JPS59158305A - Engine valve timing controller - Google Patents

Engine valve timing controller

Info

Publication number
JPS59158305A
JPS59158305A JP3130083A JP3130083A JPS59158305A JP S59158305 A JPS59158305 A JP S59158305A JP 3130083 A JP3130083 A JP 3130083A JP 3130083 A JP3130083 A JP 3130083A JP S59158305 A JPS59158305 A JP S59158305A
Authority
JP
Japan
Prior art keywords
valve
intake
camshaft
tappet
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3130083A
Other languages
Japanese (ja)
Other versions
JPH0125881B2 (en
Inventor
Hiroyuki Oda
博之 小田
Toshiharu Masuda
益田 俊治
Yasuyuki Morita
泰之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3130083A priority Critical patent/JPS59158305A/en
Publication of JPS59158305A publication Critical patent/JPS59158305A/en
Publication of JPH0125881B2 publication Critical patent/JPH0125881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To control valve timing with high response and reliability by varying the contacting position between a cam face for specific angular position of cam shaft and pressure receiving section of tappet contacting against valve stem in accordance with running condition. CONSTITUTION:Suction side and exhaust side valve moving mechanisms for opening/closing los load/heavy load suction valve and exhaust valve respectively are provided. Cam face 9b of cam shaft 9 will contact against pressure receiving section 13a while tappet 13 has pressing section 13b for transmitting force from can face 96 to the valve stem 5s. The tappet 13 is inserted slidably into an insertion hole 14a. An operating system 15 for rolling a member 14 rotatable around the cam shaft 9 in accordance with engine operating state is provided. Consequently engine valve timing can be controlled with high response and reliability.

Description

【発明の詳細な説明】 本発明は、エンジンのバルブタイミング制御装置に関し
、特に吸、排気弁を開閉制御する動弁系においてエンジ
ンの運転状態に応、じてバルブタイミングを可変制御す
るための可変機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve timing control device for an engine, and in particular to a variable valve timing control device for variably controlling valve timing according to engine operating conditions in a valve train that controls the opening and closing of intake and exhaust valves. It is about the mechanism.

一般に、エンジンにおける吸、排気弁のバルブタイミン
グは、エンジンの運転状態に応じて可変制御することが
エン、ジンの運転性能」−好ましい。
In general, it is preferable for the valve timing of the intake and exhaust valves in an engine to be variably controlled in accordance with the operating state of the engine.

例えば、エーンジンの低角゛荷運転時には吸、排気弁の
オーバラップ期間を短くすることが残留排気量を少なく
抑えて燃焼安定性を向上させるので好ましい。また、エ
ンジンの高負荷低回転運転時には吸、排気弁のオーバラ
ップ期間を短くすると、吸気の吹き返しを防止しt充填
効率を向上できる。
For example, when the engine is operated with a low angle load, it is preferable to shorten the overlap period of the intake and exhaust valves because this reduces the amount of residual exhaust gas and improves combustion stability. Further, when the engine is operated at high load and low speed, by shortening the overlap period of the intake and exhaust valves, blowback of intake air can be prevented and filling efficiency can be improved.

一方、エンジンの高負荷高回転運転時には吸気弁の開弁
期間を長く設定することが充填効率を上げてエンジン出
力を向上できるので好ましい。
On the other hand, when the engine is operated at high load and high speed, it is preferable to set the opening period of the intake valve to be long because this increases the filling efficiency and improves the engine output.

このため、従来、エンジンの動弁系においてバルブタイ
ミングを可変制御するための可変機構が種々提案されて
いる。例えば、特公昭52−35819号公報に開示さ
れているようにエンジンの出力軸とカムシャフトとの間
に遠心カバナを有する遊星歯車を介在させてエンジンの
出力軸とカムシャフトとの相対位置を変化させるように
したもの、あるいはカムシャフトを立体カムシャフトと
し該立体カムシャフトをスライドさせるようにしたもの
等がある。
For this reason, various variable mechanisms for variably controlling valve timing in the valve train of an engine have been proposed. For example, as disclosed in Japanese Patent Publication No. 52-35819, a planetary gear having a centrifugal cover is interposed between the output shaft of the engine and the camshaft to change the relative position of the output shaft of the engine and the camshaft. There are some models in which the camshaft is a three-dimensional camshaft and the three-dimensional camshaft is slid.

しかるに、上記従来のものは何れも、構造が複雑で大が
かりなものとなるとともに、可変制御の応答性、信頼性
が悪く、また大きな騒音を発生しやすいなど、実用性に
欠(プるものであった。
However, all of the above-mentioned conventional methods have complicated and large-scale structures, have poor variable control response and reliability, and tend to generate loud noise, making them impractical. there were.

本発明は斯かる点に鑑みてなされたもので、既存の動弁
Ia4%を有効に利用して、カムシャフトの特定角度位
置に対するカム面とバルブステムに当接するタペットの
受圧部との接触位置をエンジンの運転状態に応じて変化
させるようにすることにより、構造が簡単で、応答性、
信頼性良く可変制御でき、また騒音の発生の少ないなど
、実用性に優れた可変機構を備えたバルブタイミング制
御装置の提供を目的とするものである。
The present invention has been made in view of the above, and effectively utilizes the existing valve train Ia4% to adjust the contact position between the cam surface and the pressure receiving part of the tappet that contacts the valve stem with respect to a specific angular position of the camshaft. The structure is simple, responsive, and
The object of the present invention is to provide a valve timing control device equipped with a highly practical variable mechanism that can perform variable control with high reliability and generates little noise.

この目的を達成するため、本発明のエンジンのバルブタ
イミング制御装置の構成は、カムシャフトのカム面から
力を受ける受圧部および上記カム面からの力をバルブス
テムに伝達する押圧部を有するタペツ[−と、該タペッ
トが摺動自在に嵌挿される嵌挿孔を有し、上記力ムシャ
フ1−の回りを回動自在に支持された回動部材と、該回
動部材をエンジンの運転状態に応じてカムシャフトの回
りに揺動させる操作装置とを備えたエンジンのバルブタ
イミング制御装置であって、上記タペット押圧部の外面
形状が、回動部材の揺動方向に沿ってカムシャフトの回
転軸を中心とする円弧状に形成されていることを特徴と
するものである。
In order to achieve this object, the configuration of the engine valve timing control device of the present invention is such that the valve timing control device of the present invention has a tappet having a pressure receiving part that receives force from the cam surface of the camshaft and a pressing part that transmits the force from the cam surface to the valve stem. - and a rotary member having a fitting hole into which the tappet is slidably inserted, and rotatably supported around the force shaft 1-, and the rotary member is placed in the operating state of the engine. An engine valve timing control device comprising an operating device that swings around a camshaft in accordance with the rotational direction of the camshaft, the external shape of the tappet pressing portion being aligned with the rotational axis of the camshaft along the swinging direction of the rotating member. It is characterized by being formed in an arc shape with the center at .

このことにより、本発明では、操作装置により回動部材
をカムシャフト回りに回動させることによって、エンジ
ンの運転状態に応じてカムシャフトの特定角度位置に対
するカム面とタペットの受圧部との接触位置をカムシャ
フト回りに変化させてバルブタイミングを可変制御す゛
るようにしたものである。そして、上記回動部材を回動
させてタペットをカムシャフト回らに移動させた場合に
おいても、カムシャフトの特定角度位置におけるカムシ
ャフトの回転軸からバルブステムまでの距離が一定ひな
いと、バルブクリアランスが変化Jるが、該パルシステ
ムと当接するタペット押圧部の外面形状を回動部材の揺
動方向に沿ってカムシャフトの回転軸を中心とする円弧
状とすることにより、上記バルブクリアランスを一定に
保ち、該バルブクリアランスの変化に起因する騒音の発
生やバルブ駆動性能の劣化を防止するようにしたもので
ある。
As a result, in the present invention, by rotating the rotating member around the camshaft using the operating device, the contact position between the cam surface and the pressure receiving part of the tappet can be adjusted to a specific angle position of the camshaft depending on the operating state of the engine. The valve timing can be variably controlled by changing the position around the camshaft. Even when the above rotating member is rotated to move the tappet around the camshaft, if the distance from the rotation axis of the camshaft to the valve stem at a specific angular position of the camshaft is not constant, the valve stem will be cleared. However, by making the outer surface shape of the tappet pressing part that comes into contact with the pulse system into an arc shape centered on the rotational axis of the camshaft along the swinging direction of the rotating member, the above-mentioned valve clearance can be kept constant. This is to prevent the occurrence of noise and deterioration of valve drive performance due to changes in the valve clearance.

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図および第2図は、1つの気筒に対して低負荷用お
よび高負荷用の1対の吸気ポートと1対の排気ポートと
が設けられたfユアルインダクション方式の4気筒エン
ジンに本発明を適用した実施例を示す。エンジン本体1
には、その中心線9に沿って直列状に第1〜第4気筒2
a〜2d’が形成されており、各気筒2a〜2dには各
々、低負荷用および高負荷用の1対の吸気ポート3a、
3bと、第1および第2の1対の排気ポート4a。
Figures 1 and 2 show a four-cylinder engine of the f-yual induction system, in which each cylinder is provided with a pair of intake ports and a pair of exhaust ports for low-load and high-load applications. An example to which the invention is applied will be shown. Engine body 1
The first to fourth cylinders 2 are arranged in series along the center line 9.
a to 2d' are formed, and each cylinder 2a to 2d has a pair of intake ports 3a for low load and high load, respectively.
3b, and a pair of first and second exhaust ports 4a.

4bとがそれぞれ気筒列方向と略平行な方向に並列して
開口するように設けられている。第1気筒2aと第2気
筒2bの各高負荷用吸気ポート3b。
4b are provided so as to open in parallel in a direction substantially parallel to the direction of the cylinder row. Each high-load intake port 3b of the first cylinder 2a and the second cylinder 2b.

3b同士、および各第2排気ポート4b、4.b同士は
それぞれ互いに背中合せ状態に隣接でるように配置され
、同様に第3気筒2Gと第4気筒2dの各高負荷用吸気
ポート3b 、3b同士、および各第2排気ポート4b
、4b同士も互いに隣接するように配置されている。
3b and each second exhaust port 4b, 4. Similarly, the high-load intake ports 3b of the third cylinder 2G and the fourth cylinder 2d, the two 3b's, and the second exhaust ports 4b of the third cylinder 2G and the fourth cylinder 2d are arranged adjacent to each other back to back.
, 4b are also arranged adjacent to each other.

各気筒2a〜2dの低負荷用および高負荷用吸気ポート
3a 、3bの気筒への間口部には該各吸気ボーh3a
 、3bをそれぞれ所定のタイミングで開閉する低負荷
用および高負荷用の吸気弁5a。
The low-load and high-load intake ports 3a and 3b of each cylinder 2a to 2d have intake ports h3a at the frontage to the cylinders.
, 3b are opened and closed at predetermined timings, respectively.Low load and high load intake valves 5a.

5bが配設されており、一方各気筒2a〜2dの第1お
よび第2排気ボート4a 、4bの気筒への開口部には
該各排気ポート4a 、4bをそれぞれ所定のタイミン
グで開閉する第1および第2の排気弁6a 、6bが配
設されている。また、各気筒2a〜2dの高負荷用吸気
ポート3bに接続される吸気マニホールドの高負荷用吸
気通路7bには、エンジンの高負荷運転時に開かれる開
閉弁7が配設されており、エンジンの低負荷運転時には
低負荷用吸気通路78に連通する低負荷用吸気ポート3
aのみから各気筒2a〜2dに吸気を供給する一方、エ
ンジンの高負荷運転時には低負荷用および^負荷用吸気
ポート3 a + 3 bの両方から吸気を供給するよ
うにしている。一方、各気筒2a〜2dの第1、第2排
気ボート4a、4bはそれぞれ、第1、第2排気通路7
c、7dに連通されている。
On the other hand, at the openings to the cylinders of the first and second exhaust boats 4a and 4b of each cylinder 2a to 2d, a first exhaust port is provided which opens and closes each exhaust port 4a and 4b at a predetermined timing, respectively. and second exhaust valves 6a and 6b are provided. Furthermore, an on-off valve 7 that is opened during high-load operation of the engine is disposed in the high-load intake passage 7b of the intake manifold connected to the high-load intake port 3b of each cylinder 2a to 2d. During low-load operation, the low-load intake port 3 communicates with the low-load intake passage 78.
Intake air is supplied to each of the cylinders 2a to 2d only from a, while during high-load operation of the engine, intake air is supplied from both the low-load and ^load intake ports 3a+3b. On the other hand, the first and second exhaust boats 4a and 4b of each cylinder 2a to 2d are connected to the first and second exhaust passages 7, respectively.
c and 7d.

エンジン本体11部には、各気筒2a〜2dにおける低
負荷用および^角筒用吸気弁5a、5bを開閉制御する
吸気側動弁機構8aと、第1および第2排気弁6 a 
+ 6 bを開閉制御する排気側動弁機4f48bとが
設けられている。
The engine main body 11 includes an intake side valve operating mechanism 8a that controls opening and closing of the low-load and square cylinder intake valves 5a and 5b in each cylinder 2a to 2d, and first and second exhaust valves 6a.
+6b is provided with an exhaust side valve train 4f48b that controls the opening and closing of the valve.

吸気側動弁機構88は、エンジン本体1の吸気側にエン
ジン本体中心wA9と平行に配されタイミングベルト1
10を介してエンジンのクランクシャフト(図示せず)
によって回動駆動される吸気側カムシャフト9を有し、
該吸気側カムシャフト9には各気筒2a〜2dの低負荷
用および高負荷用吸気弁5a、5bに対応するカム面9
a、9bが同形状に形成されており、この吸気側カムシ
ャフト9の回転により低負荷用吸気弁5aと高負荷用吸
気弁5bが開閉されるようになっている。一方、排気側
動弁機構8bは、エンジン本体1の排気側にエンジン本
体中心線交と平行に配され同じくタイミングベルト11
0により回動駆動される排気側カムシャフト10を有し
、該排気側カムシャフト10には各気筒2a〜2dの第
1、第2排気弁5a、5bに対応するカム面10a、1
0bが同形状に形成されており、この排気側カムシャフ
ト10の回転により第1排気弁6aと第2排気弁6bが
開閉されるようになっている。
The intake side valve mechanism 88 is disposed on the intake side of the engine body 1 in parallel with the center wA9 of the engine body, and is connected to the timing belt 1.
10 through the engine crankshaft (not shown)
It has an intake side camshaft 9 which is rotationally driven by
The intake side camshaft 9 has a cam surface 9 corresponding to the low-load and high-load intake valves 5a and 5b of each cylinder 2a to 2d.
a and 9b are formed in the same shape, and rotation of this intake side camshaft 9 opens and closes the low load intake valve 5a and the high load intake valve 5b. On the other hand, the exhaust side valve mechanism 8b is disposed on the exhaust side of the engine body 1 in parallel with the intersection of the center lines of the engine body.
0, and the exhaust side camshaft 10 has cam surfaces 10a, 1 corresponding to the first and second exhaust valves 5a, 5b of each cylinder 2a to 2d.
0b are formed in the same shape, and rotation of this exhaust side camshaft 10 opens and closes the first exhaust valve 6a and the second exhaust valve 6b.

上記吸気側動弁機構88には、第1気筒2aと第2気筒
2bどの互いに隣接する両画負荷用吸気弁5b、5b、
および第3気筒2Cと第4気筒2dとの互いに隣接する
両画負荷用吸気弁5b、5bのバルブタイミングをそれ
ぞれ可変制御する、本発明に係る2つの第1可変機構1
1.11が段けられており、また排気側動弁機構8bに
も、互いに隣接する第1、第2気筒2a、2bの第2排
気弁6b 、6bと、第3、第4気筒2c、2dの第2
排気弁6b、6bとのバルブタイミングをそれぞれ可変
制御する、本発明に係る2つの第2可変機構12.12
が設けられている。
The above-mentioned intake side valve operating mechanism 88 includes intake valves 5b, 5b for mutually adjacent load on both sides of the first cylinder 2a and the second cylinder 2b,
and two first variable mechanisms 1 according to the present invention that variably control the valve timings of the mutually adjacent double load intake valves 5b, 5b of the third cylinder 2C and the fourth cylinder 2d.
1.11, and the exhaust side valve mechanism 8b also includes second exhaust valves 6b, 6b of the first and second cylinders 2a, 2b adjacent to each other, and second exhaust valves 6b, 6b of the third and fourth cylinders 2c, 2d second
Two second variable mechanisms 12.12 according to the present invention that variably control the valve timing of the exhaust valves 6b, 6b, respectively.
is provided.

これら第1および第2可変機構11.12は、第3図に
拡大図示するように同じ構成によってなる。すなわち、
第1可変機構11は、一端(上端)が吸気側カムシャフ
ト9のカム面9b 、9bと当接する受圧面にて該カム
面9bから力を受ける受圧部13aとその反対側C高負
荷用吸気弁5b。
These first and second variable mechanisms 11, 12 have the same configuration as shown in an enlarged view in FIG. That is,
The first variable mechanism 11 has a pressure receiving part 13a which receives a force from the cam surface 9b at one end (upper end) of which is in contact with the cam surfaces 9b and 9b of the intake side camshaft 9, and a pressure receiving part 13a which receives a force from the cam surface 9b, and the opposite side C of the high load intake Valve 5b.

5bのバルブステム5s、5sと当接する押圧面13g
、にて上記カム面9bからの力をパルシステム5Sへ伝
達する抑圧部13bと円筒状の摺動部13Cとを有する
タペット13.13と、該タペット13.13が上下方
向に摺動自在に嵌挿保持される2つの嵌挿孔14a、1
4aを有するとともに上記エンジン本体1、の円弧状面
1aに対応して円弧状に形成されたF面14bを有し、
上記吸気側カムシャフト9に相互に回転を許すように回
動自在に支承されて該吸気側カムシャフト9の回りを回
動しうる回動部材14と、該回動部材14をエンジンの
運転状態に応じて上記吸気側カムシャフト9の回転軸回
りに揺動さぜる操作装置15とを備えてなる(尚、第2
可変機構12は第1可変機構11の構成要素に「′J 
(ダッシュ)を付して表わし、6Sは第2排気弁6bの
バルブステムである)。
Pressing surface 13g that comes into contact with valve stem 5s, 5s of 5b
, a tappet 13.13 having a suppressing part 13b that transmits the force from the cam surface 9b to the pal system 5S and a cylindrical sliding part 13C, and the tappet 13.13 being able to freely slide in the vertical direction. Two insertion holes 14a, 1 to be inserted and held
4a and an F surface 14b formed in an arc shape corresponding to the arc shape surface 1a of the engine main body 1,
A rotating member 14 is rotatably supported on the intake camshaft 9 so as to allow mutual rotation, and is capable of rotating around the intake camshaft 9. and an operating device 15 that swings the intake side camshaft 9 around the rotation axis according to the rotational axis of the intake side camshaft 9.
The variable mechanism 12 has a component of the first variable mechanism 11 "'J".
6S is the valve stem of the second exhaust valve 6b).

回動部材14は、上記両嵌挿孔11a、14a間の中央
部にて吸気側カムシャフト9に支承され、この支承され
る部分において上下に分割されており、ボルト16.1
6で一体に結合されている。
The rotating member 14 is supported by the intake side camshaft 9 at a central portion between the fitting holes 11a and 14a, and is divided into upper and lower parts at this supported portion.
6 are connected together.

操作装置15は、エンジン本体中心線pに平行に配され
2つの第1可変機構11.11の各回動部材14.14
の上端部を連結する揺動軸17と、この揺動軸17に対
して直角に配され該揺動軸17の中火部に係合するとと
もに第2図中左右方向に往復動自在に形成された往復動
軸18と、例えばモータの回転運動を往復運動に変換し
て上記往復動軸18を上記方向に往復動させ、揺動軸1
7を介して回動部材14を前記のように回動させる駆動
装置19とを備えてなる。この駆動装置19には、エン
ジンの回転数を検出する回転数センサ20が出力する回
転数信号81と、エンジン負荷を検出する負荷センサ2
1が出力する負荷信号S2が入力され、エンジンの特定
運転時とじての高負荷高回転運転時に該駆動装置1つは
、前記往復動@18を第2図中右方向に移動さけるよう
に駆動される。この往復動軸18の移動により、揺動軸
17は吸気側カムシャフト9の回転方向Xと同方向く第
2図中時計方向)に回動し、回動部材14.14が吸気
側力ムシトフト9を中心に上記X方向に回動される。
The operating device 15 is arranged parallel to the center line p of the engine body, and is connected to each rotating member 14.14 of the two first variable mechanisms 11.11.
A rocking shaft 17 connecting the upper end portions, and a rocking shaft 17 disposed at right angles to the rocking shaft 17 and engaged with the medium heating portion of the rocking shaft 17, and formed so as to be able to reciprocate in the left-right direction in FIG. The reciprocating shaft 18 is reciprocated in the above direction by converting, for example, the rotational motion of a motor into reciprocating motion, and the reciprocating shaft 18 is reciprocated in the above direction.
The driving device 19 rotates the rotating member 14 as described above via the rotating member 7 . This drive device 19 receives a rotation speed signal 81 output from a rotation speed sensor 20 that detects the engine rotation speed, and a load sensor 2 that detects the engine load.
When the load signal S2 outputted by the engine 1 is input, the drive unit 1 is driven so as to avoid the reciprocating motion @ 18 in the right direction in FIG. be done. Due to this movement of the reciprocating shaft 18, the swing shaft 17 rotates in the same direction as the rotational direction X of the intake side camshaft 9 (clockwise in FIG. It is rotated in the above-mentioned X direction around .

高負荷用吸気弁5bは通常の吸、排気弁と同様に、バル
ブガイド32に摺動自在に支承されバルブスプリング3
1によって上方すなわら閉弁方向に付勢されているが、
吸気側カムシャフト9が上記X方向に回転してそのカム
面9bがタペット13の受圧部13aを押圧し、該タペ
ット13が嵌挿孔14a内を押し下げられると、上記バ
ルブスプリング31の付勢力に抗して該タペット13の
押圧部13bによって押し下げられ、高負荷用吸気ボー
ト3bを聞く(勿論低負荷用吸気弁5aも同様にして開
かれる)。一方、回動部材14,14が上述のようにX
方向に回動されると、タペット13.13も回動部材1
4.1/Iとともに移動し、吸気側カムシャフト9の特
定角度位置に対づるカム面9b、9bとタペット受圧部
13a、13aの接触位置が吸気側カムシャフト9の回
転方向Xに対して遅れ側に変化して、各高負荷用吸気弁
5b、5bのバルブタイミングが遅れ側にずらされる。
The high-load intake valve 5b is slidably supported by a valve guide 32 and has a valve spring 3, similar to a normal intake and exhaust valve.
1 is biased upward, that is, in the valve closing direction,
When the intake camshaft 9 rotates in the X direction and its cam surface 9b presses the pressure receiving part 13a of the tappet 13, and the tappet 13 is pushed down in the insertion hole 14a, the biasing force of the valve spring 31 It is pushed down by the pressing part 13b of the tappet 13, and the high-load intake boat 3b is opened (of course, the low-load intake valve 5a is also opened in the same way). On the other hand, the rotating members 14, 14 are
When the tappet 13.13 is rotated in the direction, the tappet 13.13 also rotates in the direction
4.1/I, and the contact position of the cam surfaces 9b, 9b and the tappet pressure receiving parts 13a, 13a relative to a specific angular position of the intake camshaft 9 is delayed with respect to the rotational direction X of the intake camshaft 9. The valve timing of each high-load intake valve 5b, 5b is shifted to the delayed side.

以上の動作は第2可変機構12により、同様に第2排気
バルブ6bに対しても行なわれる。
The above operation is similarly performed on the second exhaust valve 6b by the second variable mechanism 12.

さらに、本発明の特徴としで、第4図にも拡大詳示Jる
ようにタペット13(13’)における押圧部13b 
 (13’ b )の外面つまりバルブステム5s(6
s)が当接する抑圧面13g (13′g)は、タペッ
ト13(13’)がカム面9b(10b)の基準内部分
9’ b  (10’ b )に当接リ−る位置にある
どき、L記カムシャフト9(10)の回転軸とパルシス
テム53(63)の軸線が交わる点を中心とする球面に
形成されていて、回動部材14〈14.’)の揺動方向
に対しては常にカムシャツl−9(10)の回転軸を中
心とする円弧状になるように設りられており、第4図の
如く回動部材14(14’)がX方向に回動じた場合に
おいてもカムシャフト9(10)の特定角度位置におt
−Jるカムシ(・)l−9(10)の回転軸からバルブ
ステム5s(6s)までの距1111f rが一定とな
るようにしている。
Furthermore, as a feature of the present invention, as shown in enlarged detail in FIG.
(13'b), that is, the valve stem 5s (6
The suppression surface 13g (13'g) that s) comes into contact with is when the tappet 13 (13') is in a position where it comes into contact with the reference inner portion 9'b (10'b) of the cam surface 9b (10b). , is formed into a spherical surface centered at the point where the axis of rotation of the camshaft 9 (10) intersects with the axis of the pulse system 53 (63), and the rotating member 14<14. The rotating member 14 (14') is always arranged in an arc shape centered on the rotation axis of the cam shirt l-9 (10) with respect to the swinging direction of the rotating member 14 (14'). Even if the camshaft 9 (10) rotates in the X direction, the t
The distance 1111fr from the rotation axis of the camshaft (10) to the valve stem 5s (6s) is kept constant.

尚、上記吸気側力ムシャフ1−〇の中心部には、通常の
カムシャフトに設けられているしのと同様のオイル通路
9Cが形成され、オイルポンプ(図示せず)に連通され
ている。該Aイル通路9Cには、半径方向に延びてカム
面9bに開口づるオイル通路9dが連通されでおり、該
オイル通路9dによってカム面9bとタペット13の受
圧部13aとの間に潤滑用オイルが導かれて潤滑する。
An oil passage 9C similar to that provided in a normal camshaft is formed in the center of the intake side force shaft 1-0, and communicates with an oil pump (not shown). An oil passage 9d that extends in the radial direction and opens at the cam surface 9b is communicated with the A oil passage 9C. is guided and lubricates.

また、図示していない別のオイル通路によってカムシャ
フト9の回動部材支承部9eやカムシャフト軸受部30
等に潤滑用オイルを導いて潤滑J−るようにしている。
In addition, the rotating member support portion 9e of the camshaft 9 and the camshaft bearing portion 30 are connected to each other by another oil passage (not shown).
Lubricating oil is introduced into the parts to provide lubrication.

上記タペット13の受圧部13aにはタペット13の内
部空洞部13dに連通Jるオイル通路13eが、またタ
ペット13の押圧部13bには該内部空洞部’13dに
連通り−るオイル通路13f、13fがそれぞれ形成さ
れており、上記カム面9bとタペツ)〜受圧部13aと
の間を潤滑した潤滑用オイルが上記オイル通路13eか
らタペット13の内部空洞部13dに流入したのち、オ
イル通路13f、13fからタペット押圧部13b (
押圧面)に導かれて、該抑圧部13bと高負荷用吸気弁
5bのバルブステム5Sとの間を潤滑するようにしてい
る。上記排気側のタペット13′への潤滑用オイル供給
系統も吸気側と同様に構成されており、排気側カムシャ
フト10には吸気側カムシャフト9の各オイル通路に対
応するオイル通路10c、10dが設けられ、また排気
側タペット13′には吸気側タペット13の各オイル通
路に対応するオイル通路13’e、13′[が設けられ
ている。また、14c  (14’ C)は回動部材1
4(14’)の嵌挿孔14a(14/ a )とタペッ
ト摺動部13c  (13’ c )との間に潤滑用オ
イルを供給するためのオイル通路である。
The pressure receiving part 13a of the tappet 13 has an oil passage 13e communicating with the internal cavity 13d of the tappet 13, and the pressing part 13b of the tappet 13 has oil passages 13f, 13f communicating with the internal cavity 13d. are formed respectively, and after the lubricating oil that lubricates between the cam surface 9b and the tappet 13a to the pressure receiving part 13a flows into the internal cavity 13d of the tappet 13 from the oil passage 13e, the oil passes through the oil passages 13f, 13f. From the tappet pressing part 13b (
(pressing surface) to lubricate the space between the suppressing portion 13b and the valve stem 5S of the high-load intake valve 5b. The lubricating oil supply system to the tappet 13' on the exhaust side is constructed in the same way as on the intake side, and the exhaust side camshaft 10 has oil passages 10c and 10d corresponding to each oil passage of the intake side camshaft 9. Further, the exhaust side tappet 13' is provided with oil passages 13'e and 13'[ corresponding to each oil passage of the intake side tappet 13. In addition, 14c (14'C) is the rotating member 1
This is an oil passage for supplying lubricating oil between the fitting hole 14a (14/a) of No. 4 (14') and the tappet sliding portion 13c (13'c).

次に上記実施例の装置の作用について説明する。Next, the operation of the apparatus of the above embodiment will be explained.

エンジンの低負荷運転時には、第1および第2可変機構
11.12が非作動状態にあり、各気筒2a〜2dにお
ける低負荷用、高負荷用吸気弁5a。
During low-load operation of the engine, the first and second variable mechanisms 11.12 are inactive, and the low-load and high-load intake valves 5a in each cylinder 2a to 2d.

5bおよび第1.第2排気弁6a 、5bはそれぞれ吸
気側および排気側動弁機構13a 、 8bによって各
々所定のバルブタイミングで開閉制御される。
5b and 1st. The second exhaust valves 6a, 5b are controlled to open and close at predetermined valve timings by intake side and exhaust side valve operating mechanisms 13a, 8b, respectively.

すなわち第5図実線で示すように第1J′3よび第2排
気弁5a 、5bのバルブタイミングは共に、ピストン
の下死点付近で開いたのち上死点イ]近で閉じるように
制御され、また低負荷用および高負荷用吸気弁5a、5
bのバルブタイミングは共に排気弁5a 、5bとのオ
ーバーラツプ期間を短くしてピストン上死点付近で開い
たのち下死点付近で閉じるように制御される。また、各
気筒2a〜2dにおける高負荷用吸気通路7bは開閉弁
7の開作動によって閉塞されてJ5す、低負荷用吸気ポ
ート3aのみから吸気がなされる。
That is, as shown by solid lines in FIG. 5, the valve timings of the first J'3 and the second exhaust valves 5a and 5b are controlled so that they open near the bottom dead center of the piston and then close near the top dead center. In addition, low load and high load intake valves 5a, 5
The valve timing of both valves b is controlled to shorten the overlap period with the exhaust valves 5a and 5b so that they open near the top dead center of the piston and then close near the bottom dead center of the piston. Further, the high-load intake passages 7b in each cylinder 2a to 2d are closed by the opening operation of the on-off valve 7, and air is taken in only from the low-load intake port 3a.

一方、エンジンの高負荷低回転運転時には、高負荷用吸
気通路7bの開閉弁7が開かれ、低負荷用吸気ポート3
aに加えて高負荷用吸気ボート3bからも吸気が行なわ
れるが、第1および第2可変機構11.12は共に非作
動の状態に設定され、吸、排気弁5a、5bと6a、6
bのオーバーラツプ期間を短くし吸気の吹き返しを防止
して充填効率が高められる。しかもこの場合、各気筒2
a〜2dの排気行程において第1および第2の排気ポー
ト4a、4.bをそれぞれ排気弁6a 、5bで開閉す
るので、排気のための有効開口面積が単一排気ボートの
エンジンに比べて増大して掃気効率が向上し、ひいては
上記充填効率の向上を一層図ることができる。
On the other hand, when the engine is operating at high load and low speed, the on-off valve 7 of the high load intake passage 7b is opened, and the low load intake port 3 is opened.
In addition to the high-load intake boat 3b, air is also taken in from the high-load intake boat 3b, but both the first and second variable mechanisms 11.12 are set to a non-operating state, and the intake and exhaust valves 5a, 5b and 6a, 6
By shortening the overlap period (b) and preventing the intake air from blowing back, the filling efficiency is increased. Moreover, in this case, each cylinder 2
In the exhaust strokes a to 2d, the first and second exhaust ports 4a, 4. b are opened and closed by exhaust valves 6a and 5b, respectively, so the effective opening area for exhaust is increased compared to a single exhaust boat engine, improving scavenging efficiency and further improving the above-mentioned charging efficiency. can.

エンジンのの負荷高回転運転時には、第1および第2可
変機構11.12が共に作動し、第5図仮想線で示すよ
うに、各気筒2a〜2dにお【ノる1対の排気弁6a 
、(3bのうち第2排気弁6bのバルブタイミングが第
2可変IN構12によって遅れ側に、また1対の吸気弁
5a、5bのうち高負荷用吸気弁5bのバルブタイミン
グが第1可変機構11にJ:つT:遅れ側にずれるよう
に制御される。
When the engine is operating at high load and high speed, the first and second variable mechanisms 11.12 operate together, and as shown by the imaginary lines in FIG.
(Among the pair of intake valves 5a and 5b, the valve timing of the second exhaust valve 6b is delayed by the second variable IN mechanism 12, and the valve timing of the high-load intake valve 5b of the pair of intake valves 5a and 5b is delayed by the first variable IN mechanism. 11, J: T: Controlled to shift to the lag side.

また各気筒2a〜2dの高負荷用吸気通路7bは開閉弁
7の開作動により間かれており、前述した高負荷低回転
運転時と同様に高負荷用吸気ポート3bからも吸気がな
される。
Further, the high-load intake passages 7b of each cylinder 2a to 2d are separated by the opening operation of the on-off valve 7, and air is also taken in from the high-load intake port 3b as in the above-described high-load, low-speed operation.

このように両吸気弁5a、5bの全体としての総開弁期
間を長くし、しかも吸気の慣性作用の大きい遅れ側に開
弁期間を延ばしたことにより、吸気の充填効率が著しく
向上し、高負荷高回転時の出ツノ性能が大巾に向上づる
。また両排気弁(3a。
In this way, by lengthening the total opening period of both intake valves 5a and 5b as a whole, and by extending the opening period to the delayed side where the inertial effect of the intake air is large, the filling efficiency of the intake air is significantly improved. Dramatically improves thrust performance under high load and high rotation speeds. Also, both exhaust valves (3a.

6bの全体としての総開弁期間を長くしたことにより、
掃気効率が著しく向上し、上記充j眞効率がざらに向上
づる。
By lengthening the total valve opening period of 6b as a whole,
Scavenging efficiency is significantly improved, and the above-mentioned charging efficiency is greatly improved.

上記各可変機構11.12は、一般の動弁機構(直接駆
動方式オーバーへラドカムII)に、タペット13(1
3’)を嵌挿保持する回動部材14(14’)および該
回動部材14(14’)をカムシャフト9(10)まわ
りに回動させる操作装置15(15’)を設けるだけで
形成されるので、構造が簡単であり、製造容易かつ安価
なものとなる。
Each of the variable mechanisms 11 and 12 described above has a tappet 13 (1
3') and an operating device 15 (15') for rotating the rotating member 14 (14') around the camshaft 9 (10). Therefore, the structure is simple, and manufacturing is easy and inexpensive.

しかも、上記可変機構11.12の可変制御は、カムシ
ャフト9(10)の特定角度位置に対するカム面9b(
10b)とタペット受圧部13a(13’a)との接触
位置をカムシャフト9(10)まわりに変化させて行な
うので、可変制御を応答性良くかつ信頼性良く安定して
行うことができる。
Moreover, the variable control of the variable mechanism 11.12 allows the cam surface 9b (
10b) and the tappet pressure receiving portion 13a (13'a) by changing the contact position around the camshaft 9 (10), variable control can be performed stably with good responsiveness and reliability.

そして、l記タペット13(13’)は回動部材14(
14’)の嵌挿孔14a  (14’ a )内に嵌挿
保持されて該回動部材14(14’)のカムシャフト9
(10)回りの回動に伴って移動づるが、この回動部材
14(14’)が回動した場合においてカムシャフト9
(10)の特定角度位置におけるカムシャフト9(10
)の回転軸からバルブステム5s(6s>までの距lI
!ltrが変化するとバルブクリアランス(カムシャフ
ト9(10)のカム面9b(10b)とタペット受LE
部13a(13’a>との間の間隙)が変化し、そのよ
うな場合には騒音やバルブ駆動性能劣化等が生じる。
The tappet 13 (13') is the rotary member 14 (
The camshaft 9 of the rotating member 14 (14') is fitted and held in the fitting hole 14a (14' a ) of the rotating member 14 (14').
(10) The camshaft 9 moves when the rotating member 14 (14') rotates.
Camshaft 9 (10) at a specific angular position of (10)
) from the rotation axis to the valve stem 5s (6s>)
! When ltr changes, the valve clearance (cam surface 9b (10b) of camshaft 9 (10) and tappet receiver LE
The gap between the portion 13a (13'a>) changes, and in such a case, noise, deterioration of valve drive performance, etc. occur.

ところが、前述の通り、上記バルブステム5s(6S)
と当接するタペット押圧部13b  (13’b)の押
圧面13g (13’ q )が回動部材14(14’
)の揺動方向に沿ってカムシャフト〜9(10)回転軸
を中心とする円弧状に形成されているので、回動部材1
4(14’)が回動した場合においてら上記カムシャフ
ト9(10>の特定角度位置におけるカムシャフト9(
10)の回転軸からパルプステム5s(6s)までの距
1lIlrが変わらず一定であり、バルブクリアランス
は最小限に一定に保たれることになる。したがって1本
装冒ではバルブクリアランスの変化に起因する騒音の発
生が抑えられ、またバルブ駆動性能も良好に維持される
However, as mentioned above, the valve stem 5s (6S)
The pressing surface 13g (13'q) of the tappet pressing part 13b (13'b) that comes into contact with the rotating member 14 (14'
) is formed in an arc shape centered on the rotation axis of the camshaft ~9 (10), so that the rotating member 1
When the camshaft 9 (14') rotates, the camshaft 9 (10) at a specific angular position
10) The distance 1lIlr from the rotation axis to the pulp stem 5s (6s) remains constant, and the valve clearance is kept constant to a minimum. Therefore, when one valve is installed, the generation of noise caused by changes in valve clearance is suppressed, and valve drive performance is also maintained satisfactorily.

上記実施例は、低角前用と高負荷用の吸気ボートを有す
るデュアルインダクション方式の4バルブエンジンに本
発明が適用されたものであるが、本発明はその他のエン
ジンに対しても勿論適用可能である。例えば本発明は第
6図に示すように、1つの気筒102a〜102dに対
して単一の吸気ボート103と単一の排気ポート104
とを有する通常の4気筒エンジンに対しても適用でき、
この場合、互いに隣り合う第1気筒102aと第2気f
d102b、および第3気筒102cと第4気筒102
dにおいて吸気ポーh103,103(または排気ボー
ト104.104)を隣接配置し、動弁系のカムシャフ
ト中心Sにおいてその吸気弁同士(または排気弁同士)
間に跨って前)ホの可変機構11.12と同様の可変機
構111(112)を配設リ−ればよい。このようにし
て吸気弁のバルブタイミングを可変とした場合にはバル
ブタイミングは第7図に示されるように設定される。
In the above embodiment, the present invention is applied to a dual induction type 4-valve engine having a low-angle front intake boat and a high-load intake boat, but the present invention can of course be applied to other engines as well. It is. For example, as shown in FIG.
It can also be applied to regular 4-cylinder engines with
In this case, the first cylinder 102a and the second cylinder f are adjacent to each other.
d102b, and the third cylinder 102c and the fourth cylinder 102
Intake ports h103, 103 (or exhaust boats 104, 104) are arranged adjacent to each other at d, and the intake valves (or exhaust valves) are arranged adjacent to each other at the camshaft center S of the valve train system.
A variable mechanism 111 (112) similar to the variable mechanism 11, 12 in the previous example (E) may be provided across the gap. When the valve timing of the intake valve is made variable in this way, the valve timing is set as shown in FIG.

づなわちエンジンの高負荷高回転運転時には、第7図仮
想線で示すように吸気弁のバルブタイミングが遅れ側に
ずらされる。このように吸気の慣性作用の大きい遅れ側
に開弁期間を設定することにより吸気の充填効率が向上
し、出力性ohの向上が図られる。
That is, when the engine is operated at high load and high speed, the valve timing of the intake valve is shifted to the delayed side as shown by the imaginary line in FIG. In this way, by setting the valve opening period on the delayed side where the inertial action of the intake air is large, the filling efficiency of the intake air is improved, and the output performance oh is improved.

また、前記第1図の実施例においては、吸、排気弁5’
l)、6bのバルブタイミングを可変制御するエンジン
の特定運転時をエンジンの高負荷高回転時としたが、そ
の他の運転時においても必要に応じてバルブタイミング
を可変制御してもよい。
In addition, in the embodiment shown in FIG. 1, the intake and exhaust valves 5'
Although the specific operation of the engine in which the valve timing in 1) and 6b is variably controlled is when the engine is under high load and at high rotation speed, the valve timing may also be variably controlled during other operations as required.

さらに、前記第1図の実施例においては、各気筒の2a
〜2dにおける1対の吸気ボート3a。
Furthermore, in the embodiment shown in FIG.
A pair of intake boats 3a at ~2d.

3 bおよび1対の吸気弁5a 、5bと、1対の排気
ボート4a、4bおよび1対の排気弁6a、6bとを、
それぞれエンジン本体1の吸気側と排気側とに分けて中
心線夕方向に平行に配置し、かつ高負荷用吸気弁5a、
5b同士および第2排気弁6b、6b同士を隣接配置し
たが、その他の配置構成にしてもよいことは勿論である
。しかし前記第1図の実施例におけるような配置構成は
、各力ムシャフl−9,10の軸受部30.30の配置
を簡素化し、隣り合う気筒(2aと2b、2cと2d)
間の高り筒用吸気弁5b、5b同士および第2排気弁6
b、6b同士をそれぞれ1つの可変機構11.12で制
御Cきるので有利である。
3b and a pair of intake valves 5a, 5b, a pair of exhaust boats 4a, 4b and a pair of exhaust valves 6a, 6b,
High-load intake valves 5a, which are arranged parallel to the center line evening direction, divided into the intake side and exhaust side of the engine body 1, respectively;
5b and the second exhaust valves 6b and 6b are arranged adjacent to each other, it goes without saying that other arrangement configurations may be used. However, the arrangement as in the embodiment of FIG.
Intake valves 5b for elevated cylinders between 5b and second exhaust valve 6
This is advantageous because each of b and 6b can be controlled by one variable mechanism 11, 12.

さらにまた、前記第1図の実施例では、回動部材14(
14’)をカムシャフト9(10)に相互に回転を許す
ように直接支承して該カムシャフト9(10)回りを回
動させるようにしたが、エンジン本体1の円弧状面1a
をカムシャツh 9(10)の軸心を中心とづる円弧面
に形成し、それに対応して回動部材14(14’)の下
面14b(14’b)を円弧状に形成して、該回動部材
14(14’)の下面14b  (14’ b )を上
記円弧状面1aに摺接案内させることによりカムシャツ
1〜9(10)回りに回動させるようにしてもよい。
Furthermore, in the embodiment shown in FIG. 1, the rotating member 14 (
14') is directly supported on the camshaft 9 (10) so as to allow mutual rotation, and rotates around the camshaft 9 (10).
is formed into an arcuate surface centered on the axis of the cam shirt h9 (10), and correspondingly, the lower surface 14b (14'b) of the rotating member 14 (14') is formed into an arcuate shape, so that the rotation The lower surface 14b (14'b) of the movable member 14 (14') may be guided in sliding contact with the arcuate surface 1a to rotate around the cam shirts 1 to 9 (10).

また、前記第1図の実施例では、タペット押圧部13b
  (13’ b )の押圧面13(]  (13’ 
CI )をカムシャフト9(10)の回転軸を中心とす
る球面に形成しIζが、タペット13(13’)を回動
部材14(14’)の嵌挿孔14.a(14’a)に対
して回り止めして摺動自在に嵌挿保持するならば、単に
回動部材14(14’)の揺動方向に沿ってカムシャフ
ト9(10)の回転軸を中心とする円弧面に形成しても
よい。
Further, in the embodiment shown in FIG. 1, the tappet pressing portion 13b
Pressing surface 13(] (13' b ) of (13'
CI) is formed into a spherical surface centered on the rotation axis of the camshaft 9 (10), and the tappet 13 (13') is formed into a fitting hole 14. of the rotating member 14 (14'). If the rotational axis of the camshaft 9 (10) is slidably inserted and held while being prevented from rotating relative to the rotation member 14 (14'a), the rotation axis of the camshaft 9 (10) can be simply moved along the swinging direction of the rotation member 14 (14'). It may also be formed into a circular arc surface with the center as the center.

以上詳細に説明した通り、本発明のエンジンのバルブタ
イミング制御装置は、簡単な横進でもって、エンジンの
バルブタイミングを応答性、信頼性良く確実に可変制御
できるものであり、バルブタイミングの可変制御の容易
実施化に大いに寄与するものとなる。また、回動部材が
揺動した場合においてもバルブクリアランスを一定に保
つものであるから、バルブ駆動騒音を低く抑えることが
でき、またバルブ駆動性能を良好に維持することができ
る。
As explained in detail above, the engine valve timing control device of the present invention is capable of reliably and responsively controlling engine valve timing with simple lateral movement, and is capable of variable control of valve timing. This will greatly contribute to the ease of implementation. Furthermore, since the valve clearance is kept constant even when the rotating member swings, valve drive noise can be kept low and valve drive performance can be maintained well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をデュアルインダクション方式の4気筒
のエンジンに適用した実施例を示J一部破断乎面図、第
2図は第1図の実施例の縦断面図、第3図は第1図の実
施例の可変機構部分の拡大斜視図、第4図は回動部材を
揺動した際の可変機構部分の拡大縦断面図、第5図は第
1図の実施例における吸、排気弁のバルブタイミングを
示づ説明図、第6図は本発明を通常の4気筒エンジンに
適用した実施例を示す概略図、第7図は第6図の実施例
における吸、排気弁のバルブタイミング番示す説明図で
ある。 5a、−5b・・・吸気弁、5s・・・バルブステム、
6a、51)・・・排気弁、9,1o・・・カムシャフ
ト、9a、9b、10a、10b、、、カム面、11’
−・・第1可変機構、12・・・第2可変機構、13.
13’ ・・・タペット、13a、13’a・・・タペ
ット受圧部、13b、13’b・・・タペット押圧部、
13g、13’Q・・・押圧面、14.14’・・・回
動部材、14a、14’a・・・嵌挿孔、15.15’
・・・操作装置。 手続補正書く自発) 1.事件の表示 昭和58年 特 許 願 第31300号2、発明の名
称 エンジンのバルブタイミング制御装置 3、補正をする者 事件との関係   特許出願人 住  所  広島県安芸郡府中町新地3番1号名  称
  <313)  東洋工業株式会社代表者  山 山
@  芳 樹 4、代理人 骨550電06 (445) 2128住
  所  大阪市西区靭本町1丁目4番8号 太平ビル
氏  名  弁理士<7793)前  1)   弘7
、補正の内容 (1)図面の第2図において符号r9’ b Jおよび
r10’bJを別紙補正図面(コピー)に朱書で記載の
如く加入補正する。 (2)図面の第4図において符号r9’bjを別紙補正
図面(コピー)に朱書で記載の如く加入補正する。 8、添イq轡類の目録
Fig. 1 shows an embodiment in which the present invention is applied to a dual-induction four-cylinder engine. 1 is an enlarged perspective view of the variable mechanism portion of the embodiment shown in FIG. 1, FIG. 4 is an enlarged vertical sectional view of the variable mechanism portion when the rotating member is swung, and FIG. 5 is an enlarged perspective view of the variable mechanism portion of the embodiment shown in FIG. An explanatory diagram showing the valve timing of the valve, FIG. 6 is a schematic diagram showing an embodiment in which the present invention is applied to a normal four-cylinder engine, and FIG. 7 shows the valve timing of the intake and exhaust valves in the embodiment of FIG. 6. FIG. 5a, -5b...Intake valve, 5s...Valve stem,
6a, 51)...Exhaust valve, 9,1o...Camshaft, 9a, 9b, 10a, 10b, , cam surface, 11'
-...first variable mechanism, 12...second variable mechanism, 13.
13'... Tappet, 13a, 13'a... Tappet pressure receiving part, 13b, 13'b... Tappet pressing part,
13g, 13'Q... Pressing surface, 14.14'... Rotating member, 14a, 14'a... Fitting hole, 15.15'
...Operating device. Procedural amendment written spontaneously) 1. Indication of the case 1981 Patent Application No. 31300 2 Name of the invention Engine valve timing control device 3 Person making the amendment Relationship to the case Patent applicant Address 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Name <313) Toyo Kogyo Co., Ltd. Representative Yamayama @ Yoshiki 4, Agent Kotsu 550den 06 (445) 2128 Address Taihei Building, 1-4-8 Utsubohonmachi, Nishi-ku, Osaka Name Patent Attorney <7793) 1) Hiro 7
, Details of the amendment (1) In FIG. 2 of the drawings, the symbols r9' b J and r10' bJ are added as indicated in red ink on the attached corrected drawing (copy). (2) In FIG. 4 of the drawings, the reference numeral r9'bj is added and corrected as indicated in red ink on the attached correction drawing (copy). 8. List of accompanying books

Claims (1)

【特許請求の範囲】[Claims] (1)  カムシャフトのカム面から力を受ける受圧部
および上記カム面からの力をバルブステムに伝達する押
圧部を有するタペットと、該タペットが摺動自在に嵌挿
される嵌挿孔を有し、上記カムシャフトの回りを回動自
在に支持された回動部材と、該回動部材をエンジンの運
転状態に応じてカムシャフトの回りに揺動させる操作装
置とを備えたエンジンのバルブタイミング制御装置であ
って、上記タペット抑圧部の外面形状が、回動部材の揺
動方向に沿ってカムシャフト、の回転軸を中心とする円
弧状に形成されていることを特徴とするエンジンのバル
ブタイミング制御装置。
(1) A tappet having a pressure receiving part that receives force from the cam surface of the camshaft and a pressing part that transmits the force from the cam surface to the valve stem, and a fitting hole into which the tappet is slidably inserted. , a valve timing control for an engine, comprising a rotating member rotatably supported around the camshaft, and an operating device that swings the rotating member around the camshaft depending on the operating state of the engine. A valve timing device for an engine, characterized in that the outer surface shape of the tappet suppressing portion is formed in an arc shape centered on the rotation axis of the camshaft along the swinging direction of the rotating member. Control device.
JP3130083A 1983-02-26 1983-02-26 Engine valve timing controller Granted JPS59158305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130083A JPS59158305A (en) 1983-02-26 1983-02-26 Engine valve timing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130083A JPS59158305A (en) 1983-02-26 1983-02-26 Engine valve timing controller

Publications (2)

Publication Number Publication Date
JPS59158305A true JPS59158305A (en) 1984-09-07
JPH0125881B2 JPH0125881B2 (en) 1989-05-19

Family

ID=12327435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130083A Granted JPS59158305A (en) 1983-02-26 1983-02-26 Engine valve timing controller

Country Status (1)

Country Link
JP (1) JPS59158305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500675A (en) * 1984-10-29 1987-03-19 バイエリッシェ モ−ト−レン ウエルケ アクチエンゲゼルシャフト Valve housing for cylinder heads of internal combustion engines with gas exchange valves substantially parallel to each other
EP0243874A2 (en) * 1986-04-26 1987-11-04 Klöckner-Humboldt-Deutz Aktiengesellschaft Control device for the fuel delivery and injection timing of an internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500675A (en) * 1984-10-29 1987-03-19 バイエリッシェ モ−ト−レン ウエルケ アクチエンゲゼルシャフト Valve housing for cylinder heads of internal combustion engines with gas exchange valves substantially parallel to each other
JPH0447123B2 (en) * 1984-10-29 1992-08-03 Baieritsushe Mootooren Ueruke Ag
EP0243874A2 (en) * 1986-04-26 1987-11-04 Klöckner-Humboldt-Deutz Aktiengesellschaft Control device for the fuel delivery and injection timing of an internal-combustion engine

Also Published As

Publication number Publication date
JPH0125881B2 (en) 1989-05-19

Similar Documents

Publication Publication Date Title
JPH0456123B2 (en)
JP3198772B2 (en) Cam switching mechanism in a valve train of an internal combustion engine
JPH1193710A (en) Exhaust valve control device of 2-stroke diesel engine with supercharger
JP2005315183A (en) Valve system of internal combustion engine
JPS59158305A (en) Engine valve timing controller
JP2002227667A (en) Variable valve device for internal combustion engine
JPS61200324A (en) Suction device for engine
JPS5946308A (en) Valve timing control device of engine
JP3781961B2 (en) Engine operating characteristics variable device
JP2002242626A (en) Variable valve system of internal combustion engine
JPH07332105A (en) Engine structure
JPS59188007A (en) Valve timing control device for engine
JPH0749018A (en) Valve system lubricating device for internal combustion engine
JPH0220406Y2 (en)
JPS6069224A (en) Valve-timing controlling apparatus for engine
JPS5965510A (en) Valve timing control device for engine
JPH0355643B2 (en)
JPS59153911A (en) Valve timing control device in engine
JPH0232447B2 (en)
JPS59188008A (en) Valve timing control device for engine
JP2021120562A (en) Internal combustion engine
KR200158174Y1 (en) Four valve system
JP2003120346A (en) Intake device for four-stroke internal combustion engine
JPS5996408A (en) Valve driving device for engine
JPS59188015A (en) Valve timing control device for engine