JPS5915846A - Heat conductivity measuring cell using heat generator - Google Patents

Heat conductivity measuring cell using heat generator

Info

Publication number
JPS5915846A
JPS5915846A JP12510682A JP12510682A JPS5915846A JP S5915846 A JPS5915846 A JP S5915846A JP 12510682 A JP12510682 A JP 12510682A JP 12510682 A JP12510682 A JP 12510682A JP S5915846 A JPS5915846 A JP S5915846A
Authority
JP
Japan
Prior art keywords
heat
temperature
temp
pipe
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12510682A
Other languages
Japanese (ja)
Inventor
Kamekichi Shiba
芝 亀吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHISAKA KENKYUSHO KK
Original Assignee
SHISAKA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHISAKA KENKYUSHO KK filed Critical SHISAKA KENKYUSHO KK
Priority to JP12510682A priority Critical patent/JPS5915846A/en
Publication of JPS5915846A publication Critical patent/JPS5915846A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Abstract

PURPOSE:To measure heat conductivity in good preciseness, by a method wherein a current is supplied to an electric hating wire having resitance independent of a temp. to heat a heat generator and a metal pipe encircling the outside thereof is controlled to a predetermined temp. to detect the temp. difference of the heat generator and the metal pipe by a thermocouple or a thermopile. CONSTITUTION:An electric heating wire 3 having resistance independent of a temp. is sealed in a heat generating pipe 1 comprising a metal fine pipe and a current is supplied to the electric heating wire 3 to heat the heat generating pipe 1. The outer pipe 2 made of a metal encircling the heat generating pipe 2 is controlled to a definite temp. to detect the temp. difference of the heat generating pipe 1 and the outer pipe 2 by a thermocouple 4 and the heat conductivity of a heat conductivity measuring cell is measured. Because the thermocouple is used in the measurement of a temp., highly precise measurement is performed.

Description

【発明の詳細な説明】 定常状態では、発熱体からの放熱量が発熱量に等しいが
、放熱は気体を通しての熱伝導だけではなく、放射によ
る分および固体部を通しての熱伝導による分がある。二
定温度式ならば、放射および固体部を通しての熱伝導に
よる分は、いずれも気体の存在によらないとみられるの
で、真空での測定で補正される。二定温度式でなければ
、放射および固体部を通しての熱伝導による放熱量が両
温度によるので、真空での測定で十分に補正されない。
DETAILED DESCRIPTION OF THE INVENTION In a steady state, the amount of heat released from the heating element is equal to the amount of heat generated, but the amount of heat released is not only due to heat conduction through the gas, but also due to radiation and heat conduction through solid parts. In the two-constant-temperature equation, the radiation and heat conduction through solid parts are both considered to be independent of the presence of gas, so they are corrected by measurements in vacuum. If the two-temperature equation is not used, the amount of heat dissipated by radiation and heat conduction through the solid part depends on both temperatures, so measurement in vacuum will not be sufficiently corrected.

このように、二定温度式がよいのであるが、それには、
つぎの2通りの方法がある。
In this way, the two-constant temperature formula is better;
There are the following two methods.

1)両温度を別々にそれぞれ所定の温度になるように制
御する。
1) Both temperatures are controlled separately to a predetermined temperature.

it )一方の温度が所定の温度になるように制御し、
両者の温度差が所定の温度差になるように制御する。
it) control the temperature of one side to a predetermined temperature,
The temperature difference between the two is controlled to be a predetermined temperature difference.

熱伝導度測定セルにとって、この2通りの方法のどちら
が有利であるかを、温度および温度差の測定誤差が同程
度であるとして(たとえばいずれも志1℃であるとして
)、検討すると、熱伝導度の測定値に対する影響は、温
度の誤差の影響が温度差の誤差のほぼ2倍であることが
知られる。また、温度と温度差とを制御するときには、
温度差の制御はできるだけ精度よく行うべきであり、温
度制御はそれtなど精度よく行う必要がないととも知ら
れる。
When considering which of these two methods is more advantageous for a thermal conductivity measurement cell, assuming that the measurement errors of temperature and temperature difference are of the same degree (for example, assuming that both are 1°C), the thermal conductivity measurement cell It is known that the effect of temperature error on the measured value of temperature is approximately twice that of temperature difference error. Also, when controlling temperature and temperature difference,
It is also known that temperature difference control should be performed as accurately as possible, and temperature control does not need to be performed as precisely as possible.

温度差の検出を熱電対あるいは熱電堆で行えば、土0.
1℃の精度を得ることは困難でないから、本発明のもの
では、熱電対あるいは熱電堆で温度差の検出を行うこと
にする。
If the temperature difference is detected using a thermocouple or thermopile, the temperature difference will be 0.
Since it is not difficult to obtain an accuracy of 1° C., in the present invention, a thermocouple or thermopile is used to detect the temperature difference.

本発明のセルでは、発熱体の温度を測定しない。In the cell of the present invention, the temperature of the heating element is not measured.

それで、発熱量が簡単に知られることが望ましいので、
発熱体の加熱は、抵抗が温度によらない電熱線によって
行う。
Therefore, it is desirable that the calorific value be known easily, so
The heating element is heated by a heating wire whose resistance does not depend on temperature.

外管の温度は適宜の温度計で測定してよいが、温度差測
定用の熱電対あるいは熱電堆を白金抵抗温度計などに連
接した温度計が最適である。
The temperature of the outer tube may be measured with an appropriate thermometer, but a thermometer in which a thermocouple or thermopile for measuring temperature differences is connected to a platinum resistance thermometer or the like is most suitable.

第1図、第2図及び第3図は本発明にかかる熱伝導度測
定セルのそれぞれ異った実施例を示す説明図であり、第
1図は、発熱体が、抵抗が温度によらない電熱線が細い
金属直円管に入っている測定セルを示す。すなわち、内
径が2r2の金属製直円管(外管)2と同軸に、外径が
2rよ、長さがtの金属細管(発熱管)■が設置され、
その中に抵抗が温度によらない電熱線3が入っている、
発熱管と外管との温度差は熱電堆4で測定される。熱電
堆は白金抵抗温度計(図には示されていない)に連接さ
れている。r、−rよけ対流が無視される程度に小さい
(たとえば1.5m )とする。電熱線の抵抗は温度に
よらずRであるとするので、電流1が流れているときの
単位時間当シの発熱量はR1″テある0 第2図と第3図はいずれも熱電対の一方の素線を発熱体
とする実施例を示す。第2図は熱電対の画素線がいずれ
も抵抗が温度によらない場合であり、第3図は抵抗が温
度によらない素線を発熱体とするが、熱電対の他方の素
線は抵抗が温度によるものでもよらないものでもよい場
合である。
FIGS. 1, 2, and 3 are explanatory diagrams showing different embodiments of the thermal conductivity measurement cell according to the present invention, and FIG. 1 shows that the heating element has a resistance that does not depend on the temperature. A measurement cell is shown in which the heating wire is housed in a thin metal right circular tube. That is, a metal thin tube (exothermic tube) 2 with an outer diameter of 2r and a length of t is installed coaxially with a metal right circular tube (outer tube) 2 with an inner diameter of 2r2,
Inside it is a heating wire 3 whose resistance does not depend on the temperature.
The temperature difference between the heat generating tube and the outer tube is measured by the thermopile 4. The thermopile is connected to a platinum resistance thermometer (not shown). It is assumed that r, -r is so small that the shielding convection is ignored (for example, 1.5 m). Assume that the resistance of the heating wire is R regardless of temperature, so the amount of heat generated per unit time when current 1 is flowing is R1''.0 Figures 2 and 3 both show the resistance of the thermocouple. An example in which one of the wires is used as a heating element is shown. Figure 2 shows the case where the resistance of all the pixel wires of the thermocouple does not depend on the temperature, and Figure 3 shows the case where the resistance does not depend on the temperature of the wire. However, the resistance of the other wire of the thermocouple may or may not depend on temperature.

第2図に示す実施例と第3図に示す実施例とでは、温度
差の測定方法が異る。
The embodiment shown in FIG. 2 and the embodiment shown in FIG. 3 differ in the method of measuring the temperature difference.

第2図では、長さがtのマンガニン細線5が内径12r
、 (3mm程度)の金属製の直円細管(外管)2の軸
の位置に直線状に張られている。マンガニン細線5の両
端P、PLには等しい抵抗のマンガニン細線PBN 、
 P’ B’ Nが連結されている。マンガニン細線P
P’ (すなわち5)の中点Mにコンスタンタン細線M
Aが連結されている。点AとPBNの中の1点Bとは、
温度が外管の温度t3℃と同じに保たれているとL点B
はアースされているとする。
In FIG. 2, a thin manganin wire 5 with a length t has an inner diameter of 12r.
, (approximately 3 mm) is stretched in a straight line at the axis of a metal right circular thin tube (outer tube) 2. At both ends P and PL of the manganin thin wire 5, there is a manganin thin wire PBN with equal resistance,
P'B' N are connected. Manganin thin wire P
At the midpoint M of P' (i.e. 5), draw a constantan thin line M
A is connected. Point A and point B in PBN are
If the temperature is kept the same as the outer tube temperature t3℃, L point B
Assume that is grounded.

コンスタンタン細線AMの抵抗をR8,マンガン細線M
PBの抵抗をRMとすムマンガニン細線BNO中の一点
Cを、BCの抵抗がRM+ 2Roであるように選定す
る。6は電源であり、電源6からA及びNまでの区間は
導線である。NAに電圧を印荷してAMK電流21が流
れ1マンガニン細線が加熱される。コンスタンタン細線
AMは抵抗R6が比較的に小さく、コンスタンタン細線
の温度上昇がマンガニン細線PP’の温度上昇と同程度
であるようにする。
The resistance of constantan thin wire AM is R8, and the resistance of manganese thin wire M is
Let the resistance of PB be RM, and select a point C in the mumanganin thin wire BNO so that the resistance of BC is RM+2Ro. 6 is a power source, and sections from the power source 6 to A and N are conducting wires. A voltage is applied to NA, an AMK current 21 flows, and one manganin thin wire is heated. The constantan thin wire AM has a relatively small resistance R6 so that the temperature rise of the constantan thin wire is about the same as the temperature rise of the manganin thin wire PP'.

点A9点Cの電位をそれぞれvA、VBとする。また、
マンガニン・コンスタンタン熱電対の両接点の温度がt
0℃、t2℃であるときの熱起電力がβ(1,−t2)
であるとする。ペルチェ効果による温度変化は無視され
るとすると、点MおよびPMP’細線の温度がtユ℃で
あるときには、 ■A=2Roi+β(t、−t2) 十RMi 、  
Vo=−(RM+2Ro)i            
     (1)であるから、演算増幅器によって、V
=VA十V。
Let the potentials of point A and point C be vA and VB, respectively. Also,
The temperature at both junctions of the manganin-constantan thermocouple is t.
The thermoelectromotive force at 0℃ and t2℃ is β(1,-t2)
Suppose that Assuming that the temperature change due to the Peltier effect is ignored, when the temperature of point M and the thin wire PMP' is t°C, ■A=2Roi+β(t, -t2) 1RMi,
Vo=-(RM+2Ro)i
(1), so by the operational amplifier, V
=VA10V.

を作ると、 V=VA+Vo=/(tl−ts)         
  (2)となる。そこで、■を測定することによって
、温度差(tよ−t2)℃が知られる。
When creating, V=VA+Vo=/(tl-ts)
(2) becomes. Therefore, by measuring ■, the temperature difference (tyo-t2)°C is known.

第3図では、抵抗が温度によらない素線(マンガニン細
線かコンスタンタン細線)を発熱体として外管2の中に
同軸に置き、その中点Mに熱電対となる他の素線(コン
スタン細線のときには、抵抗が温度によるクロメルでも
よいし、抵抗が温度によらないマンガニンでもよい)を
連結することは第2図のものと同様である。第2図と異
る点は、発熱体だけに電流を流すことである。それには
、点Mにおいて発熱体に連結されている素線MCにイン
ピーダンスが非常に大きい導線CEを接続して、発熱体
AMBに電流を流してもそれに連結されている素線MC
に流れる電流が無視されるようになっている。電流が流
れないので、その素線の抵抗が温度によらないという条
件は必要でない。
In Fig. 3, a wire whose resistance does not depend on temperature (manganin thin wire or constantan thin wire) is placed coaxially inside the outer tube 2 as a heating element, and another wire (constant thin wire) which becomes a thermocouple is placed at the midpoint M of the outer tube 2. In this case, the resistance may be chromel, which depends on temperature, or the resistance may be manganin, which does not depend on temperature). The difference from FIG. 2 is that current is passed only through the heating element. To do this, a conducting wire CE with a very high impedance is connected to the strand MC connected to the heating element at point M, and even if a current flows through the heating element AMB, the strand MC connected to it
The current flowing through is ignored. Since no current flows, there is no need for the resistance of the wire to be independent of temperature.

発熱体の2部分AMとMBとはその抵抗が温度によらず
、いずれもRであるとする。また、点A。
It is assumed that the resistances of the two parts AM and MB of the heating element are R regardless of the temperature. Also, point A.

B、Cはいずれも温度が外管の温度t2℃と同じに保た
れるとし、AMBに電流1が流れているときにはM点を
含めて温度が七〇℃であるとする。6は電源、7は可変
抵抗である。
It is assumed that the temperature of both B and C is kept the same as the temperature t2°C of the outer tube, and when a current 1 is flowing through AMB, the temperature including point M is 70°C. 6 is a power supply, and 7 is a variable resistor.

点A、IB、Cの電位をそれぞれvA、vオ、voとす
ると、 ■A−Vo:R1+β(t□ t、)、   VB V
o:= −R1十β(tl−t2 )        
              (3)であるから、 V==V、 V。−1−VB−Vo==V、+VB−2
Vo=2β(tl−t2)  (4)である。演算増幅
器によって、■を求め、それを測定することによって温
度差(tl −t2)℃が知られるO 第1図の場合でも第2図もしくは第3図の場合でも、熱
伝導度の測定方法は同じである。すなわち、t2℃およ
び(tよ−t、)℃がそれぞれ所定の値になるときの電
流は、熱伝導度がKの試料気体については1、熱伝導度
かに*の基準気体については1*。
If the potentials of points A, IB, and C are vA, vo, and vo, respectively, ■A-Vo: R1+β(t□ t,), VB V
o:= −R1 β(tl−t2)
(3), so V==V, V. -1-VB-Vo==V, +VB-2
Vo=2β(tl-t2) (4). By using an operational amplifier to determine ■, and measuring it, the temperature difference (tl - t2) °C can be found. It's the same. That is, the current when t2°C and (tyo-t,)°C each reach a predetermined value is 1 for a sample gas with a thermal conductivity of K, and 1* for a reference gas with a thermal conductivity of K*. .

真空については1゜であるとすると、 としてKが知られる。Assuming that the vacuum is 1°, K is known as .

ioおよび1*は予め測定しておけばよく、試料気体に
ついての測定の際に測定する必要はない。
io and 1* can be measured in advance and do not need to be measured when measuring the sample gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は本発明にかかる熱伝導度測
定セルのそれぞれ異った実施例を示す説明図である。 1・・・・・金属細管(発熱管) 2・・・・・金属製直円管(外管) 3・・・・・電熱線 4・・・・・熱電堆 5・・・・・マンガニン細線 6・・・・・電源 7・・・・・可変抵抗 特許出願人  株式会社 シサカ研究所代 理 人 (
7524)最上正大部 へ、寸
FIGS. 1, 2, and 3 are explanatory diagrams showing different embodiments of the thermal conductivity measuring cell according to the present invention. 1...Metal thin tube (heating tube) 2...Metal right circular tube (outer tube) 3...Heating wire 4...Thermopile 5...Manganin Thin wire 6... Power supply 7... Variable resistance patent applicant Shisaka Institute Co., Ltd. Agent (
7524) To the top main part, size

Claims (1)

【特許請求の範囲】[Claims] 抵抗が温度によらない電熱線に電流を流して加熱するよ
うになっている細い直円筒形の発熱体を金属直円管の軸
に置いて測定室を構成し、その外部の金属管が所定の温
度に制御され、発熱体と金属外管との温度差が熱電対あ
るいは熱電堆で検出されて所定の温度差となるように、
発熱体を加熱する熱伝導度測定セル。
A thin right cylindrical heating element, whose resistance does not depend on temperature, is heated by passing a current through the heating wire, is placed on the axis of a metal right circular tube to form a measurement chamber, and the outer metal tube is placed in a specified position. The temperature difference between the heating element and the metal outer tube is detected by a thermocouple or thermopile, so that
A thermal conductivity measurement cell that heats a heating element.
JP12510682A 1982-07-20 1982-07-20 Heat conductivity measuring cell using heat generator Pending JPS5915846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12510682A JPS5915846A (en) 1982-07-20 1982-07-20 Heat conductivity measuring cell using heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12510682A JPS5915846A (en) 1982-07-20 1982-07-20 Heat conductivity measuring cell using heat generator

Publications (1)

Publication Number Publication Date
JPS5915846A true JPS5915846A (en) 1984-01-26

Family

ID=14901992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12510682A Pending JPS5915846A (en) 1982-07-20 1982-07-20 Heat conductivity measuring cell using heat generator

Country Status (1)

Country Link
JP (1) JPS5915846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140011U (en) * 1986-02-26 1987-09-03
EP0343811A2 (en) * 1988-05-24 1989-11-29 Zortech International Limited Method and apparatus for testing thermal conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140011U (en) * 1986-02-26 1987-09-03
EP0343811A2 (en) * 1988-05-24 1989-11-29 Zortech International Limited Method and apparatus for testing thermal conductivity

Similar Documents

Publication Publication Date Title
US3232113A (en) Thermal parameter indicator
US6883369B1 (en) Sensor and method of measuring mass flow non-intrusively
US4178800A (en) Method of and apparatus for the measuring of quantities of heat
Kolb et al. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300–600 K
JPH03225268A (en) Direct heating type calorimetric instrument
US3417617A (en) Fluid stream temperature sensor system
US3527081A (en) Differential scanning calorimeter
US3332285A (en) Fast precision temperature sensing thermocouple probe
JPS5915846A (en) Heat conductivity measuring cell using heat generator
US3527620A (en) Method of using noble metal thermocouple
Hutchinson On the measurement of the thermal conductivity of liquids
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
RU2011979C1 (en) Method of determination of heat-transfer coefficient of thermocouple sensor
JPS634134B2 (en)
JPH0755739A (en) Method and equipment for measuring thermoelectric characteristic
Clem et al. A differential adiabatic microcalorimeter for the study of heats of transition in solution
US3514998A (en) D.c. circuit for operating asymmetric thermopile
Beebe et al. Calorimetric Heats of Adsorption of Nitrogen, Carbon Monoxide, and Argon on Graphon at-70°
JPS59184829A (en) Thermometer
US3477880A (en) Thermo-couple device for current measurement
Jones et al. A New Differential Calorimetry Technique
SU685965A1 (en) Thermal probe
RU2020435C1 (en) Method for calibration of thermocouples
JPS5923369B2 (en) Zero-level heat flow meter
SU570825A1 (en) Device for investigating thermal conductivity on liquids and gases