JPS59158392A - Operation control device for compressor - Google Patents

Operation control device for compressor

Info

Publication number
JPS59158392A
JPS59158392A JP3103583A JP3103583A JPS59158392A JP S59158392 A JPS59158392 A JP S59158392A JP 3103583 A JP3103583 A JP 3103583A JP 3103583 A JP3103583 A JP 3103583A JP S59158392 A JPS59158392 A JP S59158392A
Authority
JP
Japan
Prior art keywords
control
pressure
air
fluctuation
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3103583A
Other languages
Japanese (ja)
Inventor
Takashi Serita
芹田 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anest Iwata Corp
Original Assignee
Anest Iwata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anest Iwata Corp filed Critical Anest Iwata Corp
Priority to JP3103583A priority Critical patent/JPS59158392A/en
Publication of JPS59158392A publication Critical patent/JPS59158392A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve saving of electric energy, by conducting optimal control of an operation circuit additionally including intermittent control by computer program control, and thereby automatically converting an operation to an optimal operation mode in accordance with an amount of air to be used. CONSTITUTION:A pressure sensor 10A and a two-way solenoid valve V are added to a prior art device. A computer inputs signals from the pressure sensors 10 and 10A, and decides condition of pressure fluctuation by a preset program to control a Y-4 magnet (not shown) for stopping and starting a prime mover 2 and controls solenoid valves 18, 11, V and 12, etc. A compressor is normally operated by stepped control, but in case of large fluctuation of an amount of air to be used, that is, large fluctuation of pressure, it is operated by non-stepped control for automatically stabilizing the fluctuation. On the other hand, in case of small fluctuation of pressure, an operation control is automatically converted to an intermittent control, so as to largely improve saving of electric energy.

Description

【発明の詳細な説明】 この発明は、使用者側の空気使用h1の変動に応じて、
その空気圧縮機の消費電力を最少にするように最適゛制
御を行う空気圧縮機運転制御装置に関する。
[Detailed Description of the Invention] This invention provides the following features:
The present invention relates to an air compressor operation control device that performs optimal control to minimize the power consumption of the air compressor.

従来の空気圧縮機の運転制御装置11tとしては、例え
ば第1図に示すよう4〔ものがある。(特願昭57−2
18412号公報参照)同図は油冷式回転圧縮機の場合
の運転制御系統図で、1はこの回転圧縮機本体であり、
原動電気モータ2によりベルト駆動装置3を介して駆動
されている。圧縮機本体1には、吸込みおよび吐出弁を
内蔵してないため、無負前運転時には圧縮機本体1の吸
込室1S側を閉鎖する方式を採用して、1吸込み閉鎖弁
4が配設されている。この弁4は、吸込みフィルタ1F
を介して大気Aを吸入する。IE縮機本体1の出り側I
Dには逆止弁5を介してオイルセパレータタンク6が設
けられ、このタンク内上部の環状体のセパレータエレメ
ント7により吐出圧縮空気中のオイルを分離する。分離
されたオイルは、タンク6の底部に溜り、清浄な空・戒
のみを出口(kl!+ 60より、ミニマムプレッシャ
弁8およびストップ弁9を介して2次ライン圧力Pの空
気を吐出 する。
As a conventional air compressor operation control device 11t, there are, for example, four types shown in FIG. (Special application 1986-2
(Refer to Publication No. 18412) This figure is an operation control system diagram for an oil-cooled rotary compressor, and 1 is the main body of this rotary compressor.
It is driven by a prime electric motor 2 via a belt drive 3. Since the compressor body 1 does not have built-in suction and discharge valves, a method is adopted in which the suction chamber 1S side of the compressor body 1 is closed during non-negative pre-operation, and a suction closing valve 4 is provided. ing. This valve 4 is a suction filter 1F.
Atmosphere A is inhaled through. Output side I of IE compressor body 1
An oil separator tank 6 is provided at D via a check valve 5, and oil in the discharged compressed air is separated by an annular separator element 7 in the upper part of the tank. The separated oil collects at the bottom of the tank 6, and only clean air is discharged from the outlet (kl!+60) at the secondary line pressure P via the minimum pressure valve 8 and stop valve 9.

上記ミニマムプレッシャ弁8は、常閉形で設定圧力後4
 kg7am“以上で開弁する。10は吐出圧力(2次
側ライン圧力)検出スインチで、常開形で設定圧力3 
Icy /cm″で閉路して2方習磁弁11および3、
−jj’di、イ質弁12を付り)してj用弁させる。
The above minimum pressure valve 8 is a normally closed type and after the set pressure
The valve opens when the pressure exceeds 7 am. 10 is the discharge pressure (secondary side line pressure) detection switch, which is normally open and has a set pressure of 3.
2-way magnetic valves 11 and 3, closed at Icy/cm'';
-jj'di, attach the quality valve 12) and make the valve for j.

13は、上記3方’+’lL磁弁12からの大気放出i
1Jマフラ、また14は圧力調整弁で、この調整弁は7
1η/cm’で開放するように設定され−Cいる。
13 is the atmospheric discharge i from the above three-way '+'lL magnetic valve 12.
1J muffler, 14 is a pressure regulating valve, and this regulating valve is 7
It is set to open at 1η/cm'.

この種の1f:、耐1磯1は、吸込室1Sの高真空によ
る騒音等の不具合を緩和するため、無負ダr運転時にも
僅少の空気を吸込側に咲り込Δ7でいるため、nil 
記セパレー々々ンク6に#)q: ’(=イ’+’B 
4;の空’A M 送り込まれている3、に記の吸JΔ
佃への空気i;1 i+11常、オイル七パレータタン
ク6の出D (u:I 60からリターンバイブ15を
11ijじて送られ、このリターンバイブ15には無負
荷運転時、上記タンク6からの空気が常に送り込まれて
いる。
This kind of 1f:, 1 Iso 1, in order to alleviate problems such as noise caused by the high vacuum of the suction chamber 1S, allows a small amount of air to enter the suction side even during non-negative operation, so that it remains at Δ7. nil
In Separate Link 6 #)q: '(=I'+'B
The air 'A M of 4;
Air to Tsukuda i; 1 i + 11 Normally, oil 7 Output D of parator tank 6 Air is constantly pumped in.

また、前記オイルセパレータタンク6底部のオイルは、
オイルクーラ16、オイルフィルタ17および′【(を
磁オイルパルプ18を介して圧縮機本体1へ送られる1
、19は原動モータ2で直結駆動される冷却ファンであ
る。なお図の配管中、符号ら計は、各絞りノズルを示す
Moreover, the oil at the bottom of the oil separator tank 6 is
Oil cooler 16, oil filter 17 and
, 19 are cooling fans directly coupled and driven by the drive motor 2. Note that in the piping in the figure, the reference numeral indicates each throttle nozzle.

つぎにこの制御系統の作用を説明すると、圧縮@1から
のオイルを含んだ吐出圧縮空気は、オイルセパレークタ
ンク6内のセパレータエレメント7でオイルを分離され
、ストップ弁9を開放して使用側に供給する。リターン
バイブ15は、2方および3方各電磁弁1112により
閉鎖されている。無負荷運転時において2次ライン圧力
Pが7kq/cm’に上昇すると圧力調整弁14が作動
して吸込閉鎖弁4が閉鎖され、圧力が8ks’/am’
に達すると圧力センサー10が作動して前記各電磁弁1
1.12を開放し、空気は小量循環するアンロード節電
制御モードとなる。つぎに使用側で圧縮空気の利用が再
開されて圧力が8kY/Crn’より7kq/am″ま
で書降下すると、圧力センサー10が作動して各電磁弁
11.12の41勢を断ってこれらを閉鎖し、また吸込
閉鎖弁4が開弁して正常負荷運転状態に戻り、使用側の
空気使用量に応じて斜上の2段階の運転モードを繰返す
ようになっている。
Next, to explain the operation of this control system, the discharged compressed air containing oil from the compressor@1 is separated from oil by the separator element 7 in the oil separator tank 6, and the stop valve 9 is opened to send it to the user side. supply The return vibe 15 is closed by two-way and three-way solenoid valves 1112. When the secondary line pressure P rises to 7 kq/cm' during no-load operation, the pressure regulating valve 14 is activated and the suction closing valve 4 is closed, and the pressure increases to 8 ks'/am'.
When the pressure sensor 10 is activated, each solenoid valve 1 is activated.
1.12 is opened and a small amount of air is circulated in the unload power saving control mode. Next, when the use of compressed air is restarted on the user side and the pressure drops from 8kY/Crn' to 7kq/am'', the pressure sensor 10 operates to cut off the 41 forces of each solenoid valve 11.12. The suction shutoff valve 4 is closed and the suction shutoff valve 4 is opened again to return to the normal load operating state, and the two-step upward operating mode is repeated depending on the amount of air used on the user side.

しかしながら、このような従来の運転制御系にあっては
、使用側の空気消費攪に応じて【E常負荷運転と無倉荷
時にはアンロードする2段階に圧&i機の運転を制御す
る方式とな1)でいたため、使用側空気使用敏がゼロも
しくは極めて小さい場合においてもその各時点の実′、
ニ力、ftをそれに対比して最少にすることができず、
その間無駄な電力を消費するという間鴇点があった。
However, in such a conventional operation control system, the operation of the pressure machine is controlled in two stages: normal load operation and unloading when there is no cargo, depending on the air consumption and agitation on the user side. 1), even if the air usage sensitivity on the user side is zero or extremely small, the actual
It is not possible to minimize the force and ft compared to that,
During this time, there was a drawback that power was wasted unnecessarily.

第2図および第3図は、それぞれ使用j空気(1支と消
費電力の割合との関係を示す1′4で、・≧)2図は、
空気タンク容ばか220tのときの各佃転制6!ll 
Jj式による使用空気凝(%)苅実電力比(%)の関係
を、また電力消費1什は使用する空気タンク容蹴に依存
するので、71¥3図に、空気タンク容置(4対トータ
ル′市力比(−実1(E力比×使用空気()tの割合)
(%)の関係を示す。−]二記両図において、それぞれ
一点鎖線Aは、使用空気繊に応じ−Cその都度原動セー
タを断続(停止、始IITjJ )させた場合の仮想断
続制御曲線、また点線Bは、無段階の正常負性運転制御
曲線、実線Cは前記の節電アンロード運転を含む段階制
御曲線を示す。曲線Aは節MT、上極めて望ましい理想
的特性に近いが、実際には使用空気量に応じてその都度
原動セータを断続させることは機能上不可能なため仮想
の目標ラインであるが、前記曲線Bはもちろん、C曲線
もこの目標ラインAとの隔りは大きい。
Figures 2 and 3 respectively show the amount of air used (1'4, which shows the relationship between 1 sq. and the ratio of power consumption, ≧).
Each Tsukuda change control 6 when the air tank capacity is 220 tons! ll
The relationship between the used air condensation (%) and the actual power ratio (%) according to the Jj formula, and since the electric power consumption 1 yen depends on the air tank capacity used, the air tank capacity (4 pairs) is shown in Figure 71 ¥3. Total 'city power ratio (-actual 1 (E power ratio x ratio of air used ()t)
(%) shows the relationship. -] In both figures, the dotted line A is the virtual intermittent control curve when the motive sweater is intermittent (stopped, started) depending on the air fiber used, and the dotted line B is the stepless control curve. The normal negative operation control curve, solid line C, shows the step control curve including the power saving unload operation. Curve A is close to the ideal characteristic that is extremely desirable at node MT, but in reality it is a virtual target line because it is functionally impossible to intermittent the motive sweater each time depending on the amount of air used. There is a large gap between curve B and curve C as well as this target line A.

この発明は、このような従来の問題点にかんがみてなさ
れたもので、とくに空気使用量の少いときの節11f、
効果を大きくするために、コンビコーータによるプログ
ラム制御を行って断続制御を加えた最適1[制御を行っ
て前記目標ラインに近付けようとするものであり、後述
する本発明構成により得られる特性をそれぞれ第2図お
よび第3図の太線曲線りで示す。
This invention was made in view of these conventional problems, especially when the amount of air used is small.
In order to increase the effect, the optimum 1 [control is performed to approach the target line by performing program control using a combination coater and adding intermittent control, and the characteristics obtained by the configuration of the present invention to be described later are This is shown by the thick curved line in FIGS. 2 and 3.

以下に、本発明を図面に基づいて説明する2、第4図は
、本発明の運転制御装置の一実施例を示す第1図相当系
統[ズで、第1図とI+21−(相当)構成は、同一符
号で示し重複説明は省略する。第1図の従来例と異る部
分は、ハツチングで示す圧力センサー11Aと2方電磁
弁■が追加されたことである。上記圧カセンザー11A
は、従来例の吐出IEカセンサーと同一−形式で、常時
は開路し、設定圧力8.51(p /cm’で閉路して
、+>if記オイルセパレータタンク6の出1]側6o
七、圧力調整弁14との間に配設した上記2方711弁
■を付勢して開弁させるようにしである。
In the following, the present invention will be explained based on the drawings. Figures 2 and 4 show an embodiment of the operation control device of the present invention in a system corresponding to Figure 1, and a system corresponding to Figure 1 and I+21- (corresponding) configuration. are indicated by the same reference numerals, and redundant explanation will be omitted. The difference from the conventional example shown in FIG. 1 is that a pressure sensor 11A and a two-way solenoid valve (2), shown by hatching, are added. Above pressure sensor 11A
is the same type as the conventional discharge IE sensor, and is normally open and closed at a set pressure of 8.51 (p/cm').
7. The above-mentioned two-way valve (711) located between the pressure regulating valve 14 and the pressure regulating valve 14 is energized to open.

本発明は、L記運転回路の最適同店Iを行うために、プ
ログラム制御1・こよるシーケンス制御選択方式をコン
ピュータによって行うことに最大の特徴を有するもので
、以ドにこの制御b゛式を説明する。
The main feature of the present invention is that the sequence control selection method according to program control 1 is performed by a computer in order to perform the optimum same operation circuit I for the L operation circuit. explain.

この制御方式は、前述の従来例の段階C1,制御ノf式
をベースとし、2次側ラインのLトーカ変動(圧力と頻
度、断続時間等)を各圧力スイッチとタイマ等により常
時計重[1して、原動七−タ停f1−(断私e :lj
’制御)の酊ρi条件または各S、階制御への切換え条
件の判断を行いながら制御する方式で、コンピュータは
、各圧力センサー10.10Aのイl゛を大刀とじて予
め設ガルだプログラムにより圧力変動状況を判断して、
原動モータの停止始動用Y−4マグネン) (’M示セ
t’ )、各f1111f1.I4J 電ti弁18.
11− V。
This control method is based on the stage C1 and control f formula of the conventional example described above, and the L talker fluctuations (pressure, frequency, intermittent time, etc.) of the secondary line are constantly controlled by each pressure switch and timer. 1, then the motor 7-ta stop f1- (cut off e: lj
In this method, the computer performs control while determining the intoxication condition (control) or the condition for switching to each S, floor control. Judging the pressure fluctuation situation,
Y-4 Magnen for stopping and starting the drive motor ('M indication set'), each f1111f1. I4J electric Ti valve 18.
11-V.

12等を制御するもので、第5図にそのフローヂャート
を示す。すなわち、空気の使用状況に応じて各制御方式
を選択させるようにプログラムしたもので、通常は、段
1階制御で運転されているが、空気使用喰の変動が大き
い場合すなわち圧力変動が大きい場合、これを安定化さ
せるために無段階制御とする。又、圧力変動が少ない場
合は、停止に条件に該当したときに停止するという断続
制御に切りかえる。これらの()Jりかえを自動的に切
換えようとするものである。
12 etc., and its flowchart is shown in FIG. In other words, it is programmed to select each control method depending on the air usage situation, and is normally operated under stage 1 control, but if there are large fluctuations in air usage, that is, large pressure fluctuations. In order to stabilize this, stepless control is used. In addition, if the pressure fluctuation is small, the control is switched to intermittent control, which stops when the conditions for stopping are met. The purpose is to automatically switch these ()J changes.

なお、起動時、停止1−1時には、吸込を閉鎖して無負
荷起動、力((負荷停止させ、起動時の起動電流を低減
するとともに、圧縮機本体に加わる衝撃も緩和させる。
In addition, at startup and stop 1-1, the suction is closed to perform no-load startup and stop the load ((load), thereby reducing the starting current at startup and also mitigating the shock applied to the compressor body.

さらに停止り時もなめらかに停F1−するので、圧縮機
本体に加わる衡撃も緩和され、圧縮機本体の寿命を延長
することができるっ ここで、通電をON、非通′?ILをOFF”とし、各
′m磁弁18.11.V、12のソレノイドをそれぞれ
SQL、18 、SQL、11 、SQL、V、SQL
Furthermore, since it stops F1 smoothly when it stops, the impact on the compressor body is alleviated, and the life of the compressor body can be extended. IL is turned off, and the solenoids of each 'm magnetic valve 18, 11.V, and 12 are set to SQL, 18, SQL, 11, SQL, V, and SQL, respectively.
.

12とすると、各制御機器の動きは、例えば第]表Gコ
r’7J−作動を行うようにプログラムされている〜。
12, the movements of each control device are programmed to perform the operations shown in Table G, for example.

第1表 また、第5図における※A、※Bの:1ili (ll
jl方式切換は、2次側ライン圧力の変動が上記=:E
 f’l’のときに行われ、下記条件以外は段階制側)
となるようにしである。すなわち、 (1)無段1分制御に切換える判1すr条件(第5図※
A)イ)第6図に示すよ°)に、PがF3.5 ky 
/am’から7 kz /c、m’ (※1→※2)に
降下する時間t。
Also, in Table 1, *A, *B in Figure 5: 1ili (ll
jl method switching, the fluctuation of the secondary line pressure is as above =:E
It is carried out at the time of f'l', and except for the following conditions, it is on the stage system side)
This is how it should be. In other words, (1) Conditions for switching to stepless 1-minute control (Fig. 5*
A) B) As shown in Figure 6, P is F3.5 ky
Time t to descend from /am' to 7 kHz /c, m' (*1→*2).

が5秒以内で無段階1i1J御に切換える。will switch to stepless 1i1J control within 5 seconds.

口)第7図に示すように、Pが7 kg /cm″がら
8、5 k7 /am’に上昇しまた7ky/am’に
再降ド(第5図※2→※1→※2)と繰返す回数がt2
=60秒以内に5回計数されたときに無段階制御に切換
える。
As shown in Figure 7, P rose from 7 kg/cm'' to 8.5 k7/am' and fell again to 7 ky/am' (Figure 5 *2 → *1 → *2) The number of times it is repeated is t2
= Switch to stepless control when counted 5 times within 60 seconds.

(2)断続制御(停止)に切換える判断条件(第5図※
B)第8図に示すように、Pが13.5 kg/cm’
力)う7に9/cm′(※1→※2)まで圧力降下する
時間t3を計幽し、次のサイクルでの圧力降下時で停止
する時m5 t4を第2表により設定する。停止条件は
、P ) 8 ky /cm’にてt4経iM4115
停止する。
(2) Judgment conditions for switching to intermittent control (stop) (Figure 5*
B) As shown in Figure 8, P is 13.5 kg/cm'
(force) 7) Calculate the time t3 for the pressure to drop to 9/cm' (*1→*2), and set the time m5 and t4 when the pressure will stop in the next cycle according to Table 2. The stopping conditions are P) 8 ky/cm' and iM4115 after t4.
Stop.

第2表 上記のプログラム例は、その他必宏に応じて種々の条件
を設定して変更することができることはもちろんである
Table 2 It goes without saying that the above example program can be modified by setting various conditions according to the needs of the user.

また本発明のJ?1転制御装置の構成は、空気用圧縮機
のみならず他の適当な71体用圧縮機にも適用し得るも
のである。
Also, the J of the present invention? The configuration of the one-turn control device is applicable not only to air compressors but also to other suitable 71-body compressors.

以上説明してきたように、この発明によれば、空気圧縮
機の運転制御装置’Zを、2次側ライン圧力の変動を、
圧力センサーとタイヤとにより常時計測し、コンピュー
タにより前記圧力センサーからの信号を人力として、予
め設定したZlンビュータプログラムにより前記圧力変
動状態分層1すrして、前記2次側ラインの空気使用量
の大小に1ノロじて各制御用電磁弁付作動させ、目iJ
記空気圧縮機の連+144ζモードを、正常負荷運転の
無■夕諧制御、アンロード運転を含む段階制御、ならび
に原動電気モータを停止する断続ib’l CHIにそ
れぞれ相互、+1丁逆的かっ自動的に切換えるように構
成したので、この圧縮機は2次側ラインの消費空気量の
大小に対応してそれぞれ最適の運転モードに自動的に変
換され、従来技術のように単に2段階で制御される方式
に比して、第2図および第3図の太線り線で示すように
その節電効果を著しく改善し得るという効果が得られる
As explained above, according to the present invention, the operation control device 'Z of the air compressor can control the fluctuation of the secondary line pressure.
The pressure is constantly measured by the pressure sensor and the tires, and the computer uses the signal from the pressure sensor as human power to control the pressure fluctuation state using a preset Zlnviewer program, and uses the air in the secondary line. Activate each control solenoid valve one step at a time depending on the size of the amount, and then
The continuous +144ζ mode of the air compressor can be used for normal load operation without phase control, step control including unload operation, and intermittent ib'l CHI for stopping the driving electric motor, respectively, mutually and +1 reversely automatically. Since the compressor is configured to switch automatically, the compressor is automatically converted to the optimal operation mode depending on the amount of air consumed in the secondary line, and is simply controlled in two stages as in the conventional technology. As shown by the thick dashed line in FIGS. 2 and 3, the power saving effect can be significantly improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の油冷式回転空気IE縮機の運転制御装
置の一例の系統図、第2図および第3図は各運転制御方
式の空気消費量と電力消費割合の関係を示す図で、第2
図は、使用空気霞対実電力比線図、第3図は空気タンク
容量対トータル電力比線図である。第4図は、本発明の
運転制御装置の一実施例の第1図相当系統図、第5図は
そのフローチャート、第6図および第7図は、それぞれ
第5図フローチャートにおける無段階制御切換判断条件
を示す時間対2次側ライン圧力特性り文、また第8図は
、断続制御切換(停止の可否)判断条件を示す同上特性
図である。 1・・・・・・・・回転圧縮機本体 2・・・・・・・・・原動電気モータ 4・・・・・・・・・吸込み閉鎖弁 6・−・・・・・・オイルセパレータタンク60・・・
・・・出口側(2次側) 8・・・・・・・・・ミニマムプレッシャ弁10.10
A・・・・・・圧力センサー14・・・・・・圧力調整
弁 11.12.18.V・・・・・・電磁切換弁A・・・
・・・・・・吸入空気 P・・・・・・・・2次側ライン圧力 第1図 8 第2囚 掌九′7>フ2209 第3図 第4図 八 〇 541− 第5図
Figure 1 is a system diagram of an example of an operation control device for a conventional oil-cooled rotary air IE compressor, and Figures 2 and 3 are diagrams showing the relationship between air consumption and power consumption ratio for each operation control method. So, the second
The figure is a graph showing the ratio of used air to actual power, and FIG. 3 is a graph showing the ratio of air tank capacity to total power. FIG. 4 is a system diagram corresponding to FIG. 1 of an embodiment of the operation control device of the present invention, FIG. 5 is a flowchart thereof, and FIGS. 6 and 7 are respectively for stepless control switching judgment in the flowchart of FIG. FIG. 8 is a characteristic diagram showing the conditions for determining the intermittent control switching (whether to stop or not). 1...Rotary compressor body 2...Motive electric motor 4...Suction closing valve 6--Oil separator Tank 60...
...Outlet side (secondary side) 8...Minimum pressure valve 10.10
A...Pressure sensor 14...Pressure regulating valve 11.12.18. V... Solenoid switching valve A...
...Intake air P...Secondary side line pressure Fig. 1 8 2nd prisoner 9'7>F 2209 Fig. 3 Fig. 4 80541- Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 空気圧縮機の2次側ライン1イ・、力の変動を、圧力セ
ンサーとタイマとにより常時計測し、コンピュータによ
り前記圧力スイッチからの信号を人力として、予め設定
したコンピュータプロゲラ18により前記圧力変動状態
を判断して、前記2次側ラインの空気使用敏の大小に応
じて各制商団J ’R;、磁弁を作動させ、前記空気圧
縮機の運転モードを、屯営負荷運転の無段階制御、アン
[J−ド運転を含む段階制御ならびに原動軍気モータを
停止する所r続制御にそれぞれ相互、可逆的かつ自動的
に切換えるように構)v、シたことを特徴とする空気王
権機の運転制御装置。
The pressure fluctuations in the secondary line 1a of the air compressor are constantly measured by a pressure sensor and a timer, and the computer uses the signal from the pressure switch as human power to control the pressure fluctuations by a preset computer programmer 18. Judging the condition, each commercial corporation J'R; operates a magnetic valve depending on the level of air usage in the secondary line, and changes the operating mode of the air compressor to non-operational load operation. An air system characterized by reciprocally, reversibly and automatically switching between step control, un-[J-mode operation] and continuous control for stopping the driving military motor, respectively. Royal machine operation control device.
JP3103583A 1983-02-28 1983-02-28 Operation control device for compressor Pending JPS59158392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103583A JPS59158392A (en) 1983-02-28 1983-02-28 Operation control device for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103583A JPS59158392A (en) 1983-02-28 1983-02-28 Operation control device for compressor

Publications (1)

Publication Number Publication Date
JPS59158392A true JPS59158392A (en) 1984-09-07

Family

ID=12320243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103583A Pending JPS59158392A (en) 1983-02-28 1983-02-28 Operation control device for compressor

Country Status (1)

Country Link
JP (1) JPS59158392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863355A (en) * 1987-03-20 1989-09-05 Tokico Ltd. Air compressor having control means to select a continuous or intermittent operation mode
WO2010041774A1 (en) * 2008-10-09 2010-04-15 Hitachi Koki Co., Ltd. Air compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863355A (en) * 1987-03-20 1989-09-05 Tokico Ltd. Air compressor having control means to select a continuous or intermittent operation mode
WO2010041774A1 (en) * 2008-10-09 2010-04-15 Hitachi Koki Co., Ltd. Air compressor
US8784070B2 (en) 2008-10-09 2014-07-22 Hitachi Koki Co., Ltd. Air compressor

Similar Documents

Publication Publication Date Title
JP2000297765A (en) Compressor device
GB2053358A (en) Oil-cooled compressor
JPS59158392A (en) Operation control device for compressor
JPS6361780A (en) Displacement control device for multistage compressor
JP2007170216A (en) Air compressor
JPH09264255A (en) Air compressor
JP2814272B2 (en) Rotary compressor capacity control method
JPS5813962A (en) Controller for refrigeration cycle for automobile
US2764104A (en) Compressor unloading systems
JPS58140498A (en) Operation control of screw compressor
JP2737254B2 (en) Switching method of compressor capacity control
JPH0240314Y2 (en)
JPH0560077A (en) Control method for number of compressor in operation
JPS5773877A (en) Variable capacity compressor
JPH01273886A (en) Control unit of compressor
JPH02112679A (en) Volume controlling method for compressor
JP3346208B2 (en) Load control device for multi-stage compressor
JP2860583B2 (en) Compressor
JPH0212314Y2 (en)
JPH0517435Y2 (en)
JPH0147633B2 (en)
JPS60259782A (en) Unit number controller for screw compressor
JPS6038105Y2 (en) Air conditioner control circuit
JPS5913349Y2 (en) Unloader device for oil-cooled rotary compressor
JPS6357634B2 (en)