JPS5915610A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS5915610A
JPS5915610A JP12215582A JP12215582A JPS5915610A JP S5915610 A JPS5915610 A JP S5915610A JP 12215582 A JP12215582 A JP 12215582A JP 12215582 A JP12215582 A JP 12215582A JP S5915610 A JPS5915610 A JP S5915610A
Authority
JP
Japan
Prior art keywords
low
steam
turbine
exhaust
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12215582A
Other languages
Japanese (ja)
Other versions
JPS6215730B2 (en
Inventor
Norifumi Amano
天野 至文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12215582A priority Critical patent/JPS5915610A/en
Publication of JPS5915610A publication Critical patent/JPS5915610A/en
Publication of JPS6215730B2 publication Critical patent/JPS6215730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve efficiency of a steam turbine plant, by taking off extraction steam from the side approximate to a steam inlet of a low pressure turbine in a high exhaust vacuum side and the side approximate to a low pressure turbine in a low exhaust vacuum side. CONSTITUTION:Driving steam 5 is allowed to circultively flow in a high pressure turbine 6, reheater 7 and an intermediate pressure turbine 8 successively, and fed to low pressure turbines 4H, 4L. A plural number of feed water heating extraction pipes 10a-10f are provided to a place approximate to a steam inlet J of a high exhaust vacuum side low pressure turbine 4H. Extraction pipes 11a-11d are provided to a place approximate to a steam outlet R of a low exhaust vacuum side low pressre turbine 4L. A less quantity of the extraction pipes 11a-11d than the quantity of the extraction pipes 10a-10f can almost equalize an inflow of steam and a flow speed of exhaust of the low pressure turbines 4H, 4L. While a flow path of steam in a condenser 1 is never blocked. In this way, efficiency of a steam turbine plant can be improved.

Description

【発明の詳細な説明】 本発明はマルチプレッシャコンデンサを備えた多流排気
形蒸気タービンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-flow exhaust steam turbine equipped with a multi-pressure condenser.

蒸気タービンフリントにおいて、復水器用の冷却水量に
制約を受けしかも冷却水温が比較的低い場合は、復水器
内を複数の部屋に仕切り、複数の部屋それぞれの真空度
が互いに異なるマルチプレッシャコンデンサを設けるこ
とが有利とされている。この場合、冷却水の入口側の部
屋は高真空度となり、冷却水の出口側の部屋は低真空度
となる。
In a steam turbine flint, when the amount of cooling water for the condenser is limited and the temperature of the cooling water is relatively low, it is recommended to divide the inside of the condenser into multiple rooms and install a multi-pressure condenser with a different degree of vacuum in each of the multiple rooms. It is considered advantageous to provide this. In this case, the room on the cooling water inlet side has a high degree of vacuum, and the room on the cooling water outlet side has a low degree of vacuum.

従って、マルチプレッシャコンデンサを設ケタ場合、複
数個の低圧タービンの中に、高真空度の復水器に接続さ
れた低圧タービンと、低真空度の復水器に接続された低
圧タービンとの区別が出来るので、双方の低圧タービン
の運転条件のバランスを上手にとらなければ蒸気タービ
ンプラントの効率を高くすることができない。その技術
的問題点について第1図を参照しつつ次に説明する。
Therefore, when installing a multi-pressure condenser, it is necessary to distinguish between low-pressure turbines connected to a high-vacuum condenser and low-pressure turbines connected to a low-vacuum condenser among multiple low-pressure turbines. Therefore, the efficiency of the steam turbine plant cannot be increased unless the operating conditions of both low-pressure turbines are well balanced. The technical problems will be explained next with reference to FIG.

一般に蒸気タービンの排気損失は当該蒸気タービンの効
率に大きい影響を与える。この排気損失と排気流速との
関係は、第1図に示すようにU字形の特性を示す。
Generally, the exhaust loss of a steam turbine has a large effect on the efficiency of the steam turbine. The relationship between the exhaust loss and the exhaust flow rate exhibits a U-shaped characteristic as shown in FIG.

蒸気タービンの排気損失が最小値のM点で運転すること
のみを考えると、排気流速を」二記のM点に対応するV
Mに設定すれば良い。
Considering only that the steam turbine operates at point M, where the exhaust loss is the minimum value, the exhaust flow velocity can be expressed as V corresponding to point M in ``2''.
Just set it to M.

ここで、タービンの排気流速Vは次式によって定まる。Here, the exhaust flow velocity V of the turbine is determined by the following equation.

ただし、G:排気流量 ■=排気比容積 X:排気蒸気の乾き度 A:タービン最終段環帯面積 (1)式から明らかなように排気流速Vを小さくしよう
とするとタービン最終段環帯面積Aを大きくしなければ
ならないが、この人の値は次式によって定まる。
However, G: Exhaust flow rate■ = Exhaust specific volume must be increased, but the value for this person is determined by the following equation.

A=nX+rXDXL         −−−−−・
(2)ただし、n:対象となる排気流路数 D:最終段翼の平均直径 L:最終段翼長 このため、Aの値を大きくしようとするとタービンが大
形大重量となって設備コストや運転コストの増加要因と
なる。
A=nX+rXDXL ------・
(2) However, n: Number of target exhaust flow paths D: Average diameter of the final stage blade L: Length of the final stage blade Therefore, if you try to increase the value of A, the turbine will become larger and heavier, which will increase the equipment cost. This causes an increase in operating costs.

その」二、上記のLの値(最終段翼長)は、例えば26
インチ、30インチ、又は33.5インチなどの如くメ
ーカーで社内規格化されていて、この他の寸法のものを
設計製作しようとすると非常に多くの管理費を要して不
経済である。
Second, the above value of L (last stage blade length) is, for example, 26
inch, 30 inch, or 33.5 inch, which are internally standardized by manufacturers, and attempting to design and manufacture products of other dimensions would require a large amount of management costs and be uneconomical.

上述の諸事情、特に第1図の特性カーブがV形でなくU
形であることを勘案し、実際にはタービン排気損失を最
小ならしめる流速VMよりも若干大きい流速VNを選択
してタービンの小形化との妥協点を見出すことが最も経
済的である。
Due to the above-mentioned circumstances, especially the characteristic curve in Figure 1 is not V-shaped but U-shaped.
Considering the shape of the turbine, it is actually most economical to select a flow velocity VN that is slightly larger than the flow velocity VM that minimizes the turbine exhaust loss, thereby finding a compromise between making the turbine smaller.

以上のような排気流速と排気損失との関係を考慮に入れ
て、前述のマルチプレッシャコンデンサと組み合わせて
用いるべき低圧タービンの特性について検討すると欠配
のごとくである。
Taking into consideration the relationship between exhaust flow velocity and exhaust loss as described above, it seems that the characteristics of the low pressure turbine that should be used in combination with the multipressure condenser described above are lacking.

第2図において、1はマルチプレッシャコンデンサで、
その内部は隔壁2によって2室に区画しである。3は冷
却水管、Wは冷却水流方向を示す。
In Figure 2, 1 is a multipressure capacitor,
Its interior is divided into two chambers by a partition wall 2. 3 indicates a cooling water pipe, and W indicates the cooling water flow direction.

従って、冷却水の上流側に当たるIHが高真空後・氷室
であシ、下流側のILが低真空復水室である。
Therefore, the IH on the upstream side of the cooling water is a high vacuum post-ice chamber, and the IL on the downstream side is a low vacuum condensation chamber.

4Hは高排気真空側の低圧タービン、4Lは低排気真空
側の低圧タービンである。
4H is a low pressure turbine on the high exhaust vacuum side, and 4L is a low pressure turbine on the low exhaust vacuum side.

駆動蒸気5は高圧タービン6、再熱器7.中圧タービン
8を順次に流通し、クロスオーバー管9を介して低圧タ
ービン4H,4Lに供給される。
The driving steam 5 is a high pressure turbine 6, a reheater 7. It sequentially flows through the intermediate pressure turbine 8 and is supplied to the low pressure turbines 4H and 4L via the crossover pipe 9.

低圧タービン4H及び同4Lはそれぞれ高真空復水室I
H及び低真空復水室ILに対して複流形に構成され、合
計で4流排気形になっている。
Low-pressure turbines 4H and 4L each have a high-vacuum condensate chamber I.
H and low vacuum condensate chamber IL are configured in a double flow type, making a total of four flow type exhaust types.

検討の便宜上、高真空復水室IH内の圧力が0.06K
g/cm’  (絶対圧力)、低真空復水室IL内の圧
力が0.08に9/Crn”  (絶対圧力)であると
する。
For convenience of study, the pressure inside the high vacuum condensate chamber IH is 0.06K.
g/cm' (absolute pressure), and the pressure in the low vacuum condensate chamber IL is assumed to be 0.08 to 9/Crn'' (absolute pressure).

この場合、高真空復水室IHに流入する蒸気の比容M 
v o = 24.2rn”7Kg、低真空復水室IL
に流入する蒸気の比容積V t、 = 18.4 m3
//Kyである。
In this case, the specific volume M of steam flowing into the high vacuum condensation chamber IH
v o = 24.2rn”7Kg, low vacuum condensate chamber IL
Specific volume of steam flowing into V t, = 18.4 m3
//Ky.

従って、双方の低圧タービン4H,4Lの排気流量Gが
等しければ、両低圧タービンの排気流速の比Vlll/
VLは約1.3 / 1となる。
Therefore, if the exhaust flow rates G of both low-pressure turbines 4H and 4L are equal, the ratio of the exhaust flow speeds of both low-pressure turbines Vllll/
VL is approximately 1.3/1.

このように、二つの低圧タービンの排気流速に大きい差
を生ずるという事を第1図の排気損失カーブに当てはめ
て検討すると、一方の排気流速を適正流速(VM乃至V
N )に設定すると、他方の排気流速は過小流速V++
、又は過大流速V?になって大きい排気損失を生じるこ
とが理解される。
In this way, if we apply the fact that there is a large difference in the exhaust flow speeds of the two low-pressure turbines to the exhaust loss curve in Fig.
N), the other exhaust flow velocity is underflow velocity V++
, or excessive flow velocity V? It is understood that this results in a large exhaust loss.

従来技術によって上記の不具合を解消し、双方の低圧タ
ービン4H,4Lの排気流速をほぼ等しくするには、(
イ)高排気真空側低圧タービン4Hの蒸気流入量を低排
気真空側低圧タービン4Lの蒸気流入量の1/1.3と
する方法、及び、(ロ)低圧タービンからの油気を全部
高排気真空側の低圧タービン4Hに集中して設ける方法
が考えられる。
In order to eliminate the above-mentioned problems using the conventional technology and make the exhaust flow speeds of both low-pressure turbines 4H and 4L almost equal, (
b) A method of setting the steam inflow rate of the high exhaust vacuum side low pressure turbine 4H to 1/1.3 of the steam inflow rate of the low exhaust vacuum side low pressure turbine 4L, and (b) All oil from the low pressure turbine is highly exhausted. A possible method is to provide them in a concentrated manner in the low pressure turbine 4H on the vacuum side.

しかし、上記(イ)の如く二つの低圧タービンの蒸気流
入量に差を設けようとすると、低圧タービンを特殊仕様
にしないと双方の低圧タービン内において段落熱落差の
過小、過大を生じてタービン効率を下げる。又、低圧タ
ービンを特殊仕様にすると著しく製造コストが上昇する
。一方、前記(ロ)の如く高排気真空側の低圧タービン
4Hに抽気管を集中して設置すると高真空復水室IH内
の蒸気流路を塞いでタービン効率を低下させる。
However, if you try to create a difference in the amount of steam inflow between the two low-pressure turbines as in (a) above, unless the low-pressure turbines are made into special specifications, the stage heat drop will be too small or too large in both low-pressure turbines, resulting in turbine efficiency. lower. Furthermore, if the low-pressure turbine is made to have special specifications, manufacturing costs will increase significantly. On the other hand, if the bleed pipes are installed in a concentrated manner in the low pressure turbine 4H on the high exhaust vacuum side as in (b) above, the steam flow path in the high vacuum condensation chamber IH will be blocked and the turbine efficiency will be reduced.

本発明は上述の事情に鑑みて為され、マルチプレッシャ
コンデンサを備えた蒸気タービングランドの多流排気形
の蒸気タービンにおいて、複数個の低圧タービンの蒸気
流入量をほぼ等しからしめて、しかも排気流速をほぼ等
しくすることができ、その上復水室内の蒸気流路を抽気
管により偏って塞いでしまう虞れの無い蒸気タービンを
提供することを・1」的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a multi-flow exhaust type steam turbine with a steam turbine gland equipped with a multi-pressure condenser, in which the steam inflow amount of a plurality of low-pressure turbines is made approximately equal, and the exhaust flow rate is It is an object of the present invention to provide a steam turbine in which the steam flow path in the condensing chamber can be made almost equal, and there is no risk of the steam flow path in the condensing chamber being unevenly blocked by the bleed pipe.

FiiJ S己の説明から明らかなように、複数個の低
圧タービンの排気流速をほぼ等しくすることができれば
、第1図について説明したように排気損失を減少せしめ
る排気流速の設定が可能とな見低圧タービンの蒸気流入
量をはは揃えることができれば特殊仕様の低圧タービン
を用いないで段落熱落差を適正に設定することができ、
抽気管によって蒸気流路を偏って塞ぐ虞れが無ければ蒸
気流路の狭隘に因る効率低下を生じる虞れが無いので蒸
気タービンプラント全体としての効率向上に貢献すると
ころが大きい。
As is clear from FiiJS's explanation, if the exhaust flow speeds of multiple low-pressure turbines can be made approximately equal, it is possible to set the exhaust flow speed to reduce exhaust loss as explained with reference to Figure 1. If the amount of steam inflow into the turbines can be made uniform, it is possible to set the stage heat drop appropriately without using a specially designed low-pressure turbine.
If there is no risk of unevenly blocking the steam flow path with the bleed pipe, there is no risk of a decrease in efficiency due to the narrowness of the steam flow path, which greatly contributes to improving the efficiency of the steam turbine plant as a whole.

上記の目的を達成するため、本発明の蒸気タービンは、
マルチプレッシャコンデンサを備えた蒸気タービンプラ
ントにおいて、高排気真空側の低圧タービンの蒸気入口
に近い側の複数個所から給水加熱用の抽気をとるととも
に、低排気真空側の低圧タービンの蒸気出口に近い側か
ら抽気をとシ、かつ、上記の低排気真空側の低圧タービ
ンの抽気個数を前記高排気真空側の低圧タービンの油気
個数よりも少なくしたことを特徴とする。
In order to achieve the above object, the steam turbine of the present invention includes:
In a steam turbine plant equipped with a multi-pressure condenser, air is extracted for heating feed water from multiple locations on the side close to the steam inlet of the low-pressure turbine on the high exhaust vacuum side, and air is extracted for heating the feed water from multiple locations on the side close to the steam outlet of the low-pressure turbine on the low exhaust vacuum side. The present invention is characterized in that the number of air bleeds in the low pressure turbine on the low exhaust vacuum side is smaller than the number of oil air in the low pressure turbine on the high exhaust vacuum side.

次に、本発明の一実施例を第3図について説明する。こ
の実施例は第2図に示しだ蒸気タービンに本発明を適用
して改良したもので、第2図と同一の図面参照番号を附
したマルチプレッシャコンデンサ1、高真空復水器IH
,低真空復水器IL、隔壁2、冷却水管3、高圧タービ
ン6、再熱器7、中圧タービン8、及びクロスオーバー
管9は従来形の蒸気ター ビン(第2図)におけると同
様の構成部材である。
Next, one embodiment of the present invention will be described with reference to FIG. This embodiment is an improved version of the steam turbine shown in FIG. 2 by applying the present invention. The multipressure condenser 1, high vacuum condenser
, low vacuum condenser IL, bulkhead 2, cooling water pipe 3, high pressure turbine 6, reheater 7, intermediate pressure turbine 8, and crossover pipe 9 are the same as in the conventional steam turbine (Fig. 2). It is a component.

本実施例における高排気真空側低圧タービン4Hおよび
低排気真空側低圧タービン4L幻、それぞれ従来装置(
第2図)における高排気真空側低圧タービン4Hおよび
低排気真空側低圧タービン4Lと類似の構成部材である
が、次に述べるとと〈抽気管の設置状態が異なる。
In this embodiment, the high exhaust vacuum side low pressure turbine 4H and the low exhaust vacuum side low pressure turbine 4L are respectively conventional devices (
The components are similar to the high exhaust vacuum side low pressure turbine 4H and the low exhaust vacuum side low pressure turbine 4L in FIG. 2), but as described below, the installation state of the bleed pipe is different.

第3図の実施例において、Jは高排気真空側低圧タービ
ン4Hの蒸気入口、Kは同蒸気出口である。Qは低排気
真空側低圧タービン4Lの蒸気人口、Rは同蒸気出口で
ある。
In the embodiment shown in FIG. 3, J is the steam inlet of the high exhaust vacuum side low pressure turbine 4H, and K is the steam outlet. Q is the steam population of the low pressure turbine 4L on the low exhaust vacuum side, and R is the steam outlet.

高排気真空側低圧タービン4 Hの蒸気人口Jに近い個
所に複数個の抽気管(本例では6本)の抽気管10a、
10b・・・10fを設ける。
A plurality of air bleed pipes 10a (six in this example) are located near the steam population J of the high exhaust vacuum side low pressure turbine 4H,
10b...10f are provided.

低排気真空側低圧タービン4Lの蒸気出口Rに近い個所
に抽気管11a・・・lidを設ける。この低排気真空
側低圧タービン4Lに設ける抽気管の個数は、前記の高
排気真空側低圧タービン4Hに設けた抽気管の個数よシ
も少なくする。
Bleed pipes 11a...lid are provided near the steam outlet R of the low exhaust vacuum side low pressure turbine 4L. The number of air bleed pipes provided in this low exhaust vacuum side low pressure turbine 4L is also smaller than the number of air bleed pipes provided in the above-mentioned high exhaust vacuum side low pressure turbine 4H.

上記の各抽気管による抽気蒸気は給水加熱に使用する。The steam extracted from each of the above-mentioned bleed pipes is used to heat the feed water.

本実側例における主要諸元は次の如くである。The main specifications in this actual example are as follows.

クロスオーバー管9に流入する蒸気流量:100トン/
時 低圧タービン4H及び同4Lにそれぞれ流入する蒸気流
量500トン/時 抽気管10a及び同10bの抽気圧カニ5.4Kq/7
m” 抽気管10c及び同10dの抽気圧カニ2.7にり/♂ 抽気管10e及び同10fの抽気圧カニ1.2Kg/♂ 抽気管118〜同11dの抽気圧カニ 0.5 Kq 
/cyn’抽気管10a及び同10bの抽気流量=50
トン/時 抽気管10c及び同10dの抽気流量:5oトン/時 抽気管10e及び同10eの抽気流i:501−ン/時 これによシ、高排気真空側低圧タービン4Hの排気流量
は500−(50X3)=350) 77時となり、低
排気真空側低圧タービン4Lの排気流量は500−50
=450)77時となる。
Steam flow rate flowing into crossover pipe 9: 100 tons/
The steam flow rate flowing into the low pressure turbines 4H and 4L is 500 tons/hour, and the bleed pressure in the bleed pipes 10a and 10b is 5.4 Kq/7.
m" The bleed pressure of the bleed pipes 10c and 10d is 2.7 kg/♂ The bleed pressure of the bleed pipes 10e and 10f is 1.2 Kg/♂ The bleed pressure of the bleed pipes 118 to 11d is 0.5 Kq
/cyn' Bleeding flow rate of air bleed pipes 10a and 10b = 50
Bleed air flow rate in bleed pipes 10c and 10d: 5 tons/h Bleed air flow i in bleed pipes 10e and 10e: 501-tons/h Accordingly, the exhaust flow rate of the low pressure turbine 4H on the high exhaust vacuum side is 500 tons/h. -(50X3)=350) At 77 o'clock, the exhaust flow rate of the low pressure turbine 4L on the low exhaust vacuum side is 500-50
=450) 77 o'clock.

先に述べたように高真空側の蒸気の比容積V I+は2
4.2m” 7Kg、低真空側の蒸気の比容積VLは1
8.4m”7Kgであるから、これらの数値を前掲の(
1)式に代入して高排気真空側低圧タービン4Hの排気
流速VR,及び低排気真空側低圧タービン4Lの排気流
速VLを算出すると、 VR=350X24.2X0.90 /A=7623/
AVL=450X18.4X0.91 /A=7535
/Aとなり、VHとVLとがほぼ等しい。
As mentioned earlier, the specific volume of steam V I+ on the high vacuum side is 2
4.2m” 7Kg, specific volume of steam on the low vacuum side VL is 1
Since it is 8.4m”7Kg, we can convert these values into the above (
1) Substituting into the equation to calculate the exhaust flow velocity VR of the high exhaust vacuum side low pressure turbine 4H and the exhaust flow velocity VL of the low exhaust vacuum side low pressure turbine 4L, VR=350X24.2X0.90 /A=7623/
AVL=450X18.4X0.91/A=7535
/A, and VH and VL are almost equal.

従って、これらVH,VLO値を第1図に示したVNの
値にするように最終段環帯面積Aを設定することでマル
チブレラジャコンデンサを用いた蒸気タービンプラント
の効果を最大限にあげることができる。
Therefore, the effect of a steam turbine plant using a multi-brella condenser can be maximized by setting the final stage annulus area A so that these VH and VLO values become the VN values shown in Figure 1. I can do it.

一方、低圧タービン4L、及び同4Hの排気室内に設け
る抽気管の径について、配管内流速を50m/秒とする
ように設定すると次のようになる。
On the other hand, when the diameters of the bleed pipes provided in the exhaust chambers of the low-pressure turbines 4L and 4H are set so that the flow velocity in the pipes is 50 m/sec, the following results are obtained.

抽気管11a〜11d:直径536mmX4本抽気管1
0a及び10b:直径293mmX2本抽気管10C及
び10d:直径382聴×2本抽気管10e及び10f
:直径527 ran X 2本本実施例のごとく低排
気真空側低圧タービン4 Lの蒸気出口几に近い付近、
即ち該タービンの段落中の低圧段から抽気するとともに
、高排気真空側低圧タービン4Hの蒸気人口Jに近い付
近、即ち該タービンの段落中の高圧段から抽気し、かつ
、高排気真空側低圧タービン4Hからの抽気個数よりも
低排気真空側低圧タービン4Lからの抽気個数を少なく
すると、双方の低圧タービン4 H。
Air bleed pipes 11a to 11d: Diameter 536 mm x 4 air bleed pipes 1
0a and 10b: 293 mm diameter x 2 bleed pipes 10C and 10d: 382 mm diameter x 2 bleed pipes 10e and 10f
: Diameter 527 ran
That is, air is extracted from the low pressure stage in the stage of the turbine, and air is extracted from the high pressure stage near the steam population J of the high exhaust vacuum side low pressure turbine 4H, that is, the high pressure stage in the stage of the turbine, and the air is extracted from the high pressure stage in the high exhaust vacuum side low pressure turbine 4H. If the number of air extracted from the low exhaust vacuum side low pressure turbine 4L is made smaller than the number of air extracted from the low pressure turbine 4H, both low pressure turbines 4H.

4Lの抽気排管の体積をほぼ等しくすることができ、蒸
気流・路を偏って塞ぐことが防止される。
The volumes of the 4L bleed exhaust pipes can be made almost equal, and it is possible to prevent the steam flow/path from being unevenly blocked.

本実施例における抽気管の断面積の小計を試算して比較
すると(ただし、管の肉厚を無視した概算)、高真空復
水室IH内の抽気管断面積:約800cm” 、低真空
復水室IL内の抽気管断面積:約90叫−となp1両者
はぼ等しいので、高排気真空側低圧タービン4Hと低排
気真空側低圧タービン4Lとの効率を同等に押さえるこ
とができる。
A trial calculation and comparison of the subtotal cross-sectional area of the bleed pipe in this example (approximate estimate ignoring the wall thickness of the pipe) shows that the cross-sectional area of the bleed pipe in the high vacuum condensate chamber IH: approximately 800 cm, and the low vacuum condensate The cross-sectional area of the air bleed pipe in the water chamber IL is about 90 mm and p1 are approximately equal, so the efficiency of the high exhaust vacuum side low pressure turbine 4H and the low exhaust vacuum side low pressure turbine 4L can be kept to the same level.

上述の実施例は2室に区分したマルチプレッシャコンデ
ンサに2個の低圧タービンを設置した場合について説明
しだが、本発明は3室若しくはそれ以上に区分したマル
チプレッシャコンデンサに3個若しくはそれ以上の低圧
タービンを設置した蒸気タービンプラントに適用するこ
ともでき、上側と同様の効果が得られる。そして、複数
個の低圧タービンにそれぞれ独立した油気系統を設ける
ため、それぞれの低圧タービン相互の間で段落圧力を規
定する必要が無いので、タービン段落圧力の制約による
タービン内部効率低下を生じることが無い。
The above embodiment describes the case where two low-pressure turbines are installed in a multi-pressure condenser divided into two chambers, but the present invention provides a case in which three or more low-pressure turbines are installed in a multi-pressure condenser divided into three or more chambers. It can also be applied to a steam turbine plant with a turbine installed, and the same effect as above can be obtained. Since independent oil and air systems are provided for each of the multiple low-pressure turbines, there is no need to specify the stage pressure between each low-pressure turbine, so there is no possibility of a reduction in turbine internal efficiency due to constraints on the turbine stage pressure. None.

以上詳述したように、本発明は、マルチプレッシャコン
デンサを備えた蒸気タービンプラントにおいて、高排気
真空側の低圧タービンの蒸気入口に近い側の複数個所か
ら給水加熱用の抽気をとるとともに、低排気真空側の低
圧タービンの蒸気出口の近い側から抽気をとり、かつ、
上記の低排気真空側の低圧タービンの抽気個数を前記高
排気真空側の低圧タービンの油気個数よシも少なくする
ことによシ、複数個の低圧タービンの蒸気流入量及び排
気流速をほぼ等しくすることができ、その上、復水器内
の蒸気流路を抽気管により偏って塞ぐ虞れが無いので蒸
気タービンプラントの効率を向上させることができる。
As described in detail above, the present invention provides a steam turbine plant equipped with a multi-pressure condenser, in which extraction air for heating feed water is taken from multiple locations on the side close to the steam inlet of a low-pressure turbine on the high-exhaust vacuum side, and Extract air from the side near the steam outlet of the low-pressure turbine on the vacuum side, and
By making the number of air bleeds in the low pressure turbine on the low exhaust vacuum side smaller than the number of oil air in the low pressure turbine on the high exhaust vacuum side, the steam inflow amount and exhaust flow velocity of the plurality of low pressure turbines can be made almost equal. Moreover, since there is no risk of the steam flow path in the condenser being unevenly blocked by the bleed pipe, the efficiency of the steam turbine plant can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は排気流速と損気損失との関係を示す図表、第2
図はマルチプレツシャコンデンサヲ備エタ蒸気タービン
プラントの概要的な断面図、第3図は本発明の蒸気ター
ビンの一実施例の概要的な断面図である。 1・・・マルチプレッシャコンデンサ、IH・・・高真
空復水室、IL・・・低真空復水室、2・・・隔壁、3
・・・冷却水管、4H・・・高排気真空側低圧タービン
、4 L・・・低排気真空側低圧タービン、5・・・駆
動蒸気、6・・・高圧タービン、7・・・再熱器、8・
・・中圧タービン、9・・・クロスオーバー管、10a
 、10b、10c。 10d、10e、10f・・・高排気真空低圧タービン
に設けた抽気管、lla、llb、llc。 lid・・・低排気真空低圧タービンに設けた抽気管。 代理人 弁理士 秋本正実
Figure 1 is a chart showing the relationship between exhaust flow velocity and loss of air;
The figure is a schematic sectional view of an emitter steam turbine plant equipped with a multipressure condenser, and FIG. 3 is a schematic sectional view of an embodiment of the steam turbine of the present invention. 1...Multi-pressure capacitor, IH...High vacuum condensate chamber, IL...Low vacuum condensate chamber, 2...Partition wall, 3
... Cooling water pipe, 4H ... High exhaust vacuum side low pressure turbine, 4 L ... Low exhaust vacuum side low pressure turbine, 5 ... Drive steam, 6 ... High pressure turbine, 7 ... Reheater , 8・
...Intermediate pressure turbine, 9...Crossover pipe, 10a
, 10b, 10c. 10d, 10e, 10f... Bleed pipes provided in the high exhaust vacuum low pressure turbine, lla, llb, llc. lid...Air bleed pipe installed in a low exhaust vacuum low pressure turbine. Agent Patent Attorney Masami Akimoto

Claims (1)

【特許請求の範囲】[Claims] 1、 マルチプレッシャコンデンサを備えだ蒸気タービ
ンプラントにおいて、高排気真空側の低圧タービンの蒸
気入口に近い側の複数個所から給水加熱用の抽気をとる
とともに、低排気真空側の低圧タービンの蒸気出口に近
い側から抽気をとり、かつ、上記の低排気真空側の低圧
タービンの抽気個数を前記高排気真空側の低圧タービン
の油気個数よりも少なくしたことを特徴とする蒸気ター
ビン。
1. In a steam turbine plant equipped with a multi-pressure condenser, the extraction air for heating the feed water is taken from multiple locations near the steam inlet of the low-pressure turbine on the high exhaust vacuum side, and is also extracted from the steam outlet of the low-pressure turbine on the low exhaust vacuum side. A steam turbine characterized in that air is extracted from a nearby side, and the number of air bleeds in the low pressure turbine on the low exhaust vacuum side is smaller than the number of oil air in the low pressure turbine on the high exhaust vacuum side.
JP12215582A 1982-07-15 1982-07-15 Steam turbine Granted JPS5915610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12215582A JPS5915610A (en) 1982-07-15 1982-07-15 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12215582A JPS5915610A (en) 1982-07-15 1982-07-15 Steam turbine

Publications (2)

Publication Number Publication Date
JPS5915610A true JPS5915610A (en) 1984-01-26
JPS6215730B2 JPS6215730B2 (en) 1987-04-09

Family

ID=14828958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12215582A Granted JPS5915610A (en) 1982-07-15 1982-07-15 Steam turbine

Country Status (1)

Country Link
JP (1) JPS5915610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815173A (en) * 1986-09-29 1989-03-28 Yoshida Kogyo K. K. Open-faced button
JP2007031008A (en) * 2005-07-22 2007-02-08 Taisei Corp Production system utilizing stacker crane
JP2010265892A (en) * 2009-05-12 2010-11-25 General Electric Co <Ge> Flow lateralization of operating fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815173A (en) * 1986-09-29 1989-03-28 Yoshida Kogyo K. K. Open-faced button
JP2007031008A (en) * 2005-07-22 2007-02-08 Taisei Corp Production system utilizing stacker crane
JP2010265892A (en) * 2009-05-12 2010-11-25 General Electric Co <Ge> Flow lateralization of operating fluid
EP2423456A3 (en) * 2009-05-12 2017-10-11 General Electric Company Biasing working fluid flow

Also Published As

Publication number Publication date
JPS6215730B2 (en) 1987-04-09

Similar Documents

Publication Publication Date Title
CN100491866C (en) Multistage-cascaded compression type heat pump set under large temperature difference
CN100451522C (en) Liquid separating air condenser
CN100491871C (en) Multi-stage cooling middle liquid-separation air condenser
US4214452A (en) Exhaust device for a condensable-fluid axial-flow turbine
US3146177A (en) Multi-stage flash evaporator with heat recovery
CA2062444A1 (en) Turbine exhaust arrangement for improved efficiency
JPS592836B2 (en) Direct contact multi-stage pressure condensing equipment
JPS5915610A (en) Steam turbine
US4165783A (en) Heat exchanger for two vapor media
KR20070065874A (en) Partial load enabled falling film evaporator and method for operating a partial load
ZA200601456B (en) Horizontally constructed continuous steam generator and method for the operation thereof
US3933008A (en) Multistage heat exchanger
WO2022174741A1 (en) Steam heat exchanger
SE8703426L (en) CENTRIFUGAL PUMP WHEEL AND SET ON PUMPING A FLUID CONTAINING GAS, MEANS OF A CENTRIFUGAL PUMP
JPS6397806A (en) Drain discharge device for steam turbine
US2026233A (en) Refrigerating apparatus
JPS6172806A (en) Method of zoning condenser for double-flow low-pressure turbine
US1597415A (en) Surface condenser
JPH01106907A (en) Steam turbine
JPS60102Y2 (en) Wet steam water droplet separator
JPS61138885A (en) Geo-thermal turbine plant
JPS5610692A (en) Heat exchanger
JPS60238650A (en) Heat pump
SU687264A1 (en) Vaneless diffuser for centrifugal compressor
JPS60195305A (en) Casing structure for steam turbine