JPS59157724A - Phase control circuit of ac power using tripod transformer - Google Patents

Phase control circuit of ac power using tripod transformer

Info

Publication number
JPS59157724A
JPS59157724A JP2988083A JP2988083A JPS59157724A JP S59157724 A JPS59157724 A JP S59157724A JP 2988083 A JP2988083 A JP 2988083A JP 2988083 A JP2988083 A JP 2988083A JP S59157724 A JPS59157724 A JP S59157724A
Authority
JP
Japan
Prior art keywords
circuit
voltage
coil
tripod
phase control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2988083A
Other languages
Japanese (ja)
Inventor
Shinichi Ueda
信一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yashima Denki Co Ltd
Original Assignee
Yashima Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yashima Denki Co Ltd filed Critical Yashima Denki Co Ltd
Priority to JP2988083A priority Critical patent/JPS59157724A/en
Publication of JPS59157724A publication Critical patent/JPS59157724A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • G05F1/455Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To eliminate a danger of electric shock and to control the phase in a wide range by controlling the firing angle of a switching element with the output signal of a tertiary coil of a tripod transformer coupled electromagnetically with a firing angle control part. CONSTITUTION:When a switch 17 is opened, transistors TRs Q2 and Q1 are not operated, and a voltage is not generated in a tertiary coil 8 at all. But when the switch 17 is closed, a capacitor 20 is charged, and TRs Q2 and Q1 are made conductive when the capacitor 20 reaches a prescribed voltage value. In this case, since TRs Q1 and Q2 are made conductive while showing a negative resistance, the electric charge of the capacitor 20 is discharged, and a pulse is generated synchronously with a power source frequency, and a TR21 is made cnductive to short-circuit a secondary coil 7. Then, a voltage is induced in the tertiary coil (360 deg. or less behind the power source frequency), and a switching element 14 is fired in accordance with short-circuit of the coil 7, and a voltage is applied to a load. The value of a variable resistance 19 is changed to control the phase in the range of 0-180 deg..

Description

【発明の詳細な説明】 本発明は三脚トランスを使用して位相制御の操作回路を
電源から完全に絶縁した感電の恐れのない安全な交流電
力の位相制御回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a safe AC power phase control circuit that uses a tripod transformer to completely isolate a phase control operation circuit from a power source without the risk of electric shock.

従来、トライアック等を用いた交流電力の位相制御回路
はすべて交流電源に直接接続されていたため、位相の制
御操作をする際に感電事故の発生する危険があった。こ
れを解消するため、低電圧操作回路側からリモートコン
トロールを行う場合、第1図の如くホトカプラの無接点
リレーを用いる場合には操作入力に電源(直流又は交流
)が必要となり、オン、オフ制御ができても位相制御が
できないので位相制御する場合には別途に制御回路が必
要となった。又、第2図に示す如くトランスを使用して
もパルス発生回路とトライアックのゲにてリモートコン
トロールする場合、別途に電源と絶縁する降圧トランス
、パルストランス、ホトカプラ、リードリレー等を用い
る必要があり、又電源、操作回路の配線が複雑となり、
高価となる雑煮があった。
Conventionally, all AC power phase control circuits using triacs and the like have been directly connected to an AC power source, so there is a risk of electric shock when performing phase control operations. To solve this problem, when performing remote control from the low voltage operation circuit side, when using a photocoupler non-contact relay as shown in Figure 1, a power supply (DC or AC) is required for operation input, and on/off control is required. Even if it was possible to do so, phase control was not possible, so a separate control circuit was required for phase control. Furthermore, even if a transformer is used as shown in Figure 2, if remote control is performed using a pulse generator circuit and triac gate, it is necessary to separately use a step-down transformer, pulse transformer, photocoupler, reed relay, etc. that is insulated from the power supply. Also, the wiring of the power supply and operation circuit becomes complicated.
There was some zoni that was expensive.

本発明はこのような従来回路の欠点に鑑み、交流電源と
完全に絶縁されている低電圧の点弧角制御部を三脚トラ
ンスの1次側に設けると共に、該点弧角制御部と電磁結
合している3次コイルの出力信号により無接点スイ・ン
チング素子の点弧角を制御して交流電力の位相を制御す
る回路を提供することを目的とする。
In view of the drawbacks of the conventional circuit, the present invention provides a low-voltage firing angle control section that is completely insulated from the AC power source on the primary side of the tripod transformer, and also provides electromagnetic coupling with the firing angle control section. The present invention aims to provide a circuit that controls the phase of AC power by controlling the firing angle of a non-contact switching element using the output signal of a tertiary coil.

本発明の構成をその実施例の図面に基いて説明する。先
ず本発明に使用する三脚トランス/は第9図に示す如く
三脚鉄心は外側脚コ、グ中央脚3を有し、外側脚グには
ギャップjを設けている。
The configuration of the present invention will be explained based on drawings of embodiments thereof. First, in the tripod transformer used in the present invention, as shown in FIG. 9, the tripod core has an outer leg and a center leg 3, and a gap j is provided in the outer leg.

外側脚λには1次コイル6が捲回されていて、中央脚3
には2次コイル7が、他の外側脚りには3次コイル?が
夫々低電圧が誘起されるように捲回されている。第5図
の三脚トランスlは2つの内鉄型鉄心?、10が非磁性
体l/にて隔離結合されて三脚鉄心を形成していて、外
側脚コに7次コイル6、幅広の中央脚3に2次コイル7
、他の外側脚グに3次コイルlが夫々捲回されていて三
脚鉄心の構造が第9図と異なる。
A primary coil 6 is wound around the outer leg λ, and a primary coil 6 is wound around the outer leg λ.
The secondary coil 7 is on the other outer leg, and the tertiary coil is on the other outer leg. are wound so that a low voltage is induced in each. Does the tripod transformer l in Figure 5 have two cores? , 10 are isolated and coupled with a non-magnetic material l/ to form a tripod core, with a seventh coil 6 on the outer legs and a secondary coil 7 on the wide central leg 3.
The structure of the tripod core is different from that shown in FIG. 9 because the tertiary coils l are wound around the other outer legs.

次に第3図は本発明の実施例回路にして前記の三脚トラ
ンスを使用して、1次コイル60両端は電源/2に接続
し、3次コイルlの一端は電源lλに並列に接続された
負荷/3と直列の無接点スイッチング素子/りのゲート
に逆並列接続のダイオード/!、/jを介して接続し、
他端は前記無接点スイ1.フチング素子/4tのカソー
ドに接続すると共に、中央脚3の2次コイル7は全波整
流器16に接続し、その直流側両端間に抵抗/11スイ
ツチ/7、可変抵抗lり及びコンデンサ認0の直列回路
とNPN型トランジスタ21.(コレクタを+側、エミ
ッタを一側に接続)及び直列接続された2つの抵抗、2
2.23を接続し、その抵抗22.23の結合点をNP
N型、PNPNPNトランジスタ Qt結合回路2ダの
ゲートGに、又カンード氏を前記NPN型トランジスタ
、2/のベースに抵抗2j″、2乙の分圧回路を介して
接続し、更に前記NPN型、PNP型トランジスタQ+
Q−結合回路コグのアノードAは前記可変抵抗/9とコ
ンデンサ20との結合点に接続している。
Next, FIG. 3 shows an example circuit of the present invention in which the tripod transformer described above is used, both ends of the primary coil 60 are connected to the power supply /2, and one end of the tertiary coil l is connected in parallel to the power supply lλ. A non-contact switching element in series with the load /3 / a diode connected in anti-parallel to the gate of /! , connect via /j,
The other end is the non-contact switch 1. In addition to connecting to the cathode of the switching element/4t, the secondary coil 7 of the center leg 3 is connected to the full-wave rectifier 16, and a resistor/11 switch/7, a variable resistor l, and a capacitor are connected between both ends of the DC side. Series circuit and NPN transistor21. (collector connected to + side, emitter connected to one side) and two resistors connected in series, 2
2.23 and connect the connection point of the resistor 22.23 to NP
An N-type, PNPNPN transistor Qt is connected to the gate G of the coupling circuit 2da, and a resistor 2j'' is connected to the base of the NPN-type transistor 2/ through a voltage dividing circuit of 2o, and further the NPN type, PNP transistor Q+
The anode A of the Q-coupled circuit cog is connected to the connection point between the variable resistor /9 and the capacitor 20.

先ず三脚トランスの作用を説明した後に本発明の動作作
用を説明する。第2図において、1次コイル乙を電源/
2に接続して通電すると、2次コイル7が開放されてい
れば/電磁束ψ【は実線の如く大部分の磁束ψ、′が中
央脚3を通電コ次コイル2に低電圧(感電しない電圧例
えば/、2V)が誘起するが、ギャップ!のちる外側脚
りには微量の漏洩磁束ψ寡“しか通らないので3次コイ
ノ?♂には極めて僅かの電圧しか発生しない。しかるに
2次コイル2をスイッチ77′にて短絡すると短絡電流
が流れ磁束ψ1′と逆方向のλ電磁束ψ、が発生し外側
脚り側の磁束ψlと外側脚λ側の磁束ψ?′に点線で示
す如く分流し、短絡によって増加した磁束ψ//と前記
磁束ψl′との合成磁束がギャップ!のある外側脚ダに
通るので3次コイル♂には電源電圧よりJtO度弱遅れ
た電圧、即ち電源電圧(第7図イ太線)より僅か進んだ
と見做される電圧(第2図イ細線)が誘起する。又第5
図の複合型の三脚トランス/は1次コイル6によシ/7
電磁ψ寡が実線の如く内鉄型鉄心デを通9.2次コイル
7に低電圧が誘起。
First, the operation of the tripod transformer will be explained, and then the operation and operation of the present invention will be explained. In Figure 2, the primary coil B is connected to the power supply/
2 and energized, if the secondary coil 7 is open, /electromagnetic flux ψ[ is as shown by the solid line, most of the magnetic flux ψ, ' is energized by the central leg 3. A voltage (e.g. /, 2V) induces a gap! Since only a small amount of leakage magnetic flux ψ" passes through the outer leg, only a very small voltage is generated in the tertiary coil ♂. However, when the secondary coil 2 is short-circuited with the switch 77', a short-circuit current flows. A λ electromagnetic flux ψ in the opposite direction to the magnetic flux ψ1' is generated and is divided into the magnetic flux ψl on the outer leg side and the magnetic flux ψ?' on the outer leg λ side as shown by the dotted line, and the magnetic flux ψ// increased by the short circuit and the above Since the composite magnetic flux with the magnetic flux ψl' passes through the outer leg Da where there is a gap!, the tertiary coil ♂ has a voltage that is slightly behind the power supply voltage by JtO degrees, that is, it is considered to be slightly ahead of the power supply voltage (bold line in Figure 7). The induced voltage (thin line in Figure 2) is induced.
The composite type tripod transformer / in the figure is attached to the primary coil 6 / 7
9. A low voltage is induced in the secondary coil 7 through the inner iron core as shown by the solid line.

し、内鉄型鉄心IOの外側脚ダには漏洩磁束は殆んど通
らないので3次コイルlには何ら電圧を発生しない。し
かるにスイッチ77′にて2次コイル7を短絡すると短
絡電流が流れ、1電磁束ψ1とは逆方向の2電磁束ψt
が発生し、磁気抵抗の少ない内鉄型鉄心io内に点線の
如く3次コイルlに鎖交して磁気回路を作るので電源電
圧より360度弱遅れた電圧即ち電源電圧よシ僅か進ん
だと見做される低電圧が誘起する。第9図及び第3図の
場合共に2次コイル7の短絡に対応して3次コイルlに
3tO度弱遅れた電圧即ち電源と略同相しかも少し進み
気味の電圧が誘起する作用がちる。この作用を利用した
本発明の作用を実施例の第3図について説明する。
However, since almost no leakage magnetic flux passes through the outer legs of the inner iron core IO, no voltage is generated in the tertiary coil l. However, when the secondary coil 7 is short-circuited with the switch 77', a short-circuit current flows, and 2 electromagnetic fluxes ψt are generated in the opposite direction to 1 electromagnetic flux ψ1.
occurs, and a magnetic circuit is created by interlinking with the tertiary coil l as shown by the dotted line in the core type iron core IO with low magnetic resistance, so the voltage is slightly less than 360 degrees behind the power supply voltage, that is, it is slightly ahead of the power supply voltage. A low voltage is considered to be induced. In both cases of FIG. 9 and FIG. 3, in response to a short circuit in the secondary coil 7, a voltage is induced in the tertiary coil l that is delayed by a little less than 3 tO degrees, that is, a voltage that is approximately in phase with the power supply but slightly ahead of it. The effect of the present invention utilizing this effect will be explained with reference to FIG. 3 of the embodiment.

スイッチ12を開放した状態ではNPN型、PNP型ト
ランジスタQ+Qt結合回路2グのアノードA(PNP
fi)ランジスタQ、のエミッタ)には電圧が掛らない
のでトランジスタり及びQ、は作動せず、従ってNPN
型トランジスタ2/のベースには何ら電圧が印加されな
いのでNPN型トランジスタ2tはオフの状態で全波整
流器/6を介して2次コイル7を短絡しないので、3次
コイルlには何ら電圧が発生しない。従って無接点スイ
ッチング素子/Zはゲートに信号が与えられないので点
弧しない。しかるにスイッチ17を閉成するとコンデン
サ20は抵抗l/と可変抵抗19を通して充電され、そ
の電圧が抵抗J、21.2Jで分圧印加されているNP
N型、PNP型トランジスタQ1喝結合回路2グのゲー
トGの電圧を超えると、ゲート電流工0がアノードAか
らゲートGに流れPNPNP型トランジスタQ導通する
。PNP型トシトランジスタのコレクタ電流ICはNP
N型トランジスIQ+のベース電流となってトランジス
タQ、が導通し、コレクタ電流が流れて、P’NP型ト
ランジスタQ、のゲート電流工。を強める。トランジス
タQIQJともに電流利得は電流の上昇にしたがって増
加するので正帰還状態に早急に達し負性抵抗性を示して
導通するのでコンデンサ20の電荷が放電し可変抵抗の
変化によセキサイクル中に/−10数回も充放電を繰返
し、電源周波数に同期してパルス信号(例えば第2図口
)が発生し、カソード電流として抵抗2!、2tを流れ
電圧降下を生じ抵抗、2Jの電圧がNPN型トランジス
タ21のベースに印加され、トランジスタ21が導通し
全波整流器16を介して2次コイル7を短絡する。従っ
て前述の三脚トランスlの特性から3次コイルrにはコ
次コイル7の短絡に対応した電圧(第7図ホ)が誘起し
逆並列のダイオード/jS /!’を通して無接点スイ
ッチング素子/(tのゲートに印加される。よって無接
点スイッチング素子/%はコ次コイル7の短絡に対応し
て点弧し、第7図への如き波形の電圧が負荷に印加され
る。可変抵抗/9によシ充電時間を変化できるのでNP
N型、PNP型トランジスタQI Ql結合回路、24
tのターンオンのタイミング即ち位相角をθ〜//θ度
近く変化できるので無接点スイッチング素子14tの印
加電圧(電源電圧で第7図イの太線)に対し3次コイル
lの電圧(λ次コイル短絡時で第2図イの細線)は僅か
の進みの位相ずれがあるため無接点スイッチング素子/
&はゼロクロス点弧をして負荷電力を略O〜/lθ度範
囲の位相制御が可能となる。
When the switch 12 is open, the anode A (PNP
fi) Since no voltage is applied to the emitter of transistor Q, transistors Q and Q do not operate, and therefore are NPN.
Since no voltage is applied to the base of type transistor 2/, NPN type transistor 2t is off and does not short-circuit secondary coil 7 via full-wave rectifier /6, so no voltage is generated in tertiary coil l. do not. Therefore, since no signal is applied to the gate of the non-contact switching element /Z, it does not fire. However, when the switch 17 is closed, the capacitor 20 is charged through the resistor l/ and the variable resistor 19, and the voltage is applied to the NP divided by the resistor J, 21.2J.
When the voltage of the N-type and PNP-type transistor Q1 exceeds the voltage of the gate G of the coupling circuit 2, a gate current 0 flows from the anode A to the gate G, and the PNPNP-type transistor Q becomes conductive. The collector current IC of the PNP type transistor is NP
The base current of the N-type transistor IQ+ turns on the transistor Q, and the collector current flows, causing the gate current of the P'NP-type transistor Q. strengthen. Since the current gain of both transistors QIQJ increases as the current increases, they quickly reach a positive feedback state and exhibit negative resistance and become conductive, so the charge in the capacitor 20 is discharged and the change in variable resistance causes /- during the secondary cycle. Charging and discharging is repeated over 10 times, and a pulse signal (for example, Figure 2) is generated in synchronization with the power supply frequency, and the cathode current flows through the resistor 2! , 2t, causing a voltage drop, and a voltage of 2J is applied to the base of the NPN transistor 21, which turns on and short-circuits the secondary coil 7 via the full-wave rectifier 16. Therefore, from the characteristics of the tripod transformer l mentioned above, a voltage corresponding to the short circuit of the secondary coil 7 (Fig. 7 E) is induced in the tertiary coil r, and the antiparallel diode /jS /! ' is applied to the gate of the non-contact switching element /(t. Therefore, the non-contact switching element /% is fired in response to the short circuit of the co-order coil 7, and a voltage with a waveform as shown in Fig. 7 is applied to the load. The charging time can be changed by the variable resistor/9, so NP
N type, PNP type transistor QI Ql coupling circuit, 24
Since the turn-on timing of t, that is, the phase angle, can be changed by approximately θ to //θ degrees, the voltage of the tertiary coil l (λ-th coil When short-circuited, the thin line in Figure 2 A) has a slight lead phase shift, so the non-contact switching element/
& allows zero-cross ignition and phase control of the load power in a range of approximately O to /lθ degrees.

又第6図の如(NPN型、PNP型トランジスタQ、Q
a結合回路24tをP U T 24t’に置換しても
同様の作用が行われる。
Also, as shown in Figure 6 (NPN type, PNP type transistors Q, Q
The same effect can be achieved even if the a-coupling circuit 24t is replaced with a PUT 24t'.

尚三脚トランスlの捲線構成を限定してるが第9図にお
いて7次コイル6.2次コイル7の位置の交換、ギャッ
プ!を中央脚に設けて3次コイル♂を捲回する等の組合
せの可能、又第5図において1次コイル≦を結合脚体へ
或は3次コイルlを結合脚体へと変換可能であるが両型
式の三脚トランスの漏洩磁束の3次コイルへの影響を考
えると限定した方法が一番少なく最良の方法であυ、製
作の簡易さ、価格面より見ても最良の方法である。
Although the winding configuration of the tripod transformer l is limited, in Fig. 9, the positions of the 7th coil 6 and the secondary coil 7 are exchanged, and the gap! It is possible to perform combinations such as installing the tertiary coil ♂ on the central leg and winding the tertiary coil ♂, or converting the primary coil ≦ into a joint leg body or the tertiary coil ♂ into a joint leg body in Fig. 5. Considering the influence of the leakage magnetic flux of both types of tripod transformers on the tertiary coil, the method of limiting is the best method with the least amount υ, and it is also the best method in terms of ease of manufacture and cost.

又コ次コイル開放時の3次コイル電圧が少いのでλ個逆
並列のダイオード/!の電圧降下で十分無接点スイッチ
ング素子/4tの誤動作を防止できる利点もある。抵抗
27コンデンサ2♂は素子/グの保護回路、コンデンサ
2りはピーク吸収用である。
Also, since the voltage of the tertiary coil when the secondary coil is open is small, λ anti-parallel diodes/! There is also the advantage that malfunction of the non-contact switching element/4t can be sufficiently prevented with a voltage drop of . The resistor 27 and capacitor 2♂ are a protection circuit for the element/g, and the capacitor 2 is for peak absorption.

本発明は前述した如く、三脚トランスを使用することに
よって電源と低電圧の位相制御操作回路とを完全に絶縁
したので感電の危険がない。
As described above, the present invention uses a tripod transformer to completely isolate the power supply and the low voltage phase control operation circuit, so there is no risk of electric shock.

三脚トランスの特性である位相ずれを利用して無接点ス
イッチング素子をゼロクロス点弧させることができるの
で、オン、オフは勿論交流電力の広範囲な位相制御を可
能としだ。
The non-contact switching element can be fired at zero cross by utilizing the phase shift characteristic of the tripod transformer, making it possible not only to turn on and off but also to control the phase of AC power over a wide range.

三脚トランスの2次コイルを低電圧の操作回路電源とし
、簡易化した位相制御回路を設け、2次コイルの短絡開
放、位相制御された短絡開放にて3次コイルに同等のパ
ルス信号を誘起させてゲート信号として印加するように
したので別途電源を必要としない利点がある。
The secondary coil of the tripod transformer is used as a low-voltage operating circuit power supply, and a simplified phase control circuit is installed to induce an equivalent pulse signal in the tertiary coil by short-circuit opening of the secondary coil and phase-controlled short-circuit opening. Since the gate signal is applied as a gate signal, there is an advantage that a separate power supply is not required.

スイッチと可変抵抗部分を端子a、bより取出してリモ
ートコントロールできる特徴がある。
It has the feature that the switch and variable resistance part can be taken out from terminals a and b for remote control.

制御回路は電圧も低く電流も少ないので三脚トランスが
小型に作れ、又本発明回路は部品点数も少なく配線も簡
単なため廉価にできる等本発明の特徴効果は極めて顕著
である。
The control circuit has a low voltage and a small current, so the tripod transformer can be made compact, and the circuit of the present invention has a small number of parts and the wiring is simple, so it can be made at a low cost.The characteristic effects of the present invention are extremely remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例の制御回路、第3図は本発明
の実施例である位相制御回路、第9図は本発明に使用し
た一脚にギャップを有する三脚トランスの構成図、第5
図は同じく内鉄型鉄心複合型の三脚トランスの構成図、
第に図はトランジスタ結合回路をPUTに代替した回路
、第7図は本発明回路の各部の電圧波形図にして、イは
電源電圧波形(太線)と2次コイル短絡時の3次電圧波
形(細線)、口はトランジスタ、2/のベース印加電圧
波形(位相制御時)、ノ・はトランジスタ2/のコレク
タ、エミッタ間の電圧波形(位相制御時)1二は位相制
御時の2次電圧波形、ホは位相制御時の3次電圧波形、
へは位相制御時の負荷電圧波形を夫々示す。 /・・・・・・・・三脚トランス !・・・・・・・・
・ギャップ≦・・・・・・・・7次コイル  7・・・
・・・・2次コイル?・・・・・・・・3次コイル  
//・・・・・・非磁性体14t・・・・・・・・無接
点スイッチング素子/9・・・・・・・・・可変抵抗 
  20・・・・・・・・・コンデンサ2/・・・・・
・・・NPN型トランジスタ2グ・・・・・・・・NP
N型、PNP型トランジスタ結合回路Q、・・・・・・
・・・ (NPNfi))ランジスタQ2・・・・・・
・・・ (PNP型)トランジスタ特許出願人 八洲電
機株式会社
1 and 2 are conventional control circuits, FIG. 3 is a phase control circuit according to an embodiment of the present invention, and FIG. 9 is a configuration diagram of a tripod transformer having a gap in the monopod used in the present invention. Fifth
The figure is also a configuration diagram of a tripod transformer of inner iron type and iron core composite type.
Figure 1 shows a circuit in which the transistor coupling circuit is replaced with a PUT, Figure 7 shows the voltage waveforms of various parts of the circuit of the present invention, and Figure 1 shows the power supply voltage waveform (thick line) and the tertiary voltage waveform when the secondary coil is shorted ( thin line), the opening is the voltage waveform applied to the base of transistor 2/ (during phase control), the voltage waveform between the collector and emitter of transistor 2/ (during phase control), 12 is the secondary voltage waveform during phase control , E is the tertiary voltage waveform during phase control,
Figures 1 and 2 show the load voltage waveforms during phase control. /・・・・・・・・・Tripod transformer!・・・・・・・・・
・Gap≦・・・・・・7th coil 7...
...Secondary coil?・・・・・・・・・Tertiary coil
//...Non-magnetic material 14t...Non-contact switching element/9......Variable resistance
20・・・・・・・・・Capacitor 2/・・・・・・
・・・NPN type transistor 2g・・・・・・NP
N type, PNP type transistor combination circuit Q,...
... (NPNfi)) transistor Q2...
... (PNP type) transistor patent applicant Yasu Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)三脚鉄心の外側脚に1次コイルを捲回して電源に
接続し、他の外側脚に3次コイルを捲回して、電源に並
列に接続された負荷と直列の無接点スイッチング素子の
ゲートに逆並列のダイオードを介して接続、他端は前記
無接点スイッチング素子のカソードに接続すると共に、
中央脚には2次コイルを捲回して全波整流器に接続し、
その直流側両端間に抵抗、スイッチ、可変抵抗及びコン
デンサの直列回路とNPN型トランジスタ及び直列接続
された2つの抵抗を接続し、その抵抗の結合点をNPN
型、PNIl型トランジスタ結合回路のゲートに、又カ
ソードを前記NPN型トランジスタのペースに抵抗分圧
して夫々接続し、且つ前記NPN型、PNP型トランジ
スタ結合回路のアノードは前記可変抵抗とコンデンサの
結合点に接続してなる三脚トランスを使用した交流電力
の位相制御回路。
(1) Wrap the primary coil around the outer leg of the tripod core and connect it to the power supply, and wind the tertiary coil around the other outer leg to connect the non-contact switching element in series with the load connected in parallel to the power supply. connected to the gate via an antiparallel diode, and the other end is connected to the cathode of the non-contact switching element,
A secondary coil is wound around the center leg and connected to a full wave rectifier.
A series circuit of a resistor, a switch, a variable resistor, and a capacitor, an NPN transistor, and two series-connected resistors are connected between both ends of the DC side, and the connection point of the resistors is connected to the NPN transistor.
and the cathode is connected to the gate of the NPN type and PNIl type transistor combination circuit, and the cathode is connected to the pace of the NPN type transistor by resistor voltage division, and the anode of the NPN type and PNP type transistor combination circuit is connected to the connection point of the variable resistor and the capacitor. AC power phase control circuit using a tripod transformer connected to
(2)三脚鉄心の外側脚の1脚にギャップを設けて3次
コイルを捲回したことを特徴とする特許請求の範囲第1
項記載の三脚トランスを使用した交流電力の位相制御回
路。
(2) Claim 1, characterized in that the tertiary coil is wound with a gap provided in one of the outer legs of the tripod core.
An alternating current power phase control circuit using the tripod transformer described in .
(3)  λつの内鉄型鉄心の脚間に非磁性体をもって
隔離結合した三脚鉄心の中央脚に2次コイルを捲回した
ことを特徴とする特許請求の範囲第1項記載の三脚トラ
ンスを使用した交流電力の位相制御′回路。
(3) A tripod transformer according to claim 1, characterized in that a secondary coil is wound around the central leg of a tripod core that is isolated and coupled with a non-magnetic material between the legs of λ inner iron cores. Phase control circuit for AC power used.
JP2988083A 1983-02-24 1983-02-24 Phase control circuit of ac power using tripod transformer Pending JPS59157724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2988083A JPS59157724A (en) 1983-02-24 1983-02-24 Phase control circuit of ac power using tripod transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2988083A JPS59157724A (en) 1983-02-24 1983-02-24 Phase control circuit of ac power using tripod transformer

Publications (1)

Publication Number Publication Date
JPS59157724A true JPS59157724A (en) 1984-09-07

Family

ID=12288287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2988083A Pending JPS59157724A (en) 1983-02-24 1983-02-24 Phase control circuit of ac power using tripod transformer

Country Status (1)

Country Link
JP (1) JPS59157724A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS446893Y1 (en) * 1966-11-21 1969-03-14
JPS5018155B1 (en) * 1968-11-08 1975-06-26
JPS5817732A (en) * 1981-07-22 1983-02-02 Yashima Denki Kk Contactless transformer relay switch using three-leg transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS446893Y1 (en) * 1966-11-21 1969-03-14
JPS5018155B1 (en) * 1968-11-08 1975-06-26
JPS5817732A (en) * 1981-07-22 1983-02-02 Yashima Denki Kk Contactless transformer relay switch using three-leg transformer

Similar Documents

Publication Publication Date Title
CA1144592A (en) Discharge device ballast component which provides both voltage transformation and variable inductive reactance
US4634958A (en) Transformer utilizing selectively loaded reactance to control power transfer
US2181152A (en) Multiphase current converting system
JPS57123426A (en) Electric power converting circuit
JPS59157724A (en) Phase control circuit of ac power using tripod transformer
JPH03155332A (en) Electric energy storage system
JPS59157723A (en) Phase control circuit of ac power using tripod transformer
US2030606A (en) Moving coil voltage regulator
JPS59157722A (en) Phase control circuit of ac power using tripod transformer
JPS59124705A (en) Composite tripod transformer
JPS58129516A (en) Phase controlling circuit of ac power by contactless transformer relay
US3388294A (en) Saturable reactor dimmer
US2578235A (en) Phase shifting system
JPH0568187B2 (en)
US3932802A (en) Controlled power transferring device and method utilizing a reactance controlled by development of opposing magnetic fluxes
JPS59165113A (en) Phase control circuit for alternating current electric power using tripod transformer
JPS59142622A (en) Phase control circuit of ac power using composite tripod transformer
SU541286A1 (en) AC switch
US2793326A (en) Ballast transformer for electric discharge devices
JPS59221718A (en) Phase control circuit of alternating current electric power using tripod transformer
GB696743A (en) Improvements relating to apparatus supplying current to electric arcs
RU1815054C (en) Domestic welding rectifier
SU1690139A1 (en) Sequent inverter
RU2141888C1 (en) Power source for arc welding
SU894867A1 (en) Rectified voltage switch