行ゾーン内の
運搬車走行台数制御、分岐・合流など運搬車行先制御な
ど)が前記通信ライン、通信制御装置を経由して、例え
ば、制御ゾーン起動、停止の如きバイレベルの制菌情報
として任意のローカル制御装置に伝送し、このローカル
制御により現場レベルでの制御、即ち、各制御ゾーンに
付設したリニアモーターの作動、停止の具体的制御を行
なうような集中制御機能を具備すると良い。Therefore, as a means to solve the above-mentioned problems, □In each control zone and travel zone, a carrier position detector, a carrier traveling speed detector, a pressure gauge, etc. are provided, and the carrier position and speed obtained from these are provided. The data is transmitted to the central control device via the 9-cal control device, communication control device, communication line, etc., and the control command (travel interval control , transport vehicle operation control in the control zone, control of the number of transport vehicles running in the travel zone, transport vehicle destination control such as branching and merging, etc.) are performed via the communication line and communication control device, for example, control zone activation, Bi-level antibacterial information such as stop is transmitted to any local control device, and this local control is used to perform control at the field level, that is, specific control of the operation and stop of the linear motor attached to each control zone. It would be good to have a centralized control function.
これによる場合は、通常は、これら走行ゾーン、制御ゾ
ーン全てを一連の走行ラインにして運搬車を必要のない
限り停止させることなく走行させることを前提として、
殊に、長距離搬送の場合の搬送効率、搬送能率の増進、
各種制御機器の作動車減少に伴う摩耗度および故障率の
低下、それに伴うシステム全体としての異常事態発生率
の激減、ならびに、維持管理面での経費節減などを可能
にでき、それでいて、例えば、運搬単個々の重量差や走
行抵抗、抗力係数等のばらつきに起因して変化する搬送
ピッチの狂い或いは、ハンドリングゾーンや局部的設備
の不具合など安全走行上ならびにハンドリングの上で不
都合を来たすような非常事態が発生した場合は、ライン
中に点存する制御ゾーンにおいて所要の制御機能が働い
て、前記非常事態を速やかに解消して、安全性を確保す
ることができる。In this case, it is normally assumed that all of these driving zones and control zones are used as a series of driving lines to allow the transport vehicle to travel without stopping unless necessary.
In particular, improving transport efficiency and transport efficiency in the case of long-distance transport,
It is possible to reduce the degree of wear and failure rate due to the reduction in the number of operating vehicles for various control devices, to drastically reduce the occurrence rate of abnormal situations for the entire system, and to reduce costs in terms of maintenance and management. Emergency situations that cause inconveniences in terms of safe driving and handling, such as deviations in conveyance pitch that change due to differences in individual weight, running resistance, drag coefficient, etc., or failures in the handling zone or local equipment. If this occurs, the necessary control functions are activated in the control zones located throughout the line, and the emergency situation can be quickly resolved and safety can be ensured.
第14図、第15図は夫々、気送管路2の途中部分に付
設したリニアモーター901即ち、運搬車1に設けた二
次導体10と前記管路2部分に設けた複数個の一次コイ
ルC・・からなる一次コイル部9cとの協働によって、
運搬単個々の重量差や気送管路2内での走行抵抗、抗力
係数の格差などにより管路2途中に於いてキャッチアッ
プした又は異常接近した複数台の運搬車1・・を制御す
る運行制御方法を示す。14 and 15 respectively show a linear motor 901 attached to a midway portion of the pneumatic pipeline 2, that is, a secondary conductor 10 provided on the transport vehicle 1, and a plurality of primary coils provided in the pipeline 2 section. By cooperating with the primary coil section 9c consisting of C...
Operation that controls multiple transport vehicles 1 that catch up or approach abnormally in the middle of the pipeline 2 due to differences in the weight of individual transport vehicles, running resistance within the pneumatic pipeline 2, differences in drag coefficients, etc. The control method is shown.
先ず、第14図イ乃至ホで示す運行制御方法釜こついて
説明する。First, the operation control method shown in FIGS. 14A to 14E will be explained in detail.
複数台の運搬車1・・が所定の間隔又はそれ以上の間隔
をもって走行している場合には、一次コイル部9cの一
次コイルC・・の電源がOFFに設定されており、各運
搬車1・・は気送管路2内に発生された強制気流による
推進力を受けてそのまま走行を続ける。When a plurality of transport vehicles 1... are running at a predetermined interval or more, the power of the primary coil C... of the primary coil portion 9c is set to OFF, and each transport vehicle 1... ... continues to travel as it is, receiving the propulsive force from the forced airflow generated within the pneumatic pipe 2.
(第14図イ参照)気送管路2の所定箇所に設けた運搬
車間隔検出具によって複数台の運搬車1・・がキャッチ
アップした状態又は異常接近した状態で走行しているこ
とを検出したとき、一次コイル部9cの一次コイルC・
・を、先行運搬車1が通過移動した直後に運搬車1に制
動力を付与する状態に順次切換えて、後続運搬車1の推
進力を低下させる。(Refer to Figure 14 A) The carrier vehicle spacing detection device installed at a predetermined location in the pneumatic pipeline 2 detects that multiple carrier vehicles 1 are running in a catch-up state or in an abnormally close state. At this time, the primary coil C of the primary coil portion 9c
- are sequentially switched to a state in which a braking force is applied to the transport vehicle 1 immediately after the preceding transport vehicle 1 passes, thereby reducing the propulsive force of the following transport vehicle 1.
一方、先行運搬車1は強制気流によってそのまま進行を
続ける。On the other hand, the preceding transport vehicle 1 continues to advance due to forced airflow.
(第14図口乃至二参照)そして、先行運搬車1と後続
運搬車1との間隔が所定間隔以上に達したとき、運搬車
1に制動力を付与する状態にある一次コイルC・・の電
源をOFFに切換えて、後続運搬車1を強制気流による
推進力によって所定の走行を行なわせる。(See Figure 14, openings to 2) When the distance between the preceding transport vehicle 1 and the following transport vehicle 1 reaches a predetermined distance or more, the primary coil C... which is in a state of applying braking force to the transport vehicle 1... The power is turned off and the following transport vehicle 1 is caused to travel in a predetermined manner by the propulsion force generated by the forced airflow.
(第14図ホ参照)
次に、第15図イ乃至ホで示す運行制御方法について説
明する。(See FIG. 14E) Next, the operation control method shown in FIGS. 15A to 15E will be described.
複数台の運搬車1・・が所定の間隔又はそれ以上の間隔
をもって走行している場合には、前述の制御方法と同様
に一次コイル部9Cの一次コイルC・・の電源がOFF
に設定されており、各運搬車1・・は強制気流による推
進力を受けてそのまま走行を続ける。When a plurality of transport vehicles 1... are running at a predetermined interval or more, the power to the primary coil C... of the primary coil portion 9C is turned off in the same way as in the control method described above.
, and each transport vehicle 1 continues to travel as it is by receiving the propulsion force from the forced airflow.
(第15図イ参照)気送管路2の所定箇所に設けた運搬
車間隔検出具によって複数台の運搬車1・・がキャッチ
アップした状態又は異常接近した状態で走行しているこ
とを検出したとき、一次コイル部9cの一次コイルC・
・を、運搬車1に前進方向の推進力を付与する状態に切
換えて、先行運搬車1を加速する一方、先行運搬車1が
通過移動した直後の一次コイルC・・の電源を順次OF
Fに切換えて、後続運搬車1を強制気流のみの推進力で
走行させる。(See Figure 15 A) The carrier vehicle interval detection device installed at a predetermined location in the pneumatic pipeline 2 detects that multiple carrier vehicles 1 are running in a catch-up state or in an abnormally close state. At this time, the primary coil C of the primary coil portion 9c
・ is switched to a state that applies a forward propulsion force to the transport vehicle 1, and the preceding transport vehicle 1 is accelerated, while the power to the primary coil C immediately after the preceding transport vehicle 1 passes is sequentially turned off.
F, and the following transport vehicle 1 is driven by the propulsion force of only the forced airflow.
(第15図口乃至二参照)そして、先行運搬車1と後続
運搬車1との間隔が所定間隔以上に達したとき、運搬車
1に前進方向の推進力を付与する状態にある一次コイル
C・・の電源をOFFに切換えて、先行運搬車1を強制
気流による推進力によって所定の走行を行なわせる。(Refer to Figure 15, openings to 2) When the distance between the preceding transport vehicle 1 and the following transport vehicle 1 reaches a predetermined distance or more, the primary coil C is in a state of applying forward propulsive force to the transport vehicle 1. ... is turned off, and the preceding transport vehicle 1 is caused to travel in a predetermined manner by the propulsion force generated by the forced airflow.
(第15図ホ参照)尚、運搬車1が運行制御用管路3の
所定位置に停止したのち、その停止箇所の一次コイルに
直流を流しておけば吸引力のみが作用し、運搬車1をそ
の停止位置に確実に保持することができる。(Refer to Figure 15 E) Furthermore, after the transport vehicle 1 has stopped at a predetermined position in the operation control conduit 3, if direct current is passed through the primary coil at that stop point, only the suction force will act, and the transport vehicle 1 can be reliably held in its stopped position.
特に、管路が下降のグラビテイ−のときに有効である。This is particularly effective when the conduit is in downward gravity.
また、本発明においては、′運搬車側を二次導体、運行
制御□□用管路側を一次コイル部としてリニアモーター
を付設しているか、必要に応じて運搬車側を一次コイル
部、運行制御用管路側を二次導体としてリニアモーター
を構成しても良きものである。In addition, in the present invention, a linear motor is attached with the transport vehicle side as the secondary conductor and the operation control conduit side as the primary coil part, or as necessary, the transport vehicle side as the primary coil part and the operation control conduit side as the primary coil part. The linear motor may also be constructed using the utility pipe side as a secondary conductor.
尚、全図を通じて、二重の実線矢印は運搬車の移動方向
を指すものであり、太い実線は気送管路内に発生される
強制気流の流れを示し、また、細線は一次コイルの推力
方向を示すものである。In addition, throughout the figures, double solid line arrows indicate the moving direction of the transport vehicle, thick solid lines indicate the flow of forced airflow generated in the pneumatic pipeline, and thin lines indicate the thrust of the primary coil. It indicates the direction.
図面は本発明に係る運搬車の強制気流式搬送設備の実施
例を示し、第1図は全体の概略図、第2図イ乃至ホは運
搬車の発進状況を示す要部の作用説明図、第3図イ乃至
へは運搬車の到着ゾーンでの運行制御状況を示す要部の
作用図、第4図は到着ゾーンにおける運搬車の速度制御
状況を示すダイヤグラム、第5図、第6図は運搬車の拡
大側面図とそのVI−VI線断面図、第7図イ乃至/X
は運搬車がキャッチアップ又は異常接近した状態で到着
ゾーンに到着したときにおける運行制御状況を示す要部
の作用図、第8図は他の実施例を示す全体の概略図、第
9図は他の方法による到着ゾーンにおける運搬車の速度
制御状況を示すダイヤグラム、第10図乃至第12図は
夫々一次コイ小部及び二次導体の取付は構造の改良構成
を示す拡大縦断面図である。
第13図は他の実施例を示す全体の概略図、第14図、
第15図は夫々気送管路途中に於いて運搬車がキャッチ
アップ又は異常接近した場合における運行制御状況を示
す要部の作用図である。
1・・・・・・運搬車、2・・・・・・気送管路、計・
・・・・運行制却用管路。The drawings show an embodiment of the forced air flow conveyance equipment for a transport vehicle according to the present invention, FIG. 1 is an overall schematic diagram, and FIGS. Figures 3A to 3A are operation diagrams of the main parts showing the operation control status of the transport vehicle in the arrival zone, Figure 4 is a diagram showing the speed control status of the transport vehicle in the arrival zone, and Figures 5 and 6 are Enlarged side view of the transport vehicle and its VI-VI sectional view, Figures 7 A to /X
8 is an operational diagram of the main parts showing the operation control situation when the transport vehicle arrives at the arrival zone in a catch-up or abnormally close state, FIG. 8 is an overall schematic diagram showing another embodiment, and FIG. 9 is another example. FIGS. 10 to 12 are enlarged longitudinal sectional views showing an improved structure of the installation of the primary coil small part and the secondary conductor, respectively. FIG. 13 is an overall schematic diagram showing another embodiment; FIG. 14;
FIG. 15 is an operational diagram of the main parts showing the operation control situation when the transport vehicle catches up or approaches abnormally in the middle of the pneumatic pipeline. 1... Transport vehicle, 2... Pneumatic pipeline, total.
...Pipeline for traffic control.
Claims (1)
送管路2の終端部又は途中に、前記強制気流の非作用領
域で、且つ、運搬車1の複数個を列状に収容可能な良さ
の運行制御用管路3を強制気流放出用の開口部12を介
して連設し、この運行制(財)用管路3には、前記運搬
車1側を二次導体とし、かつ運行制(財)用管路3側を
一次コイル部として、該管路3内に移入した運搬車1を
移行することが可能なリニアモーターを付設しである運
搬車の強制気流式搬送設備。1 A plurality of transport vehicles 1 can be accommodated in a row in the non-action area of the forced air flow at the end or in the middle of the pneumatic pipe line 2 through which the forced air flow that gives propulsion force to the transport vehicle 1 flows. A traffic control conduit 3 of good quality is connected through an opening 12 for forced airflow release, and this traffic control conduit 3 has the transport vehicle 1 side as a secondary conductor, and Forced air flow conveyance equipment for a transport vehicle, which is equipped with a linear motor that can move the transport vehicle 1 that has been moved into the pipe 3, with the control pipe 3 side as the primary coil part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4928376A JPS5915856B2 (en) | 1976-04-28 | 1976-04-28 | Forced air flow conveyance equipment for transport vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4928376A JPS5915856B2 (en) | 1976-04-28 | 1976-04-28 | Forced air flow conveyance equipment for transport vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52133684A JPS52133684A (en) | 1977-11-09 |
JPS5915856B2 true JPS5915856B2 (en) | 1984-04-12 |
Family
ID=12826539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4928376A Expired JPS5915856B2 (en) | 1976-04-28 | 1976-04-28 | Forced air flow conveyance equipment for transport vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5915856B2 (en) |
-
1976
- 1976-04-28 JP JP4928376A patent/JPS5915856B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS52133684A (en) | 1977-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5209599B2 (en) | Automatic cable car equipment | |
KR20070105832A (en) | Cableway system having transport devices that can be coupled to a conveying cable | |
CN104787047A (en) | Method for passengers to get on and off passenger train which is not stopped at stations | |
US5127599A (en) | Deceleration zone in a linear motor in-track transit system | |
US20170120933A1 (en) | Cable Car System For Transporting People | |
US4662285A (en) | Passenger aerial cableway | |
JPH11305837A (en) | Device for preventing collision of automatically guided vehicle | |
CA1283621C (en) | Overhead cable transport installation containing a transfer section equipped with a clock conveyor | |
US5016539A (en) | Track installation for the vehicles of a transport installation, especially a revolving aerial cable transport installation | |
JPS5915856B2 (en) | Forced air flow conveyance equipment for transport vehicles | |
JPH06212890A (en) | Underground tunnel system for traveling train | |
JP4436073B2 (en) | Railway vehicle operation method and operation system | |
US5116002A (en) | Stopping zones in a linear motor in-track transit system | |
EP3737596B1 (en) | Cable transportation system comprising a station and method for operating such cable transportation system | |
JPH11116051A (en) | Capsule transportation method and device | |
US6526894B2 (en) | Traveling-gear mechanism for a transport assembly of a cableway system | |
JP2020001544A (en) | Track transport system and operation method for the same | |
JP2010221822A (en) | Number of operating carriers adjusting system for auto circulation type cableway | |
JP4003494B2 (en) | Transport system | |
JPH11305838A (en) | Rail truck system | |
WO1992000862A1 (en) | Linear motor in-track transit system | |
JPS5915857B2 (en) | Forced air long-distance conveyance equipment | |
CN109532925B (en) | Structure for controlling front and rear connection of train during running and working method thereof | |
CN110167819B (en) | Station of cable transportation system | |
CN116924098A (en) | Automatic stop system |