JPS5915643A - Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine - Google Patents

Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine

Info

Publication number
JPS5915643A
JPS5915643A JP12206482A JP12206482A JPS5915643A JP S5915643 A JPS5915643 A JP S5915643A JP 12206482 A JP12206482 A JP 12206482A JP 12206482 A JP12206482 A JP 12206482A JP S5915643 A JPS5915643 A JP S5915643A
Authority
JP
Japan
Prior art keywords
fuel
cylinder
internal combustion
cylinders
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12206482A
Other languages
Japanese (ja)
Inventor
Tatsuya Yoshida
龍也 吉田
Takeshi Atago
阿田子 武士
Masami Nagano
正美 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12206482A priority Critical patent/JPS5915643A/en
Publication of JPS5915643A publication Critical patent/JPS5915643A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To uniformalize injection amount between cylinders by injecting fuel near the upper dead point of every cylinder in an electronic fuel injector for a 4 cycle V-type multiple cylinder internal combustion engine. CONSTITUTION:Intake air which has passed through a hot wire system air flow meter 3 built in an air cleaner 12 is sucked into an internal combustion engine 1 to be distributed to each cylinder. Signals of said air flow meter 3, a throttle valve opening sensor 10 and an ignition coil 4 are supplied to the input of a control unit 5 to control a fuel injection valve 2. Fuel is injected near the upper dead point of every cylinder. Namely, there is no difference of injection amount between the respective cylinders since fuel is injected under the same intake pressure in all cylinders.

Description

【発明の詳細な説明】 本発明は、クランク軸1回転中に必ず1回は全気筒に燃
料を噴射する4サイクルV型多気筒内燃機関の電子式燃
料噴射装置に係り、特に排気ガス性能に良好な各気筒個
別に噴射する個別噴射を採用した4サイクル■型多気筒
内燃機関の電子式燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic fuel injection device for a 4-stroke V-type multi-cylinder internal combustion engine that injects fuel into all cylinders at least once during one revolution of the crankshaft, and particularly relates to an electronic fuel injection device for a 4-cycle V-type multi-cylinder internal combustion engine. The present invention relates to an electronic fuel injection device for a four-stroke type multi-cylinder internal combustion engine that employs a good individual injection method that injects each cylinder individually.

一般に、本燃料噴射装置を装置する2輪車用の4サイク
ルV型4気筒エンジンは、吸気弁とm気弁のパルプのオ
ーバーランプの為、その吸気干渉を防止すべく、各気筒
に絞弁を配置しているので、絞弁下流の吸気圧力から約
−500m用14 Fの範囲で常時変化しており、しか
も谷気筒間に位相がある。一方、前記エンジンは180
#クランク機構でるり、点火順序は1→3→4→2であ
る。谷気筒の工程j順序は第1図に示す通りでtり6゜
このような構成のもとに第1図に示すAの位置で全気筒
同時に燃料を1貝射すると、各気筒の吸気圧力と噴射タ
イミングの関係は第2図に2バし/こ碌になり、明らか
に全気筒ともそれぞれ異なるタイミングすなわち、吸気
圧力の異なる所で噴射している。したがって、全燃料噴
射弁の噴射蓋特性が同一でもエンジンに組付けると前記
吸気圧力の点によシ、燃料噴射量に差が止し、排気ガス
性能r悪く1つfCシ、アイドル時の回転変動幅が大さ
くなっていた。第3図は部分負荷試験結果であり、a−
1絹1気筒を、bは第2気筒を、CVi第3気筒を、d
はm4気筒をそれぞれ示しておシ排気ガス濃度は全気筒
ばらついている。また、2気筒ずつを2個に分けて第4
図にφすA、Bの位置でグループ噴射すると、各気筒の
吸気圧力と噴射タイミングの関係は第5図に示したよう
になシ、1,4気筒の上死点近傍噴射2L 3気筒の下
死点噴射の2つに分t/yる事ができる。第5図から明
らかなように1,4気筒eま大気圧に近い所で噴射して
おり、第2,3気筒は比較的吸気圧力の高い所で噴射し
ている。
Generally, in a 4-cycle V-type 4-cylinder engine for two-wheeled vehicles equipped with this fuel injection device, the pulp of the intake valve and m-air valve overlap, so in order to prevent intake interference, each cylinder is throttled. , the intake pressure downstream of the throttle valve constantly changes within a range of 14 F for approximately -500 m, and there is a phase between the troughs. On the other hand, the engine is 180
#With the crank mechanism, the firing order is 1→3→4→2. The sequence of steps in the trough cylinder is as shown in Figure 1, and 6 degrees.With this configuration, if one injection of fuel is simultaneously applied to all cylinders at position A in Figure 1, the intake pressure of each cylinder will be The relationship between the fuel injection timing and the injection timing is shown in FIG. 2, and it is clear that all the cylinders inject at different timings, that is, at different intake pressures. Therefore, even if the injection lid characteristics of all fuel injectors are the same, when assembled into an engine, there will be no difference in fuel injection amount depending on the intake pressure, the exhaust gas performance will be worse (r), and the rotation at idle will be lower. The range of fluctuation was large. Figure 3 shows the partial load test results, a-
1 silk 1 cylinder, b the 2nd cylinder, CVi 3rd cylinder, d
indicates the m4 cylinders, and the exhaust gas concentration varies across all cylinders. In addition, the 4th cylinder is divided into 2 parts each with 2 cylinders.
When group injection is performed at positions φA and B in the figure, the relationship between the intake pressure and injection timing of each cylinder is as shown in Figure 5. It is possible to perform two minutes t/y of bottom dead center injection. As is clear from FIG. 5, the first and fourth cylinders inject at a location close to atmospheric pressure, and the second and third cylinders inject at a location where the intake pressure is relatively high.

したがって、同時噴射と同様の問題が生じてくる。Therefore, problems similar to simultaneous injection arise.

第6図は部分負荷試験結果であり、aは第1気筒を、b
は第2気筒を、Cは第3気筒ケ、dは第4気醐ケそれぞ
れ示しており排気ガス磯度は1,4気筒と2,3気筒に
分かれてばらついている。
Figure 6 shows the partial load test results, where a indicates the first cylinder, b
indicates the second cylinder, C indicates the third cylinder, and d indicates the fourth cylinder, and the exhaust gas harshness varies between the 1st and 4th cylinders and the 2nd and 3rd cylinders.

本発明の目的は、排気ガス性能やアイドルの安定性ケ向
上することのできる4yイクルV型多気筒内燃機関の電
子式燃料噴射装置を提供することにある。
An object of the present invention is to provide an electronic fuel injection system for a 4-cycle V-type multi-cylinder internal combustion engine that can improve exhaust gas performance and idle stability.

本発明の要旨は次の如くである。fなわち、絞弁下流の
吸気圧力は、大気圧から約−500mm11壕で常時変
化しており、しかも、■型多気筒内燃機関で各気筒間に
位相があるため、クランク軸1回転に1回向時に全気筒
に噴射する同時噴射でもグループ噴射でも吸気圧力の異
なるところで燃料を噴射することになる。したがって、
各々の気筒の噴射量に差が生じ、気筒間の排気ガス?#
度がバラつくことを実験により確認した。そこで、本発
明は各気筒個別に噴射するいわゆる個別噴射することに
よシ、全気筒同一のタイミング例えば上死点近傍で燃料
を噴射することにより排気ガス性能やアイドルの安定性
を向上しようというものである。
The gist of the present invention is as follows. In other words, the intake pressure downstream of the throttle valve constantly changes by about -500 mm from atmospheric pressure, and since there is a phase between each cylinder in a type 3 multi-cylinder internal combustion engine, the intake pressure downstream of the throttle valve changes by 11 times per crankshaft rotation. Whether it is simultaneous injection in which all cylinders are injected during turning or group injection, fuel is injected at different intake pressures. therefore,
Is there a difference in the injection amount of each cylinder, causing exhaust gas between the cylinders? #
It has been confirmed through experiments that the degree varies. Therefore, the present invention aims to improve exhaust gas performance and idle stability by injecting fuel into each cylinder individually, so-called individual injection, and by injecting fuel at the same timing in all cylinders, for example, near top dead center. It is.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

第7図には、本発明の一実施例が示へれている。FIG. 7 shows an embodiment of the present invention.

図において、壁気はエアクリーナ12に内蔵烙れたホン
トワイヤ式エアフローメータ3を逃逸し、絞弁開度に応
じた電が内燃機関lに吸入される。
In the figure, wall air escapes a true wire type air flow meter 3 built into an air cleaner 12, and electricity corresponding to the opening degree of the throttle valve is sucked into the internal combustion engine 1.

庁几己エアフローメータ3全通過した窒気tより−ジタ
ンクへ流入し、6吸気筒へ分配される。一方燃料は、燃
料ポンプ7によ)燃料タンク6より吸引し、加圧して、
燃料フィルタ8.ダンパ9.燃料噴射弁2が配管されて
いる燃料系に圧送される。
The nitrogen gas that has completely passed through the air flow meter 3 flows into the tank and is distributed to the 6 intake cylinders. On the other hand, fuel is sucked from the fuel tank 6 (by the fuel pump 7) and pressurized.
Fuel filter8. Damper 9. The fuel is fed under pressure to the fuel system to which the fuel injection valve 2 is connected.

燃料噴射蓋は前記エアフロメータの信号をコントロール
ユニット5で演算処理され、前記コントロールユニット
5からの出力信号で燃料噴射弁2が開弁し、必要な燃料
量が各吸気筒に噴射される。
In the fuel injection lid, the signal from the air flow meter is processed by the control unit 5, and the fuel injection valve 2 is opened in response to the output signal from the control unit 5, and the required amount of fuel is injected into each intake cylinder.

次に制御系は、内燃機関の運転状態を検出するセンサ類
とこれらの信号を入力して演算処理し、燃料噴射弁2の
開弁時間を決定するコントロールユニット5からなつで
いる。センサ類には、前記の吸入空気量を検出するホッ
トワイヤ一式エアフローメータ3、絞弁の開#を検出す
る絞弁開度スイッチlO1内燃機関の回転数を検出し、
燃料の噴射タイミングを決定するイグンンヨンコイル4
からなっている。コントロールユニット5はこれらの信
号を入力し、所定の処理を行ない、燃料ポンプの0N−
OFFや、燃料噴射弁2の開弁時間を決足し、その信号
を出力する。
Next, the control system includes sensors that detect the operating state of the internal combustion engine and a control unit 5 that inputs these signals, performs arithmetic processing, and determines the opening time of the fuel injection valve 2. The sensors include a hot wire set air flow meter 3 that detects the amount of intake air, a throttle valve opening switch 1O1 that detects the opening of the throttle valve, and a rotation speed of the internal combustion engine.
Igeun Yong Coil 4 determines fuel injection timing
It consists of The control unit 5 inputs these signals, performs predetermined processing, and turns the fuel pump ON-.
It determines the OFF time and the opening time of the fuel injection valve 2, and outputs the signal.

次に本実施例の動作について説明する。第8図vヨ、コ
ントロールユニット5のブロック図テアル。
Next, the operation of this embodiment will be explained. Figure 8 shows a block diagram of the control unit 5.

第9図は各種動作波形のタンミングチャートである。第
9図(a)〜(d)はそれぞれイグニツンヨンコイル4
1,42,43.44からの15号である。第9図(f
)は基準パルス波形整形回路15によって第9図(a)
〜(d)の化+4fxO几した波形であシ、線16を経
て、入出力インターフェイス13に入力される。第9図
(e)は第9図(a)と同じ波形で基準信号となυ、線
17を経て、入出力インターフェイス13に入力される
。また、内燃機関の運転状態全検出する各稙アナログ信
号及びディジタル信号はそれぞれ歪形回路14゜16を
介して人出力インターフェイス13に人力芒れる。これ
らの入力信号を演算処理し、燃料ボングアのON→OF
Fを行ない、また、燃料噴射弁の開弁時間を決犀する。
FIG. 9 is a timing chart of various operation waveforms. Figures 9(a) to 9(d) each show the ignition coil 4.
No. 15 from 1, 42, 43.44. Figure 9 (f
) is determined by the reference pulse waveform shaping circuit 15 as shown in FIG. 9(a).
The waveform obtained by converting to (d) +4fxO is inputted to the input/output interface 13 via the line 16. FIG. 9(e) has the same waveform as FIG. 9(a) and is a reference signal υ, which is input to the input/output interface 13 via the line 17. In addition, analog signals and digital signals for detecting the entire operating state of the internal combustion engine are input to the human output interface 13 through the distortion circuits 14 and 16, respectively. These input signals are processed and the fuel bongua is turned on → off.
Perform F and also determine the opening time of the fuel injection valve.

演Xされた開弁時間は次のようにして出力され燃料噴射
弁を躯動する。
The calculated valve opening time is output in the following manner and moves the fuel injection valve.

f−1,f−3のパルスが入力δれると、そのタイミン
グで線18の波形は第9図(?)のようeこ、上記開弁
時間だけハイレベルになる。ま/こ、f−2、f−4の
パルスが入力されると第9図(h)のような波形が#j
!19に出力される。第9図(i)の波形は、線20に
出力される信号で、f−1のパルスで・・イレペルとな
、!7.f−3のパルスで品つ゛レベルとなる。第9図
(j)は第9図(i)を反転した波形でi21に出力さ
れる。第9図(k)の波形仁よ、ffM22に出力され
る信号で、f−2のパルスでハイレベルとなり、f−4
のパルスでロウレベルとなる。第9図(1)は第9図(
k)を反転した波形で線23に出力される。波形(f)
と(+)のAND全取った波形(m)が第1気筒の燃料
1@射弁21に出力される。第2.3.4気筒の燃料噴
射弁22,23.24にはそれぞれ、(h)と(k)、
(f)と(j)、(h)と(1)のANDした波形(P
)、(n)、(o)が出力される。したがって、香気部
位の噴射タイミング?J1、第10図のようになり、谷
気筒共上死点近傍で第lO図A、H,C,Dに示す如く
噴射しており、谷気筒の吸気圧力と噴射位置の関係は第
11図で示した腫になる。第11図から明らかなように
全気前同じ吸気圧力のところで燃料を噴射している。し
たがって、机上でインジェクタの噴射量特性を甘わせれ
ば排気ガスTIk度のばらつきはなくなるものである。
When the pulses f-1 and f-3 are input δ, the waveform of the line 18 becomes high level for the above-mentioned valve opening time as shown in FIG. 9 (?) at that timing. When the pulses of ma/ko, f-2, and f-4 are input, the waveform as shown in Fig. 9 (h) is #j.
! 19 is output. The waveform in FIG. 9(i) is the signal output to line 20, and the pulse of f-1 is...irrepel! 7. The quality level is reached by the f-3 pulse. FIG. 9(j) is an inverted waveform of FIG. 9(i) and is output to i21. The waveform shown in Figure 9(k) is the signal output to ffM22, which goes high at the f-2 pulse, and f-4.
It becomes low level with the pulse of . Figure 9 (1) is shown in Figure 9 (
k) is output on line 23 with a waveform inverted. Waveform (f)
The waveform (m) obtained by ANDing (+) and (+) is output to the fuel 1@injector 21 of the first cylinder. The fuel injection valves 22, 23, and 24 of the 2nd, 3rd, and 4th cylinders have (h) and (k), respectively.
Waveform (P) obtained by ANDing (f) and (j), (h) and (1)
), (n), and (o) are output. Therefore, the injection timing of the aroma site? J1, as shown in Fig. 10, and both the trough cylinders are injected near top dead center as shown in Fig. 10 A, H, C, and D, and the relationship between the intake pressure and injection position in the trough cylinder is shown in Fig. 11. This results in the tumor shown in . As is clear from FIG. 11, fuel is injected at the same intake pressure for all the air. Therefore, if the injection amount characteristics of the injector are moderated on paper, variations in the exhaust gas TIk degree can be eliminated.

第12図は、その確認をするため、エンジンで部分負荷
試験を行ない、排気ガス濃度の測定結果を示したもので
あり、aが第1気筒、bが第2気筒、Cが第3気筒、d
が第4気筒を示している。図から明らかなように排気ガ
ス濃贋のばらつき幅が小きくなっている。
In order to confirm this, a partial load test was carried out on the engine, and Fig. 12 shows the measurement results of exhaust gas concentration, where a is the first cylinder, b is the second cylinder, C is the third cylinder, d
indicates the fourth cylinder. As is clear from the figure, the range of variation in exhaust gas concentration has become smaller.

ところが、上目己のような個別噴射を全運転領域で行な
うことができない。つまり、例えば高負荷時などの領域
では、演算した燃料噴射弁の開弁時間が、エンジンが1
/2回転する時間りまり第9図のパルスf−1からf−
3間の時間よシ大きくなる。したがって、第4図に示し
たようにグループ別に噴射するようにする。グループ噴
射と個別噴射の切換条件は下記のようにする。
However, it is not possible to perform individual injections like Uememi's in the entire operating range. In other words, in a region such as when the load is high, the calculated valve opening time of the fuel injection valve is
/2 rotation time pulses f-1 to f- in Figure 9
It gets louder over the course of 3 hours. Therefore, as shown in FIG. 4, the injection is performed in groups. The conditions for switching between group injection and individual injection are as follows.

個別噴射からグループ噴射への切換条件’1’  +、
、+  t  、  >TN  / 2       
       ・・・   (1ングループ噴射から個
別噴射への切換条件1゛鵞+tb<’1’N/2   
  ・・・ (2)(1)、 (2)、1゛I:燃料1
@射弁の開弁時間(演算結果)TN:エンジンが1回転
する時間 り、、lb  ニ一定時間 t 、 (t b このようにずれは、グループ噴射する運転領域では、絞
シ弁は全開に近い領域なので、吸気圧力の差はほとんど
ないため、排気ガス濃度のばらつきはなくなる。また切
換え運転領域でも切換えにヒステリシスを設けているた
め、良好な運転性能が得られる。
Switching condition from individual injection to group injection '1' +,
, +t, >TN/2
... (Switching condition from 1 group injection to individual injection 1゛鵞+tb<'1'N/2
... (2) (1), (2), 1゛I: Fuel 1
@ Injection valve opening time (calculation result) TN: Time for the engine to rotate once, lb D Fixed time t, (t b This deviation means that in the group injection operating range, the throttle valve is fully open. Since the regions are close to each other, there is almost no difference in intake pressure, so there is no variation in exhaust gas concentration.Furthermore, since hysteresis is provided in switching even in the switching operation region, good operating performance can be obtained.

以上、前述してきた様に本発明の一実施例によれは全気
筒上死点近傍で燃料を噴射させる。すなわち、全気筒同
じ吸気圧力のところで燃料を噴射させるので、噴射量に
差が生ぜず、排気ガス濃度のばらつきを小さくすること
ができるので、アイドル時の安定性や排気ガス性能を向
」−する効果がある。なお、本発明の実施例によれは、
基準気筒判別信号を有さすに、個別噴射を行なうことが
できる。また、個別噴射とグループ噴射を切換え、その
切換え条件にヒステリシスを設けたため、全領域で良好
な運転性能が侍られる。
As described above, according to one embodiment of the present invention, fuel is injected near the top dead center of all cylinders. In other words, since fuel is injected at the same intake pressure in all cylinders, there is no difference in the injection amount and variations in exhaust gas concentration can be reduced, improving stability at idle and exhaust gas performance. effective. In addition, according to the embodiment of the present invention,
Individual injection can be performed as long as the reference cylinder discrimination signal is provided. In addition, by switching between individual injection and group injection and providing hysteresis in the switching conditions, good operating performance can be achieved in all areas.

以上説明したように、本発明によれば、排気ガス性Hし
ヤアイドルの安定性を向上することができる。
As described above, according to the present invention, it is possible to improve the stability of the exhaust gas exhaust gas idler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、全気筒同時噴射した時の1貝射位置とエンジ
ン動作工程の関係を示す図、第2図は同時噴射の吸気圧
力と噴射時期の関係を示す図、第3図は同時噴射時の排
気ガス濃度の測定結果を示す図、第4図はグループ噴射
時の噴射位置とエンジン動作工程の関係を示す図、第5
図はグループ噴射時の吸気圧力と噴射時期の関係を示す
図、第6図はグループ噴射時の排気ガス製置の測定結果
を示す図、第7図は4サイクルV型多気筒内燃依関の電
子式燃料噴射装置のシステム図、第8図は本発明に採用
したコントロール・ユニ7トのプロンク図、第9図は動
作波形、第10図は本発明を実施した時の噴射位置とエ
ンジン動作工程の関係ケ示す図、第11図は個別噴射時
の吸気圧力と噴射時期の関係を示す図、第12図eよ個
別噴射時のJil気ガス濃夏の測定結果を示す図である
。 l・・・内燃機関、2・・・燃料噴射弁、3・・・ホッ
トワイヤ式エアフロメータ、訃・・コントロールユニッ
ト。 $5図 第′1図 (6と7ン CP>
Figure 1 is a diagram showing the relationship between single injection position and engine operating process when all cylinders are injected simultaneously, Figure 2 is a diagram showing the relationship between intake pressure and injection timing for simultaneous injection, and Figure 3 is a diagram showing the relationship between simultaneous injection and injection timing. Figure 4 is a diagram showing the relationship between the injection position and engine operating process during group injection, and Figure 5 is a diagram showing the relationship between the injection position and engine operating process during group injection.
Figure 6 shows the relationship between intake pressure and injection timing during group injection, Figure 6 shows the measurement results of exhaust gas configuration during group injection, and Figure 7 shows the relationship between 4-stroke V-type multi-cylinder internal combustion. A system diagram of an electronic fuel injection device, Fig. 8 is a pronk diagram of the control unit 7 adopted in the present invention, Fig. 9 is an operating waveform, and Fig. 10 is an injection position and engine operation when the present invention is implemented. FIG. 11 is a diagram showing the relationship between the processes, FIG. 11 is a diagram showing the relationship between intake pressure and injection timing during individual injection, and FIG. l...Internal combustion engine, 2...Fuel injection valve, 3...Hot wire type air flow meter, and...Control unit. $5 Figure '1 (6 and 7 CP>

Claims (1)

【特許請求の範囲】[Claims] 1、複数のシリンダにそれぞれ連通する独立した吸気通
路を有し、前記各吸気通路に内燃機関の吸気弁と排気弁
のオーバーランプによる吸気干渉を防止すべく絞弁を配
置される吸気系を有し、クランク軸1回転中に少なくと
も1回全気筒に燃料を噴射する4サイクルV型多気筒内
燃機関の電子式燃料噴射装置において、上記各気筒個別
に全気筒とも同じ工程で燃料を噴射することを特徴とす
る4ザイクルV型多気筒内燃機関の電子式燃料噴射装置
1. An intake system having independent intake passages each communicating with a plurality of cylinders, and in which a throttle valve is disposed in each intake passage to prevent intake interference due to overramp of the intake valve and exhaust valve of the internal combustion engine. In an electronic fuel injection device for a four-stroke V-type multi-cylinder internal combustion engine that injects fuel to all cylinders at least once during one rotation of the crankshaft, fuel is injected to each cylinder individually and to all cylinders in the same process. An electronic fuel injection system for a 4-cycle V-type multi-cylinder internal combustion engine featuring:
JP12206482A 1982-07-15 1982-07-15 Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine Pending JPS5915643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12206482A JPS5915643A (en) 1982-07-15 1982-07-15 Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12206482A JPS5915643A (en) 1982-07-15 1982-07-15 Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5915643A true JPS5915643A (en) 1984-01-26

Family

ID=14826729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12206482A Pending JPS5915643A (en) 1982-07-15 1982-07-15 Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5915643A (en)

Similar Documents

Publication Publication Date Title
US4528960A (en) Fuel injection mode control for multi-cylinder internal combustion engine
JPH0791281A (en) Synchronizing method of successively continuing fuel or ignition distribution in cylinder for four cycle internal combustion engine
JPS58200048A (en) Controller for number of cylinders to which fuel is supplied
US4388907A (en) Single point fuel injected internal combustion engine and method of operating same
CA1131737A (en) Control apparatus for an internal combustion engine
JPH0228702B2 (en)
SE518040C2 (en) Four-stroke diesel engine with catalytic converter
US4608956A (en) Operating apparatus for lean burn internal combustion engine
GB2141840A (en) Fuel injection control method for multi-cylinder internal combustion engines of sequential injection type at acceleration
EP0199181A2 (en) Fuel injection system for an internal combustion engine
JPS5915643A (en) Electronic fuel injector for 4-cycle v-type multiple cylinder internal combustion engine
JPS6114341B2 (en)
JPS56159527A (en) Electronic control type fuel injection controller for internal-combustion engine
US4768488A (en) Fuel injection system for an internal combustion engine
JPS643245A (en) Air/fuel ratio control device for internal combustion engine
JPS6318766Y2 (en)
JPH0577873B2 (en)
US6718253B1 (en) Method for forming an actuating variable
JPS61258950A (en) Fuel injection controller for multi-cylinder internal-combustion engine
JP2563931B2 (en) Fuel injection control device for multi-cylinder engine
JPS6098144A (en) Electronic fuel injector for multi-cylinder internal- combustion engine
JPH05231294A (en) Cylinder discriminating device for internal combustion engine, control device for internal combustion engine using said device, and sensor device
JPS61232343A (en) Electronic control fuel injection device
JPS60116841A (en) Controller of fuel injection for multicylinder internal-combustion engine
JPS60252142A (en) Controlling method of partial operation control type internal-combustion engine