JPS59153911A - Valve timing control device in engine - Google Patents

Valve timing control device in engine

Info

Publication number
JPS59153911A
JPS59153911A JP2918883A JP2918883A JPS59153911A JP S59153911 A JPS59153911 A JP S59153911A JP 2918883 A JP2918883 A JP 2918883A JP 2918883 A JP2918883 A JP 2918883A JP S59153911 A JPS59153911 A JP S59153911A
Authority
JP
Japan
Prior art keywords
intake
valve
engine
tappet
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2918883A
Other languages
Japanese (ja)
Inventor
Yasuyuki Morita
泰之 森田
Hiroyuki Oda
博之 小田
Toshiharu Masuda
益田 俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2918883A priority Critical patent/JPS59153911A/en
Publication of JPS59153911A publication Critical patent/JPS59153911A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To prevent the twisting of rotating members, for slidably holding tappets, which are rotated around cam shafts to control the valve timing, by forming guide surfaces for the rotating members. CONSTITUTION:Tappets 13, 13' slide in fitting holes 14a, 14a' formed in rotating members 14, 14' which are rotatable about cam shafts 10a, 10b, and therefore, transmit the movement of cams to valves 5b, 6b. Due to the rotation of the rotating members 14, 14' by a drive device 19 in association with the running condition, the timing of opening and closing of the valves is controlled. Guide surfaces 1a, 1b having a sliding relationship with the rotating members, are formed corresponding to the side surfaces of the rotating members 14, 14' which are therefore prevented from twisting, thereby the reliability of the control may be ensured.

Description

【発明の詳細な説明】 本発明は、エンジンのバルブタイミング制御装置に関し
、特に吸、排気弁を開閉制御する動弁系においてエンジ
ンの運転状態に応じてバルブタイミングを可変制御する
ための可変機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine valve timing control device, and more particularly to a variable mechanism for variably controlling valve timing in accordance with engine operating conditions in a valve train that controls the opening and closing of intake and exhaust valves. It is something.

一般に、エンジンにお【ノる吸、排気弁のバルブタイミ
ングは、エンジンの運転状態に応じて可変制御すること
がエンジンの運転性能上好ましい。
In general, it is preferable from the viewpoint of engine operating performance that the valve timing of the intake and exhaust valves in the engine be variably controlled in accordance with the operating state of the engine.

例えば、エンジンの低負荷運転時には吸、排気弁のA−
バラツブ期間を短くづ−ることが残留排気量を少なく抑
えて燃焼安定性を向上させるので好ましい。また、エン
ジンの高負荷低回転運転時には吸、排気弁のオーバラッ
プ期間を短くすると、吸気の吹き返しを防止Cて充填効
率を向上できる。
For example, when the engine is running at low load, the A-
It is preferable to shorten the fluctuation period because it suppresses the amount of residual exhaust gas and improves combustion stability. Further, when the engine is operated under high load and at low speed, by shortening the overlap period of the intake and exhaust valves, blowback of intake air can be prevented and charging efficiency can be improved.

一方、エンジンの^負荷高回転運転時には吸気弁の開弁
期間を長く設定することが充填効率を上げてエンジン出
力を向上できるので好ましい。
On the other hand, when the engine is operating at high load and high speed, it is preferable to set the intake valve opening period to be long because this increases filling efficiency and improves engine output.

このため、従来、エンジンの動弁系においてバルブタイ
ミングを可変制御するだめの可変機構が種々提案されて
いる。例えば、特公昭52−35819号公報に開示さ
れているようにエンジンの出力軸とカムシャフトとの間
に遠心カバナを有する遊星歯車を介在させてエンジンの
出力軸とカムシャフトとの相対位置を変化させるように
したもの、あるいはカムシャフトを立イ本カムシャフト
とし該立体力ムシ17フトをスライドさせるようにした
もの等がある。
For this reason, various variable mechanisms for variable control of valve timing in the valve train of an engine have been proposed. For example, as disclosed in Japanese Patent Publication No. 52-35819, a planetary gear having a centrifugal cover is interposed between the output shaft of the engine and the camshaft to change the relative position of the output shaft of the engine and the camshaft. There are those in which the camshaft is a vertical camshaft and the three-dimensional force 17 feet are slid.

しかるに、」−記従来のしのは何れも、構造が複雑で大
がかりなものとなるとともに、可変制御の応答性、信頼
性が悪く、また大きな騒音を発生しやすいなど、実用性
に欠(づるものであった。
However, all conventional systems have complicated and large-scale structures, have poor variable control response and reliability, and tend to generate loud noises, making them impractical. It was something.

本発明は斯かる点に鑑みてなされたもので、既存の動弁
機構を有効に利用して、カムシャフトの特定角度位置に
対づるカム面とバルブステムに当接するタペットの受圧
部との接触位置をエンジンの運転状態に応じて変化させ
るようにでることにより、構造が簡単で、応答性、信頼
性良く可変制all ’rぎ、また騒音の発生の少ない
など、実用性に優れた可変機構を備えたバルブタイミン
グ制御装置の提供を目的と覆るものである。
The present invention has been made in view of the above, and effectively utilizes the existing valve mechanism to establish contact between the cam surface at a specific angular position of the camshaft and the pressure-receiving portion of the tappet that contacts the valve stem. By changing the position according to the operating condition of the engine, the variable control mechanism is simple in structure, responsive, reliable, and generates little noise, making it a highly practical variable mechanism. The purpose of this invention is to provide a valve timing control device having the following functions.

この目的を達成するため、本発明のエンジンのバルブタ
イミング制御Iffの構成は、カムシャツ1へのカム面
から力を受ける受圧部および上記カム面からの力をバル
ブステムに伝達する押圧部を有するタペットと、該タペ
ットが摺動自在に嵌挿される嵌挿孔を有し、上記カムシ
ャフトの回りを回動可能な回動部材と、該回動部材をエ
ンジンの運転状態に応じてカムシャフトの回りに揺動さ
せる操作装置とを備えIcエンジンのバルブタイミング
制御装置であって、上記回動部材の揺動方向両側に沿っ
てガイド面を形成したことを特徴とするものである。
In order to achieve this object, the configuration of the valve timing control If of the engine of the present invention includes a tappet having a pressure receiving part that receives force from the cam surface on the cam shirt 1 and a pressing part that transmits the force from the cam surface to the valve stem. a rotary member having a fitting hole into which the tappet is slidably inserted and rotatable around the camshaft; This is a valve timing control device for an Ic engine, comprising an operating device for swinging the rotating member, and is characterized in that guide surfaces are formed along both sides of the rotating member in the swinging direction.

このことにより、本発明では、操作装置により回動部材
をカムシャフト回りに回動させることによって、エンジ
ンの運転状態に応じてカムシャフトの特定角度位置に対
するカム面とタペットの受圧部との接触位置をカムシャ
フト回りに変化させてバルブタイミングを可変制御する
ようにしたものである。そして、上記タペットを摺動自
在に保持する回動部材は、カムシャフト側からタペツ]
−に作用するタペット摺動方向と直角な方向の横方向力
の反力を受けること、およびカムシャツ1〜のカム面か
らの力をタペツ1−を介してバルブステムに伝達する作
用力線方向に対してタペッ1−の摺動方向がずれている
場合にバルブステム側からタペッ1〜に作用Jる横方向
力の反力を受けることにより、回動部材に捩れが生じて
、回動部材の回動によるバルブタイミングの可変制御を
信頼性良く行いtf <>いことがある。特に回動部材
がその中央部にて支承され、その両側に位相の異なるバ
ルブにり1する2つ以−ヒのタペットを保持するものに
お(1)ては」−記位相のずれによって上記不具合が顕
著となる。このため、上記回動部材をその揺動方向に沿
って形成したガイド面でガイドJることにより、上記回
動部材の++Xれを抑制してバルブタイミングの可変制
御の信頼性を向上さけるようにしたちのCある。
As a result, in the present invention, by rotating the rotating member around the camshaft using the operating device, the contact position between the cam surface and the pressure receiving part of the tappet can be adjusted to a specific angle position of the camshaft depending on the operating state of the engine. The valve timing is variably controlled by changing the angle around the camshaft. The rotating member that slidably holds the above-mentioned tappet is connected to the tappet from the camshaft side.
- to receive the reaction force of the lateral force acting on the tappet in the direction perpendicular to the sliding direction of the tappet, and to transmit the force from the cam surface of the cam shirt 1 to the valve stem through the tappet 1- in the direction of the acting force line. On the other hand, when the sliding direction of tappet 1- is deviated, the rotating member is twisted by receiving the reaction force of the lateral force acting on tappet 1- from the valve stem side. Variable control of valve timing by rotation may not be performed reliably. Particularly in the case where the rotary member is supported in the center and holds two or more tappets on both sides of the rotary member that are connected to valves with different phases, the above-described phase shift may occur. The problem becomes noticeable. Therefore, by guiding the rotating member with a guide surface formed along the swinging direction, the ++X deviation of the rotating member is suppressed and the reliability of variable valve timing control is improved. There is a C of us.

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図おにび第2図は、1つの気筒に対して低負荷用お
よび高負荷用の1対の吸気ボートと1対の排気ポートと
が段(プられたデュアルインダクション方式の4気筒エ
ンジンに本発明を適用した実施例を示づ。王ンジン木体
1には、その中心線9に沿って直列状に第1〜第4気W
52 a〜2dが形成されてd3す、各気筒2a〜2(
1には各々、低負荷用および高負荷用の1対の吸気ボー
1〜3a、3bと、第1および第2の1対の1j1気ボ
ート4a。
Figure 1 and Figure 2 show a dual induction four-cylinder engine in which one cylinder has a pair of intake ports for low load and high load, and a pair of exhaust ports. An embodiment in which the present invention is applied is shown below.The Wanginjin wooden body 1 has first to fourth Qi Ws arranged in series along its center line 9.
52a to 2d are formed and d3, each cylinder 2a to 2(
1 each have a pair of intake boats 1 to 3a, 3b for low load and high load, and a first and second pair of 1j1 intake boats 4a.

/lbとがそれぞれ気筒列方向と略平(jな方向に並列
して開口するように設置Jられている。第1気筒2aど
第2気筒21)の各高負仙用吸気ボート3t>。
/lb are installed so as to open in parallel with the direction of the cylinder row (in the j direction).

31)同士、および各第2排気ボー1へ4b、4b同士
はそれぞれ互いに背中合せ状態に隣接づるよう鷺こ配置
され、同様に第3気筒2Cと第4気筒2dの各高負荷用
吸気ボート3b、311同士、および各第2排気ポート
4b、4b同士も互いにla接するにうに配置されてい
る。
31) The high-load intake boats 3b and 4b of the third cylinder 2C and the fourth cylinder 2d are arranged so that they are adjacent to each other and back to back. 311 and the second exhaust ports 4b, 4b are also arranged so as to be in contact with each other.

各気筒2a〜2dの低負荷用および高角Wi用吸気ボー
ト3a、3bの気筒への間口部には該各吸気ボーt−3
a 、3bをそれぞれ所定のタイミングで開閉する低負
荷用および高11荷川の吸気弁5a。
Each intake boat t-3 is provided at the frontage to the cylinders of the low-load and high-angle Wi intake boats 3a and 3b of each cylinder 2a to 2d.
Intake valve 5a for low load and high 11 load river which opens and closes a and 3b at predetermined timing, respectively.

5bが配設されており、一方各気筒2a〜2dの第1お
よび第2排気ボート4a、4bの気筒へσ)開口部には
該各排気ボー1〜4a、4bをそれぞit所定のタイミ
ングで開閉する第1および第2の排気弁6a、61)が
配設されている。また、各気筒2a−26の高負荷用吸
気ポート3bに接続される吸気マニホールドの高負荷用
吸気通路7 bには、エンジンの高負荷運転時に間かれ
る開閉弁7が配設されてd3す、エンジンの低負荷運転
時には低負荷用吸気通路7aに連通づる低負荷用吸気ポ
ー1〜38のみから各気筒2a〜2dに吸気を供給覆る
一方、エンジンの高負荷運転時には低負荷用および高負
荷用吸気ボート3a、3bの両方から吸気を供給づるよ
うにしている。一方、各気筒2a−・2dの第1、第2
排気ボート/Ia、4bはそれぞれ、第1、第2排気通
路7c、7dに連通されている。
On the other hand, each exhaust boat 1-4a, 4b is connected to the first and second exhaust boats 4a, 4b of each cylinder 2a-2d at a predetermined timing. First and second exhaust valves 6a, 61) that open and close are provided. Further, the high-load intake passage 7b of the intake manifold connected to the high-load intake port 3b of each cylinder 2a-26 is provided with an on-off valve 7 that is closed during high-load operation of the engine. During low load operation of the engine, intake air is supplied to each cylinder 2a to 2d from only the low load intake ports 1 to 38 communicating with the low load intake passage 7a, while during high load operation of the engine, intake air is supplied to each cylinder 2a to 2d. Intake air is supplied from both intake boats 3a and 3b. On the other hand, the first and second cylinders of each cylinder 2a-2d
The exhaust boats/Ia and 4b are communicated with first and second exhaust passages 7c and 7d, respectively.

エンジン本体1」二部には、各気筒2a〜2dにおける
低負荷用および高負荷用吸気弁5a、5bを開閉制御l
lづる吸気側動弁機Ij^8aと、第1および第2排気
弁(’3a、(31)を開閉制御する排気側動弁機構8
1)とが設けられている。
The second part of the engine body 1 includes opening/closing control l for low-load and high-load intake valves 5a and 5b in each cylinder 2a to 2d.
An intake side valve train Ij^8a that rotates, and an exhaust side valve train 8 that controls opening and closing of the first and second exhaust valves ('3a, (31)
1) is provided.

吸気側動弁機構88は、エンジン本体1の吸気側にエン
ジン本体中心線9と平行に配されタイミングベルト11
0を介してエンジンのクランクシャツ]へ(図示せず)
によって回動駆動される吸気側ノJムシVフi〜9を有
し、該吸気側カムシャフト9には各気筒2a〜2dの低
負荷用および高負荷用吸気弁5a、5bに対応するカム
面9a、9bが同形状に形成されており、この吸気側)
Jムシャフト9の回転により低負荷用吸気弁5aと高負
荷用吸気弁5bが開閉されるようになっている。一方、
排気側動弁機構8bは、エンジン本体1の排気側にエン
ジン本体中心線9と平行に配され同じくタイミングベル
ト110により回動駆動される排気側カムシャフト10
を有し、該排気側カムシャフト10には各気筒2a〜2
dの第1、第2排気弁6a、6bに対応するカム面10
a、10bが同形状に形成されており、この排気側力ム
シ1171〜10の回転により第1排気弁6aと第2排
気弁611が開閉されるようになっている。
The intake side valve mechanism 88 is disposed on the intake side of the engine body 1 parallel to the engine body center line 9 and is connected to the timing belt 11.
0 to engine crankshirt] (not shown)
The intake side camshaft 9 has cams corresponding to the low load and high load intake valves 5a and 5b of each cylinder 2a to 2d. Surfaces 9a and 9b are formed in the same shape, and this intake side)
The rotation of the J-must shaft 9 opens and closes the low-load intake valve 5a and the high-load intake valve 5b. on the other hand,
The exhaust side valve mechanism 8b includes an exhaust side camshaft 10 arranged on the exhaust side of the engine body 1 in parallel with the engine body center line 9 and rotationally driven by a timing belt 110.
The exhaust side camshaft 10 has cylinders 2a to 2.
Cam surface 10 corresponding to the first and second exhaust valves 6a and 6b of d
a and 10b are formed in the same shape, and the first exhaust valve 6a and the second exhaust valve 611 are opened and closed by rotation of the exhaust side forceps 1171 to 10.

上記吸気側動弁機構88には、第1気筒2aと第2気筒
2bとの互いに隣接する画商負荷用吸気弁51]、51
1、および第3気筒2qと第4気筒2dとの互いに隣接
する画商負荷用吸気弁5b、5bのバルブタイミングを
それぞれ可変制御する、本発明に係る2つの第1可変機
構11.11が設けられており、また排気側動弁機構8
bにも、互いに隣接する第1、第2気筒2a、2bの第
2排気弁6b、6bと、第3、第4気筒2C,2dの第
2排気弁6b、6bとのバルブタイミングをそれぞれ可
変制御りる、本発明に係る2つの第2可変)幾構12.
12が設けられている。
The intake valve mechanism 88 includes intake valves 51 and 51 adjacent to each other for art load for the first cylinder 2a and the second cylinder 2b.
Two first variable mechanisms 11, 11 according to the present invention are provided, each of which variably controls the valve timing of the art dealer load intake valves 5b, 5b adjacent to each other in the cylinder 1, the third cylinder 2q, and the fourth cylinder 2d. Also, the exhaust side valve mechanism 8
Also in b, the valve timings of the second exhaust valves 6b, 6b of the first and second cylinders 2a, 2b which are adjacent to each other and the second exhaust valves 6b, 6b of the third and fourth cylinders 2C, 2d are respectively variable. Two second variable configurations according to the present invention for control 12.
12 are provided.

これら第1および第2可変機構11.12は、第3図に
拡大図示するように同じ構成によってなる。りなわら、
第1可変機構11は、一端(上端)が吸気側力ムシiシ
フト9のカム面9b、9bと当接づる受圧部(受圧面)
13aとその反対側で高負荷用吸気弁5b 、5bのパ
ルシステム5S、5Sと当接する押L[部(抑圧面)1
3bと両者の間を連結する円筒状の摺動部13Cとを有
するタペット13.13と、該タペット13.13が、
F下方向に摺動自在に嵌挿保持される2つの嵌挿孔14
’a、14aを有するとともに上記エンジン本体1の円
弧状面1aに対応して円弧状に形成されたF面14bを
有し、上記吸気側カムシャフト9に相互に回転を許づよ
うに回動自在に支承されて該吸気側カムシャフト9の回
りを回動しうる回動部材14と、該回動部@14をエン
ジンの運転状態に応じて上記吸気側カムシャフト9の回
転軸回りに揺動さぜる操作装置15とを備えてなる(尚
、第2可変機構12は第1可変機構11の構成要素に「
′」(夕゛ツシュ)を付して表わし、6Sは第2排気弁
6bのバルブステムである)6タペツト13の押圧面1
31)は球面状に形成されており、該球面の中心は、タ
ペット13がカム9bの基準内部分に当接しているとき
、カムシャフト9の回転軸にバルブステム5Sの軸線が
交わる点に設定されている。抑圧面をこのように球面の
一部で形成することはタペット13の回転を考慮した1
=めで、回転を規制する場合には、カムシャフト9の回
転軸を中心とする円弧面とすればよい。
These first and second variable mechanisms 11, 12 have the same configuration as shown in an enlarged view in FIG. Rinawara,
The first variable mechanism 11 has a pressure receiving part (pressure receiving surface) whose one end (upper end) is in contact with the cam surfaces 9b, 9b of the intake side force sieve i shift 9.
13a and the high-load intake valve 5b on the opposite side, the push L [portion (suppressing surface) 1] that comes into contact with the pulse system 5S of 5b,
3b and a cylindrical sliding portion 13C connecting the two, and the tappet 13.13,
F Two insertion holes 14 that are slidably inserted and held in the downward direction
'a, 14a, and has an F surface 14b formed in an arc shape corresponding to the arc shape surface 1a of the engine main body 1, and rotates to allow the intake side camshaft 9 to rotate relative to each other. A rotating member 14 is freely supported and can rotate around the intake camshaft 9, and the rotating portion @14 is pivoted around the rotation axis of the intake camshaft 9 depending on the operating state of the engine. (The second variable mechanism 12 is a component of the first variable mechanism 11.
6S is the valve stem of the second exhaust valve 6b) 6 Pressing surface 1 of tappet 13
31) is formed into a spherical shape, and the center of the spherical surface is set at the point where the axis of rotation of the camshaft 9 intersects with the axis of the valve stem 5S when the tappet 13 is in contact with the reference inner part of the cam 9b. has been done. Forming the suppression surface as a part of the spherical surface in this way takes into consideration the rotation of the tappet 13.
= If the rotation is to be restricted, it may be an arcuate surface centered on the rotation axis of the camshaft 9.

回動部材14は、上記両嵌挿孔14a、14a間の中央
部にC吸気側力ムシレフト9に支承され、この支承され
る部分において上下に分割されており、ボルト16.1
61’一体に結合されている。
The rotating member 14 is supported by the C intake side force musket left 9 in the center between the two fitting holes 14a, 14a, and is divided into upper and lower parts at this supported part.
61' are integrally connected.

操作装η15は、エンジン本体中心線pに平行に配され
2つの第1可変機構11.11の各回動部材14.14
の上端部を連結づる揺動@17と、この揺動軸17に対
して直角に配され該揺動軸17の中央部に係合づるとと
もに第2図中左右方向に往復動自在に形成された往復動
軸18と、例えばモータの回転運動を11複運動に変換
して上記11復動1lI118を上記方向に往復動させ
、揺動軸17を介して回動部材14を前記のように回動
さぜる駆動装置19とを備えてなる。口の駆動装置19
には、エンジンの回転数を検出する回転数センサ20が
出力する回転数信号S1と、エンジン負荷を検出する負
伺センサ21が出力づる負伺信号S2が入ノ〕され、エ
ンジンの特定運転時としての高負荷高回転運転時に該駆
動装置19は、前記往復動軸18を第2図中右方向に移
動させるJ:うに駆動される。この往復動@18の移動
により、揺動軸17は吸気側カムシャ71−〇の回転方
向Xと同方向(第2図中時削方向)に回動し、回動部材
14.14が吸気側力ムシャフ[へ9を中心に上記X方
向に回動される。
The operating device η15 is arranged parallel to the center line p of the engine body and is connected to each rotating member 14.14 of the two first variable mechanisms 11.11.
A swing @ 17 connecting the upper end portions, and a swing @ 17 disposed at right angles to the swing shaft 17 and engaged with the center of the swing shaft 17, and formed to be able to reciprocate in the left-right direction in FIG. With the reciprocating shaft 18, for example, the rotary motion of a motor is converted into an 11 double motion, the 11 reciprocating motion 1lI118 is reciprocated in the above direction, and the rotating member 14 is rotated as described above via the swing shaft 17. and a drive device 19 for moving it. Mouth drive device 19
The rotation speed signal S1 outputted by the rotation speed sensor 20 that detects the engine rotation speed and the load signal S2 outputted by the load load sensor 21 that detects the engine load are input. During high-load, high-rotation operation, the drive device 19 is driven to move the reciprocating shaft 18 rightward in FIG. 2. Due to this reciprocating motion @18, the swing shaft 17 rotates in the same direction as the rotation direction The force is rotated in the X direction about 9.

高負荷用吸気弁51)は通常の吸、排気弁と同様に、バ
ルブガイド32に摺動自在に支承されバルブスプリング
31によって上方りなわち閉弁方向に付勢されているが
、吸気側力ムシャフ1−〇が上記X方向に回転してその
カム面9bがタペット13の受圧部13aを押圧し、該
タペット13が嵌挿孔14a内を押し下げられると、上
記バルブスプリング31の付勢力に抗して該タペット1
3の抑圧部13bによって押し下げられ、高負荷用吸気
ボート3bを開く(勿論低負荷用吸気弁5aも同様にし
て聞かれる)。一方、回動部IJ14.14が上)本の
ようにX方向に回動されると、タペット13.13も回
動部014.14とともに移動し、吸気側カムシャフト
9の特定角度位置に対するカム面91)、9bとタペッ
ト受圧部13a、13aの接触旬間が吸気側カムシャフ
ト9の回転方向Xに対しで遅れ側に変化して、各高負荷
用吸気弁5b、511のバルブタイミングが遅れ側にず
らされる。以上の動作は第2可変機構12により、同様
に第2排気バルブ61)に対しても行なわれる。
Like normal intake and exhaust valves, the high-load intake valve 51) is slidably supported by a valve guide 32 and is biased upward, that is, in the valve-closing direction, by a valve spring 31. When the mushaf 1-0 rotates in the X direction and its cam surface 9b presses the pressure receiving part 13a of the tappet 13, and the tappet 13 is pushed down inside the insertion hole 14a, it resists the biasing force of the valve spring 31. Then tappet 1
3 to open the high-load intake boat 3b (of course, the low-load intake valve 5a is also pressed in the same manner). On the other hand, when the rotating part IJ14.14 is rotated in the X direction like an upper), the tappet 13.13 also moves together with the rotating part 014.14, and the cam for a specific angular position of the intake side camshaft 9 is moved. The contact period between the surfaces 91), 9b and the tappet pressure receiving parts 13a, 13a changes to the delayed side with respect to the rotation direction X of the intake side camshaft 9, and the valve timing of each high-load intake valve 5b, 511 is delayed. be shifted to The above operation is similarly performed on the second exhaust valve 61) by the second variable mechanism 12.

さらに、本発明の特徴として、エンジン本体1には、第
4図に模式的に示Jにうに、上記回動部材14の揺動方
向(X方向)両側に沿ってガイド面1b、11+が形成
されており、回動部材14のX方向の回動を捩れないよ
う規制ガイドするようにしている。
Furthermore, as a feature of the present invention, guide surfaces 1b and 11+ are formed in the engine body 1 along both sides of the swinging direction (X direction) of the rotating member 14, as schematically shown in FIG. The rotation of the rotating member 14 in the X direction is regulated and guided so as not to be twisted.

尚、」二記吸気側カムシャフト9の中心部には、通常の
カムシャツ1〜に設けられているものと同様のオイル通
路9Cが形成され、オイルポンプ(図示Uず)に連通さ
れている。該オイル通路9Cには、半経方向に延びてカ
ム面9bに開口するオイル通路9〔1が連通されており
、該オイル通路9dによってカム面9bとタペット13
の受圧部13aとの間に潤滑用オイルが導かれて潤滑す
る。また、図示していない別のオイル通路によってカム
シャツ890回動部材支承部9eヤ)カムシャフト軸受
部30等に潤滑用オイルを導いて潤滑するようにしてい
る。上記タペット13の受圧部13aにはタペット13
の内部空洞部13dに連通づるオイル通路13Bが、ま
たタペツ1−13の抑圧部13bには該内部空洞部13
dに連通ずるオイル通路13f、13fがそれぞれ形成
されており、上記カム面9bとタペット受圧部13aと
の間を潤滑した潤滑用オイルが上記オイル通路13eか
らタペット13の内部空洞部13dに流入したのち、オ
イル通路13f、13fからタペット抑圧部13b (
押圧面)に導かれて、該押圧部13bと高負荷用吸気弁
5hのバルブステム5Sとの間を潤滑するようにしてい
る。上記排気側のタペット13′へのlT!J滑川オイ
ル供給系統も吸気側と同様に構成されており、排気側カ
ムシャフト10には吸気側カムシャフト9の各オイル通
路に対応するオイル通路10G、10dが設りられ、ま
た排気側タペット13′には吸気側タペット13の各オ
イル通路に対応づるオイル通路13’e、13′rが設
りられている。
Incidentally, an oil passage 9C similar to that provided in ordinary cam shirts 1 to 1 is formed in the center of the intake-side camshaft 9, and communicates with an oil pump (not shown). The oil passage 9C is connected to an oil passage 9[1 that extends in the semi-mechanical direction and opens to the cam surface 9b, and the oil passage 9d connects the cam surface 9b and the tappet 13.
Lubricating oil is introduced between the pressure receiving portion 13a and the pressure receiving portion 13a to provide lubrication. In addition, lubricating oil is introduced to the cam shirt 890, rotating member support portion 9e, camshaft bearing portion 30, etc. through another oil passage (not shown) for lubrication. The tappet 13 is attached to the pressure receiving portion 13a of the tappet 13.
An oil passage 13B that communicates with the internal cavity 13d of the tappet 1-13, and an oil passage 13B that communicates with the internal cavity 13d of the tappet 1-13.
Oil passages 13f and 13f communicating with the tappet 13 are formed respectively, and the lubricating oil that lubricates between the cam surface 9b and the tappet pressure receiving part 13a flows into the internal cavity 13d of the tappet 13 from the oil passage 13e. Later, the tappet suppressing portion 13b (
The valve stem 5S of the high-load intake valve 5h is lubricated between the pressure portion 13b and the valve stem 5S of the high-load intake valve 5h. lT to the tappet 13' on the exhaust side! J Namegawa oil supply system is also configured in the same way as the intake side, and the exhaust side camshaft 10 is provided with oil passages 10G and 10d corresponding to each oil passage of the intake side camshaft 9, and an exhaust side tappet 13 is provided. Oil passages 13'e and 13'r corresponding to the respective oil passages of the intake side tappet 13 are provided at '.

次に上記実施例の装置の作用について説明する。Next, the operation of the apparatus of the above embodiment will be explained.

エンジンのイ[(負荷運転時には、第1および第2可変
a横11.12が非作動状態にあり、各気筒2a〜2d
における低負荷用、高負荷用吸気弁5a。
When the engine is running under load, the first and second variable a horizontal 11.12 are inactive, and each cylinder 2a to 2d
Low load and high load intake valves 5a.

5bおJ:び第1.第2排気弁6a、6bはイれぞれ吸
気側および排気側動弁1幾構lea 、 8bによって
各々所定のバルブタイミングで開閉制御される。
5b OJ: and 1st. The second exhaust valves 6a and 6b are controlled to open and close at predetermined valve timings by intake side and exhaust side valves 1lea and 8b, respectively.

すなわち第5図実線で示ずように第1および第2排気弁
6a 、6bのバルブタイミングは共に、ピストンの下
死点付近で問いたのち上死点イー」近で閉じるように制
御され、また低負荷用おJ、び高負荷用吸気弁5a、5
bのバルブタイミングは共に排気弁6a、6bとのA−
バーラップ期間を短くしてピストン上死点付近で問いた
のちド死点付近で閉じるように制御される。また、各気
筒2a〜2dにおりる高負荷用吸気通路7bは開閉弁7
の閉作動ににって閉塞されており、低負荷用吸気ボート
3aのみから吸気がなされる。
That is, as shown by the solid line in FIG. 5, the valve timings of the first and second exhaust valves 6a and 6b are both controlled so that they open near the bottom dead center of the piston and then close near the top dead center. Intake valves 5a, 5 for low load and high load
The valve timing of valve b is the same as that of exhaust valves 6a and 6b.
The bar wrap period is shortened and the piston is controlled to open near the top dead center and then close near the top dead center. In addition, the high-load intake passage 7b that goes into each cylinder 2a to 2d has an on-off valve 7.
is closed by the closing operation, and air is taken in only from the low-load intake boat 3a.

一方、エンジンの高負荷低回転運転時には、高負荷用吸
気通路7bの開閉弁7が聞かれ、低負荷用吸気ボート3
aに加えて高負荷用吸気ボー1〜3bからも吸気が行な
われるが、第1および第2可変機構11.1’2は共に
非作動の状態に設定され、吸、排気弁5a 、5bと6
a 、f’3bのA−バーラップ期間を短くし吸気の吹
き返しを防止しC充填効率が高められる。しかもこの場
合、各気筒2a〜2dの排気行程において第1および第
2の排気ボート4a 、4bをそれぞれ排気弁5a、(
3bで開閉するので、排気のための有効間口面積が単一
排気ボー1へのエンジンに比べて増大して掃気効率が向
上し、ひいては上記充填効率の向上を一層図ることがで
きる。
On the other hand, when the engine is operating at high load and low rotation speed, the on-off valve 7 of the high load intake passage 7b is turned on, and the low load intake boat 3
In addition to the high-load intake bows 1 to 3b, air is also taken in from the high-load intake bows 1 to 3b, but both the first and second variable mechanisms 11.1'2 are set to a non-operating state, and the intake and exhaust valves 5a and 5b are 6
By shortening the A-burlap period of a and f'3b, blowback of intake air is prevented and C filling efficiency is increased. Moreover, in this case, in the exhaust stroke of each cylinder 2a to 2d, the first and second exhaust boats 4a and 4b are connected to the exhaust valves 5a and 4b, respectively.
3b, the effective frontage area for exhaust is increased compared to an engine with a single exhaust bow 1, improving scavenging efficiency and further improving the above-mentioned filling efficiency.

11−ンジンの高負荷高回転運転時には、第1および第
2可変機構11.12が共に作動し、第5図仮想線で示
づように、各気筒2a〜2dにJ5ける1″iJの排気
弁(3a、6bのうち第2排気弁6bのバルブタイミン
グが第2可変機構12によって遅れ側に、また1対の吸
気弁5a、5bのうち高負荷用吸気弁5bのバルブタイ
ミングが第1可変機構11にJ:つて遅れ側にずれるよ
うに制御される。
11- During high-load, high-speed operation of the engine, the first and second variable mechanisms 11.12 operate together, and as shown by the imaginary line in FIG. The valve timing of the second exhaust valve 6b among the valves 3a and 6b is delayed by the second variable mechanism 12, and the valve timing of the high-load intake valve 5b of the pair of intake valves 5a and 5b is delayed by the first variable mechanism 12. The mechanism 11 is controlled to shift to the lag side.

また各気筒2a〜2dの高負荷用吸気通路7bは開閉弁
7の閉作動により聞かれており、前述した高負荷低回転
運転時と同様に高負荷用吸気ボート31)からも吸気が
なされる。
In addition, the high-load intake passages 7b of each cylinder 2a to 2d are heard by the closing operation of the on-off valve 7, and air is also taken from the high-load intake boat 31) as in the case of high-load, low-speed operation described above. .

とのにうに両吸気弁5a 、5bの全体としての総量弁
明間を長くし、しかも吸気の慣性作用の大きい遅れ側に
開弁期間を延ばしたことにより、吸気の充填効率が七し
く向上し、高負荷高回転時の出ノJ性能が大巾に向上づ
る。また両排気弁6a。
In addition, by lengthening the interval between the two intake valves 5a and 5b as a whole, and by extending the valve opening period to the lag side where the inertial action of the intake air is large, the filling efficiency of the intake air is improved sevenfold. The output J performance under high load and high rotation is greatly improved. Also, both exhaust valves 6a.

61)の全体としての総聞弁期間を長くしたことにより
、掃気効率が著しく向上し、上記充填効率がさらに向上
覆る。
61) By lengthening the total valve period as a whole, the scavenging efficiency is significantly improved, and the above-mentioned filling efficiency is further improved.

上記各可変機構11.12は、一般の動弁機構(直接駆
動方式オーバーへラドカム機構)に、タベツ1〜13(
13’)を嵌挿保持りる回動部材14(14’)および
該回動部材14(14’)をカムシトフト9(10)ま
わりに回動させる操作装置tf1.15 <15’ )
を設けるだけで形成されるので、構造が簡単であり、製
造容易かつ安価なものとなる。
Each of the above variable mechanisms 11 and 12 is a general valve mechanism (direct drive type overdrive mechanism), and Tabetsu 1 to 13 (
A rotating member 14 (14') into which the rotating member 13'(13') is inserted and held, and an operating device tf1.15 (15') which rotates the rotating member 14 (14') around the cam shaft 9 (10)
Since the structure is simple, manufacturing is easy and inexpensive.

しかも、上記可変機構11.’12の可変制御は、カム
シトフト9(10)の特定角度位置に対するカム面91
)(10b)とタペット受H一部13a(13’a)と
の接触位置をカムシャフト9(10)まわりに変化さけ
て行なうので、可変制御を応答性良くかつ信頼性良く安
定して行うことができる。
Moreover, the variable mechanism 11. '12 variable control is based on the cam surface 91 for a specific angular position of the cam shaft 9 (10).
) (10b) and the tappet receiver H part 13a (13'a) while avoiding changes around the camshaft 9 (10), so variable control can be performed stably with good responsiveness and reliability. I can do it.

そして、上記タペット13(13’)は回動部材14(
14’)の嵌挿孔14a  (14’ a )内に16
(挿保持されて上下に摺動リ−るが、カム力の伝達時に
はカムシャフト9(10)からタペット13(13’)
に対し該タペット13(13’)の摺動方向と直角な方
向の横方向力〈スラスト力)が作用づる。また、回動部
1,114(1/l’)の回O」により、カムシャフト
9(10)のカム面9b(10b)からのカム力をタペ
ツ1〜13(13’)を介してバルブステム5s(6s
)に伝達する作用力線方向に対してタペット13(13
’)の磨動方向がずれているとき〈実施例では高負荷高
回転運転時)にはバルブステム5s(6s)がらタペッ
ト13(13’)に対し同じく横方向力が作用する。そ
れ故、該タペット13(13’)を保持する回動部材1
4(14’)はこれら横方向ノコの反力を受()ること
になり、該回動部材14(14′)に捩れが生じる゛こ
とがある。特に上記実施例の如く回動部材14(14,
’)がその中央部を支承部どしてその両側の嵌挿孔14
a、1/1a(14’ a 、 1/1.’ a )に
て気筒の異なルッ;Ll:1位相の箕なる吸、排気弁用
のタペット13.13(13’ 、13’ )を保持す
るものである場合には上記位相のずれによって回動部材
1/l (14’ )の捩れが生じやすい。このような
場合には上記バルブタイミングの可変制御の信頼性、安
定f1が損われる。
The tappet 13 (13') is connected to the rotating member 14 (
14') in the insertion hole 14a (14'a)
(It is inserted and held and slides up and down, but when transmitting cam force, it moves from the camshaft 9 (10) to the tappet 13 (13')
A lateral force (thrust force) in a direction perpendicular to the sliding direction of the tappet 13 (13') acts on the tappet 13 (13'). In addition, the cam force from the cam surface 9b (10b) of the camshaft 9 (10) is applied to the valve via the tappets 1 to 13 (13') by the rotation of the rotating portion 1,114 (1/l'). Stem 5s (6s
) with respect to the direction of the line of force transmitted to the tappet 13 (13
When the rubbing direction of the tappet 13 (13') is misaligned (during high-load, high-speed operation in the embodiment), a lateral force is similarly applied from the valve stem 5s (6s) to the tappet 13 (13'). Therefore, the rotating member 1 that holds the tappet 13 (13')
4 (14') receives the reaction force of these lateral saws, which may cause twisting of the rotating member 14 (14'). In particular, as in the above embodiment, the rotating member 14 (14,
') has its center part attached to the support part, and the insertion holes 14 on both sides thereof.
a, 1/1a (14'a, 1/1.'a) for different cylinders; Ll: 1-phase minnow intake and exhaust valve tappet 13.13 (13', 13') held In this case, the rotational member 1/l (14') is likely to be twisted due to the above-mentioned phase shift. In such a case, the reliability and stability f1 of the variable valve timing control is impaired.

ところが、前述の通り、上記回動部材14(14′)は
その揺動方向両側に沿って形成したガイド面1b、1b
によってガイドされているので、上記回動部材14(1
4’)の捩れが抑制されることになり、J:って水装置
では上記バルブタイミングの可変制御の信頼性、安定性
を向上維持でき、またガタ何きを防止して耐久性の向上
およびlA音の低減化を図ることができる。
However, as described above, the rotating member 14 (14') has guide surfaces 1b, 1b formed along both sides in the swinging direction.
Since the rotating member 14 (1
4') torsion is suppressed, the reliability and stability of the variable valve timing control described above can be improved and maintained in the water system, and rattling is prevented, resulting in improved durability and It is possible to reduce the 1A sound.

上記実施例は、低負荷用と高負荷用の吸気ボートを有す
るデュアルインダクション方式の4バルブエンジンに本
発明が適用されたものであるが、本発明はその伯のエン
ジンに対しても勿論適用可能である。例えば本発明は第
6図に示すように、1つの気筒102a〜102dに対
して1トーの吸気ボーh 103と単一の排気ボート1
04とを有する通常の4気筒エンジンに対しても適用で
き、この場合、互いに隣り合う第1気@102aと第2
気筒102b、および第3気筒102cと第4気筒10
2d ニt3イT吸気ホー h 103.103(また
は排気ボーh 104 、104 ) ヲV4接配置し
、動弁系のカムシャフト中心Sにおいてその吸気弁同士
(または排気弁同士)間に跨って前述の可変機構11;
 12と同様の可変m構111(112)を配設し、該
各可変機構111 (112>の回動部材114の揺動
方向両側に冶っ(ガイド面101b、101bを形成す
ればよい。このようにして吸気弁のバルブタイミングを
可変とした場合にはバルブタイミングは第7図に示され
るように設定される。りなわらエンジンの高負荷高回転
運転時には、第7図仮想線で示すように吸気弁のバルブ
タイミングが信頼↑1.安定性良く遅れ側にずらされる
。このように吸気の慣性作用の大きい遅れ側に間弁明間
を設定づることにより吸気の充填効率が向上し、出〕j
性能の向上が図られる。
In the above embodiment, the present invention is applied to a dual induction type 4-valve engine having intake boats for low load and high load, but the present invention is of course applicable to other engines as well. It is. For example, as shown in FIG.
04, and in this case, the first air @102a and the second air are adjacent to each other.
Cylinder 102b, and third cylinder 102c and fourth cylinder 10
2d Nit3iT intake hose h 103.103 (or exhaust bow h 104, 104) is arranged in contact with V4, and is straddled between the intake valves (or exhaust valves) at the center S of the camshaft of the valve train. variable mechanism 11;
A variable m mechanism 111 (112) similar to 12 is disposed, and guide surfaces 101b, 101b are formed on both sides of the rotating member 114 of each variable mechanism 111 (112>) in the swinging direction. When the valve timing of the intake valve is made variable in this manner, the valve timing is set as shown in Fig. 7.In addition, when the engine is operated at high load and high rotation speed, the valve timing is set as shown by the imaginary line in Fig. 7. The valve timing of the intake valve is reliable↑1.It is shifted to the lag side with good stability.In this way, by setting the gap to the lag side where the inertial effect of the intake is large, the filling efficiency of the intake air is improved, and the intake valve timing is shifted to the lag side with good stability.
Performance is improved.

また、前記第1図の実施例においては、吸、排気弁5b
 、6bのバルブタイミングを可変制御覆る−[ンジン
の特定運転時をエンジンの高負荷高回転時としたが、そ
の他の運転時においても必要に応じてバルブタイミング
を可変制御してもよい。
Further, in the embodiment shown in FIG. 1, the intake and exhaust valves 5b
, 6b - [Although the specific operation of the engine is set to a high-load, high-rotation time of the engine, the valve timing may be variably controlled as needed during other operations.

さらに、前記第1図の実施例においては、各気筒の2a
 〜2(lにa31:Jる1対の吸気ボート3a。
Furthermore, in the embodiment shown in FIG.
~2 (A31: J pair of intake boats 3a.

3bおにび1対の吸気弁5a、5bと、1対の排気ボー
ト4a 、 41+’ j3J:び1対の排気弁6a、
6bとを、それぞれエンジン本体1の吸気側と排気側と
に分けて中心線9方向に平行に配置し、かつ高負荷用吸
気弁5a、51+同士および第2刊気弁6b、6方向士
を隣接配置したが、その他の配置構成にして−bよいこ
とは勿論である。しかし前記第1図の実施例におけるよ
うな配置構成は、各力ムシIp71〜9.10の軸受部
30.30の配置を@ f、化し、隣り合う気筒(2a
と2b、2cと2d)間の高負荷用吸気弁5b、51+
同士および第2排気弁6b、61+同士をぞれぞれ1つ
の可d機4M11.12で制御できるのC右利である。
3b, one pair of intake valves 5a, 5b, one pair of exhaust boats 4a, 41+' j3J: and one pair of exhaust valves 6a,
6b are respectively divided into the intake side and exhaust side of the engine body 1 and arranged parallel to the center line 9 direction, and the high load intake valves 5a, 51+ are connected to each other, and the second intake valves 6b, 6 directions are connected to each other. Although they are arranged adjacent to each other, it is of course possible to use other arrangements. However, in the arrangement as in the embodiment shown in FIG.
and 2b, 2c and 2d) between high-load intake valves 5b, 51+
It is advantageous to be able to control each other and the second exhaust valves 6b and 61+ with one movable device 4M11.12.

さらにまた、前記第1図の実施例では、回動部材14 
(14’ )をカムシャツj−9(10)に相互に回転
を許すように直接支承して該カムシャフト1〜9(10
)回りを回動させるJ:うにしたが、二[ンジン本体1
の円弧状面1aをカムシャツ1−9(10)の軸心を中
心と覆る円弧面に形成し、それに対応して回動部材14
(14’)の下面141)(14’b)を円弧状に形成
して、該回動部材14(14’)の下面14b(14’
b)を上記円弧状面1aに摺接案内させることによりカ
ムシャフト9(10)回りに回動させるようにしてもよ
い。また、上記実施例の如きタペット13(13′ )
の代わりに公知の油圧タペットを用いてもよく、この場
合、カムシャツt−9(10)のカム面91+  (1
0b )への追従性を良くしてノコムシ【7フト9(1
0)の運動をバルブステム5S(68)に確実に伝達で
さる利点を右づる。
Furthermore, in the embodiment shown in FIG.
(14') is directly supported on the camshaft j-9 (10) so as to allow mutual rotation, and the camshafts 1 to 9 (10)
) Turn around the engine body 1.
The arcuate surface 1a of the cam shirt 1-9 (10) is formed into an arcuate surface that covers the shaft center of the cam shirt 1-9 (10), and the rotating member 14 corresponds to the arcuate surface 1a.
(14') The lower surface 141) (14'b) of the rotating member 14 (14') is formed in an arc shape.
(b) may be rotated around the camshaft 9 (10) by slidingly guiding it on the arcuate surface 1a. Further, the tappet 13 (13') as in the above embodiment
A known hydraulic tappet may be used instead of , and in this case, the cam surface 91+ (1
0b) to improve its followability to Nokomushi [7 feet 9 (1
0) can be reliably transmitted to the valve stem 5S (68).

また、前1)C第1図の実施例ではガイド面1b。In addition, the guide surface 1b in the embodiment shown in 1)C FIG.

11)をエンジン本体1に一体形成したが、別部材によ
って形成してもよいのは勿論である。
11) is formed integrally with the engine body 1, but it goes without saying that it may be formed as a separate member.

以」ニ詳細に説明した通り、本発明のエンジンのバルブ
タイミング制御装面は、簡単な構造でもって、エンジン
のバルブタイミングを応答性、伏頼性良く確実に可変制
御できるものであり、バルブタイミングの可変制御の容
易実施化に大いに寄1ブづるものどなる。また、回動部
材の捩れを抑制して上記バルブタイミングの可変制υ1
1の(7T頼性、安定性を一層向上でき、また耐久−性
向上およびバルブ駆動騒音の低減化をし図ることができ
る。
As explained in detail below, the engine valve timing control device of the present invention has a simple structure and can reliably and variable control the engine valve timing with good responsiveness and reliability. This greatly contributes to the easy implementation of variable control. In addition, by suppressing the twisting of the rotating member, variable control of the valve timing υ1 is possible.
No. 1 (7T) Reliability and stability can be further improved, and durability can also be improved and valve drive noise can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をデュアルインダクション方式の4気筒
の土ンジンに適用した実施例を示1一部破断乎面図、第
2図は第1図の実施例の縦断面図、第3図は第1図の実
施例の可変機構部分の拡大斜視図、第4図は回動部材ま
わりを示す模式平面図、第5図は第1図の実施例におt
プる吸、排気弁のバルブタイミングを示す説明図、第6
図は本発明を通常の4気筒エンジンに適用した実施例を
示?l概略図、第7図は第6図の実施例にa′3ける吸
、排気弁のバルブタイミングを示づ説明図である。 1 b・・・ガイド面、5a、5b・・・吸気弁、5S
・・・バルブステム、5a、6b・・・排気弁、9.1
0・・・カムシャフト、9a 、9b 、10a 、1
01] −・カム面、11・・・第1可変機構、12・
・・第2可変機構、13.13’ ・・・タペット、1
3a、13’a・・・タペット受圧部、13b、13’
 b・・・タペット受圧部、14.1/l’−・・回動
部材、14d、14’a・・・嵌挿孔、15.15’ 
・・・操作製向。
Fig. 1 shows an embodiment in which the present invention is applied to a dual-induction type four-cylinder engine. FIG. 4 is an enlarged perspective view of the variable mechanism portion of the embodiment shown in FIG. 1, FIG. 4 is a schematic plan view showing the surroundings of the rotating member, and FIG.
Explanatory diagram showing the valve timing of the pull intake and exhaust valves, No. 6
The figure shows an example in which the present invention is applied to a normal 4-cylinder engine. FIG. 7 is an explanatory diagram showing the valve timing of the intake and exhaust valves at a'3 in the embodiment of FIG. 6. 1 b...Guide surface, 5a, 5b...Intake valve, 5S
...Valve stem, 5a, 6b...Exhaust valve, 9.1
0...Camshaft, 9a, 9b, 10a, 1
01] - cam surface, 11... first variable mechanism, 12.
...Second variable mechanism, 13.13'...Tappet, 1
3a, 13'a... Tappet pressure receiving part, 13b, 13'
b... Tappet pressure receiving part, 14.1/l'-... Rotating member, 14d, 14'a... Fitting hole, 15.15'
...For operation.

Claims (1)

【特許請求の範囲】[Claims] (1)  7Jムシトフトのカム面から力を受(プる受
圧部おにび」ニ記カム面からの力をバルブステムにIL
i 達りる押圧部を有するタペットと、該タペットが摺
動自在に嵌挿される嵌挿孔を有し、上記カムシャフトの
回りを回動可能な回動部材と、該回動部材をエンジンの
運転状態に応じてカムシV)I−の回りに揺動させる操
作装置とを備えIζエンジンのバルブタイミング制御装
置であって、上記回動部材の揺動方向両側に沿ってガイ
ド面を形成したことを特徴と覆るエンジンのバルブタイ
ミング制御装置。
(1) Receives force from the cam surface of the 7J mushitoft (pressure receiving part).The force from the cam surface is transferred to the valve stem.
i. A tappet having a pressing part that extends, a rotating member having a fitting hole into which the tappet is slidably inserted and rotatable around the camshaft, and a rotating member that is connected to the engine. A valve timing control device for an Iζ engine, comprising an operating device that swings around a camshaft (V) I- in accordance with the operating state, wherein guide surfaces are formed along both sides of the swinging direction of the rotating member. Features a covering engine valve timing control device.
JP2918883A 1983-02-22 1983-02-22 Valve timing control device in engine Pending JPS59153911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2918883A JPS59153911A (en) 1983-02-22 1983-02-22 Valve timing control device in engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2918883A JPS59153911A (en) 1983-02-22 1983-02-22 Valve timing control device in engine

Publications (1)

Publication Number Publication Date
JPS59153911A true JPS59153911A (en) 1984-09-01

Family

ID=12269222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2918883A Pending JPS59153911A (en) 1983-02-22 1983-02-22 Valve timing control device in engine

Country Status (1)

Country Link
JP (1) JPS59153911A (en)

Similar Documents

Publication Publication Date Title
JPH0131003B2 (en)
CA2556507C (en) Valve train for internal combustion engine
JPH0941924A (en) Power transmitting mechanism and variable valve system provided with power transmitting mechanism
TWI275698B (en) Valve train for internal combustion engine
JP4343021B2 (en) Valve operating device for internal combustion engine
JP4342372B2 (en) Valve operating device for internal combustion engine
JPS59153911A (en) Valve timing control device in engine
JPS5946308A (en) Valve timing control device of engine
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP2001263108A (en) Intake valve driving control device for internal combustion engine
JPS59188007A (en) Valve timing control device for engine
JPH0125881B2 (en)
JPH0232447B2 (en)
JPS59188008A (en) Valve timing control device for engine
JPH0355643B2 (en)
JPS6069224A (en) Valve-timing controlling apparatus for engine
JPH0220406Y2 (en)
JP2006063871A (en) Variable valve device for engine
JPS5965510A (en) Valve timing control device for engine
JP4226635B2 (en) Valve operating device for internal combustion engine
JPS5996408A (en) Valve driving device for engine
JPH0472967B2 (en)
JPS633125B2 (en)
JPS5946309A (en) Valve timing control device of engine
JPH05340226A (en) Variable lift valve