JPS591549A - Vulcanized rubber - Google Patents

Vulcanized rubber

Info

Publication number
JPS591549A
JPS591549A JP10978482A JP10978482A JPS591549A JP S591549 A JPS591549 A JP S591549A JP 10978482 A JP10978482 A JP 10978482A JP 10978482 A JP10978482 A JP 10978482A JP S591549 A JPS591549 A JP S591549A
Authority
JP
Japan
Prior art keywords
rubber
vulcanized rubber
weight
vulcanized
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10978482A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirakawa
平川 弘
Tomohiro Awane
朝浩 阿波根
Masayoshi Oo
雅義 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP10978482A priority Critical patent/JPS591549A/en
Publication of JPS591549A publication Critical patent/JPS591549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To reduce dissipation factor without lowering dynamic storage elastic modulus, by swelling a vulcanized rubber contg. reinforcing carbon black and exhibiting high dynamic hysteresis loss with an extender oil mainly composed of low-molecular hydrocarbon. CONSTITUTION:30-70pts.wt. reinforcing carbon black is blended with 100pts.wt. raw rubber such as natural rubber or polyisoprene rubber. Then the rubber is vulcanized and impregnated with an extender oil mainly composed of low- molecular hydrocarbon to swell the rubber at a degree of swelling of 2-10wt%, thus obtaining the desired vulcanized rubber. By swelling the vulcanized rubber with the extender oil, neighboring carbon aggregates in the rubber are slightly separated from one another, whereby dynamic hysteresis loss is reduced. Hence, when used for tire tread rubber part, the rolling resistance of tire can be lowered.

Description

【発明の詳細な説明】 本発明は加硫ゴムに関し、詳しくは補強性カーボンブラ
ックを含有する加硫ゴムを伸展油で膨潤させることによ
って、動的貯蔵弾性率、すなわち加硫ゴムの変形特性を
大幅には低下することなく、損失係数を大幅に低減させ
た加硫ゴムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to vulcanized rubber, and more specifically, the dynamic storage modulus, that is, the deformation characteristics of vulcanized rubber, can be improved by swelling vulcanized rubber containing reinforcing carbon black with extension oil. This invention relates to a vulcanized rubber that has a significantly reduced loss factor without significantly decreasing it.

近年、空気入りタイヤのトレッド部分に使用する加硫ゴ
ムの動的なヒステリシス損失を低減することが、低転動
抵抗タイヤを開発するという要求に関連して要請されて
いる。
In recent years, there has been a need to reduce dynamic hysteresis losses in vulcanized rubber used in the tread portion of pneumatic tires in conjunction with the desire to develop low rolling resistance tires.

このトレッド部の加像ゴムは耐摩耗性、運動性能などと
関連しているために補強性の強いカーボンブラックを多
量(加硫ゴムに対して15〜30vot%)に充填剤と
して使用しているので動的な状態におけるトレッド部の
加硫ゴムからのエネルギー損失が太きく、転勤抵抗を低
減できないという問題があった。
The vulcanized rubber of this tread part is related to wear resistance, exercise performance, etc., so a large amount of highly reinforcing carbon black (15 to 30 vot% of the vulcanized rubber) is used as a filler. Therefore, there is a problem in that the energy loss from the vulcanized rubber of the tread portion is large during dynamic conditions, and rolling resistance cannot be reduced.

最近、更に転勤抵抗を大幅に低減したタイヤが強く要求
されるために、補強性カーボンブラックの量を減じてこ
の要求に応じつつあるが、未だ充分な低い転勤抵抗性能
を得ているわけでなく、またこの場合には加硫ゴムの補
強性の点にも問題が生じる。
Recently, there has been a strong demand for tires with significantly reduced rolling resistance, and efforts are being made to reduce the amount of reinforcing carbon black to meet this demand, but tires still do not have sufficiently low rolling resistance performance. In this case, there also arises a problem in the reinforcing properties of the vulcanized rubber.

また、転勤抵抗を大幅に低減したとしても他の特性、例
えば運動性能等を損う場合には好ましくない。
Further, even if transfer resistance is significantly reduced, it is not preferable if other characteristics such as exercise performance are impaired.

なお、転勤抵抗に対応する加硫ゴムのエネルギー損失特
性は周波数としては10〜20 Hz付近、雰囲気温度
としては30〜60℃間で、動的な歪値が低い程、転勤
抵抗は低くなる。また、運動性能、特に操縦安定性の評
価は、加硫ゴムの貯蔵弾性率(G′)で行なわれ、貯蔵
弾性率が、動的歪が5チのところで40%以内の低下率
であるならば操縦安定性が損われることがない。
Note that the energy loss characteristic of vulcanized rubber corresponding to transfer resistance has a frequency of around 10 to 20 Hz and an ambient temperature of 30 to 60° C., and the lower the dynamic strain value, the lower the transfer resistance. In addition, the evaluation of maneuverability, especially steering stability, is performed using the storage modulus (G') of vulcanized rubber, and if the storage modulus decreases within 40% at a dynamic strain of 5 inches, then Otherwise, the steering stability will not be impaired.

本発明は補強性カーボンブラックを含有する動的ヒステ
リシス損失が高い加硫ゴムの貯蔵弾性率を大幅には減す
ることなく、損失係数を大幅に低減することを目的とし
、タイヤトレンド部に応用することによってタイヤの転
勤抵抗の低減に大幅に寄与する。
The present invention aims to significantly reduce the loss coefficient of vulcanized rubber containing reinforcing carbon black and having high dynamic hysteresis loss without significantly reducing the storage modulus, and is applied to tire trend sections. This greatly contributes to reducing the rolling resistance of tires.

本発明者らは、トレッド部の加硫ゴムに要求される種々
の性能を大幅に変化させずに動的なヒステリシス損失を
低減させるべく研究を進め、特に補強性の強いカーボン
ブラックを含有する加硫ゴムのヒステリシス損失が発生
する機構について検討を加えた。
The present inventors have conducted research to reduce dynamic hysteresis loss without significantly changing the various performances required of the vulcanized rubber in the tread, and have developed a vulcanized rubber containing carbon black, which has particularly strong reinforcing properties. We investigated the mechanism by which hysteresis loss occurs in sulfur rubber.

従来、種々の文献などに示されているこのヒステリシス
損失の発生する機構としては、加硫ゴムf!c構成して
いる主要な配合剤である原料ゴムに起因するヒステリシ
ス損失とカーボンブラックに起因するヒステリシス損失
とが考えられていたが、本発明者らが史に詳細にこの発
現する機構について検討し、次に示す新しい機構が実用
的なトレッド部の加硫ゴムにおいては主要な要因である
ことがわかった。すなわち補強性の強いカーボンブラッ
クを含む加硫ゴムに動的歪条件1〜10%周波数条件1
〜3011z付近の動的変形を力えた場合の動的ヒステ
リシス損失は主としてカーボンブラック粒子が集合して
形成されているカーボン凝集体間の固体摩擦によりエネ
ルギー消費が起こり、こ扛が原因でヒステリシス損失が
生じることが明らかになった。また、たとえカーボンブ
ラックの含有量を実用範囲内で低減しても、カーボン凝
集体はミクロにみると互いに隣接した状態に分散してい
るところがあり、通常ゴム業界で使用している混合手段
では完全には均一に分散させることはでき力い。このよ
うな理由からカーボン凝集体間の相互運動による固体摩
擦、これによるヒステリシス損失を低減するのは困難で
あった。捷た次にどの程度にカーボン凝集体間の距離を
離せばこれに起因するヒステリシス損失が低減されるか
と研究を進めカーボン凝集体の大きさく平均値で300
0A前後)とくらべると非常にわずかにカーボン凝集体
間の距離を離したならば、動的ヒステリシネ損失を低減
されるであろうと推論されるデータが得られた。人お、
固体摩擦は動的な粘弾性の動的な歪依存性を測定するこ
とにより評価できる(ラバーケミストリーアンドテクノ
ロジー、51(3)第437〜52ろ頁(1978))
The mechanism by which this hysteresis loss occurs, which has been shown in various literature, is that vulcanized rubber f! The hysteresis loss was thought to be caused by the raw rubber, which is the main compounding agent, and the hysteresis loss caused by carbon black, but the present inventors have investigated the mechanism by which this occurs in detail. It was found that the following new mechanism is the main factor in practical vulcanized rubber for tread parts. In other words, dynamic strain condition 1 to 10% frequency condition 1 is applied to vulcanized rubber containing carbon black, which has strong reinforcing properties.
Dynamic hysteresis loss when applying dynamic deformation around ~3011z is mainly caused by energy consumption due to solid friction between carbon aggregates formed by aggregation of carbon black particles, and this friction causes hysteresis loss. It has become clear that this will occur. Furthermore, even if the carbon black content is reduced within a practical range, carbon aggregates may still be dispersed adjacent to each other on a microscopic scale, and mixing methods normally used in the rubber industry cannot completely remove the carbon aggregates. It is difficult to disperse it evenly. For these reasons, it has been difficult to reduce solid friction caused by mutual movement between carbon aggregates and hysteresis loss caused by this. After shredding, we conducted research on how far the distance between carbon aggregates should be to reduce the hysteresis loss caused by this, and found that the average size of carbon aggregates was 300.
Data was obtained inferring that dynamic hystericine loss would be reduced if the distance between the carbon aggregates was made very small compared to the case of 0A). People,
Solid friction can be evaluated by measuring the dynamic strain dependence of dynamic viscoelasticity (Rubber Chemistry and Technology, 51(3), pp. 437-52 (1978))
.

本発明者らは以上の見地に基づき、加硫ゴムを伸展油で
膨潤させることによって加硫ゴム中の隣接するカーボン
凝集体間がわずかに離れ、このことにより加硫ゴムが前
記目的を達成することを見出し本発明に到達した。
Based on the above viewpoint, the present inventors swelled the vulcanized rubber with extension oil, thereby causing the adjacent carbon aggregates in the vulcanized rubber to be slightly separated, thereby allowing the vulcanized rubber to achieve the above objective. This discovery led to the present invention.

すなわち本発明の要旨は、補強性カーボンブラックを原
料ゴム100重量部に対して50〜70重量部含有する
加硫ゴムを、低分子量の炭化水素を主成分とする伸展油
で2〜10重量係膨潤させたことを特徴とする加硫ゴム
にある。
That is, the gist of the present invention is that vulcanized rubber containing 50 to 70 parts by weight of reinforcing carbon black per 100 parts by weight of raw rubber is treated with an extender oil containing 2 to 10 parts by weight of reinforcing carbon black based on 100 parts by weight of raw rubber. Vulcanized rubber characterized by being swollen.

本発明で加硫ゴムを膨潤させる伸展油とは、一般にゴム
組成物に使用する低分子の炭化水素を主成分とする伸展
油がすべて含まれ、アロマ系、パラフィン系、ナフテン
系のいずれであっても構わない。加硫ゴムの膨潤量は、
2〜10重量係であることが必要で、2重量係未満では
実質的に粘着性値は変化せず効果があられれない。一方
、10重量係を超えて膨潤するとヒステリシス損失の尺
度である損失係数(tanδ)が大幅に低下するが、貯
蔵弾性率(G′)値が大幅に変化してしまい、もはや未
膨潤加硫ゴムと類似した特性を示さず種々の物性上のバ
ランスをとり直さねばならない。
In the present invention, the extender oil that swells the vulcanized rubber includes all extender oils that are mainly composed of low-molecular hydrocarbons and are generally used in rubber compositions, and may be aromatic, paraffinic, or naphthenic. I don't mind. The swelling amount of vulcanized rubber is
It is necessary to have a weight ratio of 2 to 10. If the weight ratio is less than 2 weight ratio, the tackiness value will not substantially change and no effect will be obtained. On the other hand, when swelling exceeds 10% by weight, the loss coefficient (tan δ), which is a measure of hysteresis loss, decreases significantly, but the storage modulus (G') value changes significantly, and the unswollen vulcanized rubber It does not show properties similar to that of the conventional one, so the balance of various physical properties must be re-balanced.

本発明はこのように大幅にタイヤの特性上の変化を狙う
ものではなく、タイヤトレッド部に使用する加硫ゴムに
要求されるトレッドゴムとしての特性を実用上、大幅に
は変化させずに、エネルギー損失特性を低減することを
目的とするものである。
The present invention does not aim at drastically changing the characteristics of tires in this way, but rather, it aims at achieving practical changes without significantly changing the characteristics of tread rubber required for vulcanized rubber used in tire treads. The purpose is to reduce energy loss characteristics.

本発明において加硫ゴムを膨潤させる方法としては、加
硫ゴムに伸展油を添付して含浸させる方法、加硫前に隣
接するゴムに伸展油を含壕せておいて加硫後にマイグレ
ーションにより所定の重量割合に膨潤させる方法および
自動車タイヤのような複合製品のトレッド部に伸展油を
塗布する方法等がある。
In the present invention, the vulcanized rubber can be swollen by attaching extender oil to the vulcanized rubber and impregnating it, or by impregnating the adjacent rubber with extender oil before vulcanization and then migrating it to a predetermined level after vulcanization. There are two methods: a method of swelling the rubber to a weight ratio of

本発明の加硫ゴムに使用される原料ゴムとしては特に制
限はないが、例えば天然ゴム、ポリイソプレンゴム、ス
チレン−ブタジェン共重合体コム、ポリブタジェンゴム
等のジエン系合成ゴムおよびハロゲン化ブチルゴムから
選ばれる少なくとも1種以上の配合が例示される。
The raw material rubber used for the vulcanized rubber of the present invention is not particularly limited, but examples include natural rubber, polyisoprene rubber, styrene-butadiene copolymer comb, diene-based synthetic rubber such as polybutadiene rubber, and halogenated butyl rubber. Examples include combinations of at least one or more selected from the following.

また、本発明の加硫ゴムにおいては、カーボンブラック
は原料ゴム100重量部に対して30〜70重量部含有
されることが望ましく、よう素吸着量が65〜140 
mg/g1ジブチルフタレート吸油量が85 cc/1
00g以上の範囲にあるものが好ましい。
In addition, in the vulcanized rubber of the present invention, it is desirable that the carbon black be contained in an amount of 30 to 70 parts by weight per 100 parts by weight of the raw material rubber, and the amount of iodine adsorption is 65 to 140 parts by weight.
mg/g1 dibutyl phthalate oil absorption is 85 cc/1
It is preferable that the weight is in the range of 00g or more.

本発明においては、この他通常ゴム業界でタイヤトレツ
ゴムに配合される酸化亜鉛、ステアリン酸、老化防止剤
、カーボンブラック、伸展油、加硫促進剤等の配合剤が
適宜適量配合される。
In the present invention, other compounding agents which are commonly incorporated into tire tread rubber in the rubber industry, such as zinc oxide, stearic acid, anti-aging agent, carbon black, extender oil, and vulcanization accelerator, may be blended in appropriate amounts.

以下、本発明を実施例および比較例に基づいて具体的に
説明する。なお第1表の配合は重量部である。
The present invention will be specifically described below based on Examples and Comparative Examples. The formulations in Table 1 are parts by weight.

実施例1〜2および比較例1〜6 第1表に示す配合のゴム組成物を機械的混合方法にて混
合しゴム組成物を調製した。このゴム組成物を148℃
、30分間プレス加硫した後、厚さ2咽の加硫ゴムシー
トを作成し粘弾性物性測定用サンプルとした。
Examples 1 to 2 and Comparative Examples 1 to 6 Rubber compositions having the formulations shown in Table 1 were mixed by a mechanical mixing method to prepare rubber compositions. This rubber composition was heated to 148°C.
After press vulcanization for 30 minutes, a vulcanized rubber sheet with a thickness of 2 mm was prepared and used as a sample for measuring viscoelastic properties.

第  1  表 ※1:日本ゼオン社製、※2:N−フェニルーN′−イ
ンプロピル−p−フェニレンジアミン、※3:N−オキ
シジエチレンー2−ペンゾリル スルフェンアミド、 このようにして得られた加硫ゴムを未膨潤加硫ゴム(比
較例1)とする。この加硫ゴムをパラフィン系オイルで
1.5重量%(比較例2)、5.5重量%(実施例1)
、16.2重量%(比較例3)それぞれ膨潤した。この
膨潤方法は予め目的とする膨潤油重量を計算し、これを
ゴムシート両面に均一に塗布して約1週間放置する。加
硫ゴムの膨潤が行なわれた後に粘弾性スペクトロメータ
ー(老木製作所製)を用いて、粘弾性値の動歪依存性を
測定した。正確な膨潤重量割合(%)は測定を行なう前
に膨潤前後のサンプル重量の比から求めた。なお、測定
条件は30℃、60℃にて周波数20Hz。
Table 1 *1: Nippon Zeon Co., Ltd., *2: N-phenyl-N'-impropyl-p-phenylenediamine, *3: N-oxydiethylene-2-penzolyl sulfenamide, thus obtained The vulcanized rubber is an unswollen vulcanized rubber (Comparative Example 1). This vulcanized rubber was mixed with paraffin oil at 1.5% by weight (Comparative Example 2) and 5.5% by weight (Example 1).
, 16.2% by weight (Comparative Example 3), respectively. In this swelling method, the weight of the desired swelling oil is calculated in advance, and this is applied uniformly to both sides of the rubber sheet and left for about one week. After the vulcanized rubber was swollen, the dependence of the viscoelastic value on dynamic strain was measured using a viscoelastic spectrometer (manufactured by Oiki Seisakusho). The exact swelling weight percentage (%) was determined from the ratio of the sample weights before and after swelling before measurement. The measurement conditions were 30°C and 60°C, and a frequency of 20Hz.

動歪として0.2%、0.5%、1%、2%、5%およ
び10%を選び貯蔵弾性率(G′)および損失係数(j
anδ)を測定した。
Select 0.2%, 0.5%, 1%, 2%, 5% and 10% as the dynamic strain, and select the storage modulus (G') and loss coefficient (j
anδ) was measured.

比較として膨潤加硫ゴム(比較例1)のtanδおよび
G′を測定し第1図および第2図に示す。パラフィン系
オイルを1.5重量%膨潤した比較例2は比較例1の未
膨潤加硫ゴム(第1図と第2図の実線)とG′およびt
anδが共にあまり大きく変化せず、効果が少ないこと
がわかった。16.2重量%膨潤した比較例6はtan
δは大幅に低下するが、G′も40%以上も低下してし
まい、実用上、種々の他の物性の上のバランスをとり直
さねばならなかった。これに対し、第1図と第2図に示
したようにパラフィン系オイルで5.5重量%膨潤した
実施例1(第1図と第2図の一点鎖線)は比較例1と比
較してtanδが大幅に低下し、しかもG/の低下も許
容される範囲内であった。
For comparison, tan δ and G' of a swollen vulcanized rubber (Comparative Example 1) were measured and are shown in FIGS. 1 and 2. Comparative Example 2, which was swollen with 1.5% by weight of paraffinic oil, had the same characteristics as the unswollen vulcanized rubber of Comparative Example 1 (solid lines in Figures 1 and 2) and G' and t.
It was found that both anδ did not change significantly and the effect was small. Comparative Example 6, which swelled by 16.2% by weight, was tan
Although δ is significantly reduced, G' is also reduced by more than 40%, and in practical terms, it is necessary to rebalance various other physical properties. On the other hand, as shown in Figures 1 and 2, Example 1 (dotted chain line in Figures 1 and 2), which was swollen by 5.5% by weight with paraffin oil, was compared with Comparative Example 1. The tan δ was significantly reduced, and the reduction in G/ was also within an acceptable range.

実施例1と同様にして、アロマ系オイルで4.5重量%
膨潤した加硫ゴム(実施例2−第1図と第2図の破線)
のtanδおよびG′を測定して第1図および第2図に
示した。
4.5% by weight of aroma oil in the same manner as in Example 1
Swollen vulcanized rubber (Example 2 - dashed lines in Figures 1 and 2)
The tan δ and G' were measured and shown in FIGS. 1 and 2.

パラフィン系オイルで5.5重量%膨潤した実施例1は
未膨潤の比較例1に比べ、50℃、60℃におけるG′
値はほぼ同等な値で、種々の力学的な特性は太きく変化
していないが、tanδの値は広い動的歪範囲で著しく
低下しており、従って実施例1は動的エネルギー損失が
著しく低減されていることがわかる。
Example 1, which was swollen by 5.5% by weight with paraffinic oil, had a higher G′ at 50°C and 60°C than Comparative Example 1, which was not swollen.
The values are almost the same, and various mechanical properties do not change significantly, but the value of tan δ decreases significantly over a wide dynamic strain range. Therefore, in Example 1, the dynamic energy loss is significant. It can be seen that this has been reduced.

アロマ系オイルで4.5重量係膨潤した実施例2も実施
例1と同様にG′はあ壕り太きく変化せずにjanδ値
が低減している。
In Example 2, which was swollen by 4.5 weight coefficient with aromatic oil, as in Example 1, G' did not change sharply and the jan δ value decreased.

この第1図および第2図の粘弾性特性の動歪依存性から
も明らかなように、G′およびtanδの動歪依存性が
膨潤を起こさせたり、温度が上昇することにより、平担
になる傾向があり、これはカーボン凝集体間の固体摩擦
が低減さ扛ていることを意味し、実際上カーボン凝集体
間の間隔がわずかに離れたものと推定される。
As is clear from the dynamic strain dependence of the viscoelastic properties in Figures 1 and 2, the dynamic strain dependence of G' and tanδ becomes flat due to swelling or temperature rise. This means that the solid friction between the carbon aggregates is reduced, and it is estimated that the distance between the carbon aggregates is actually slightly larger.

以上説明したごとく、カーボンブラックを含有する加硫
ゴムを伸展油で2〜10重量係膨潤した本発明の加硫ゴ
ムは、貯蔵弾性率を大幅に減することなく、損失係数を
大幅に低減することが可能であるから、タイヤトレッド
部に好適に利用され、タイヤの転勤抵抗の低減に寄与す
る。
As explained above, the vulcanized rubber of the present invention, in which the vulcanized rubber containing carbon black is swollen by 2 to 10% by weight with extender oil, has a significantly reduced loss coefficient without significantly reducing its storage modulus. Therefore, it is suitably used in the tire tread portion and contributes to reducing the rolling resistance of the tire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1〜2および比較例1の貯蔵弾性率(G
′)と動的歪(%)の関係を示すグラフ、および第2図
は実施例1〜2および比較例1の損失係数(tanδ)
と動的歪C%)の関係を示すグラフ。なお、実線は比較
例1、一点鎖線は実施例1および破線は実施例2を示す
。 特許出願人 横浜ゴム株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 (,9)  I十jp表4
Figure 1 shows the storage modulus (G
') and dynamic strain (%), and Figure 2 shows the loss coefficient (tan δ) of Examples 1 to 2 and Comparative Example 1.
Graph showing the relationship between dynamic strain (C%) and dynamic strain (C%). Note that the solid line indicates Comparative Example 1, the dashed line indicates Example 1, and the broken line indicates Example 2. Patent Applicant Yokohama Rubber Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito (,9) Table 4

Claims (1)

【特許請求の範囲】[Claims] 1、 補強性カーボンブラックを原料ゴム100重量部
に対して30〜70重量部含有する加硫ゴムを、低分子
量の炭化水素を主成分とする伸展油で2〜10重量係膨
潤させたことを特徴とする加硫ゴム。
1. A vulcanized rubber containing 30 to 70 parts by weight of reinforcing carbon black based on 100 parts by weight of raw rubber was swollen by 2 to 10 parts by weight with an extender oil whose main component is a low molecular weight hydrocarbon. Characteristic vulcanized rubber.
JP10978482A 1982-06-28 1982-06-28 Vulcanized rubber Pending JPS591549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10978482A JPS591549A (en) 1982-06-28 1982-06-28 Vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10978482A JPS591549A (en) 1982-06-28 1982-06-28 Vulcanized rubber

Publications (1)

Publication Number Publication Date
JPS591549A true JPS591549A (en) 1984-01-06

Family

ID=14519129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10978482A Pending JPS591549A (en) 1982-06-28 1982-06-28 Vulcanized rubber

Country Status (1)

Country Link
JP (1) JPS591549A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624564A (en) * 1985-07-01 1987-01-10 Mitsubishi Metal Corp Workrest and the manufacturing method for cutting tool grinding
JPS6262848A (en) * 1985-09-12 1987-03-19 Bridgestone Corp Rubber composition for inner liner
JP2007313929A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Pneumatic tire
JP2007313930A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Pneumatic tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624564A (en) * 1985-07-01 1987-01-10 Mitsubishi Metal Corp Workrest and the manufacturing method for cutting tool grinding
JPH0234747B2 (en) * 1985-07-01 1990-08-06 Mitsubishi Metal Corp
JPS6262848A (en) * 1985-09-12 1987-03-19 Bridgestone Corp Rubber composition for inner liner
JP2007313929A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Pneumatic tire
JP2007313930A (en) * 2006-05-23 2007-12-06 Bridgestone Corp Pneumatic tire

Similar Documents

Publication Publication Date Title
CA1185036A (en) Pneumatic tires comprising an improved treads
US4321168A (en) Process for preparing rubber composition for tire treads
JPS5945341A (en) Rubber composition for tire tread
US4309318A (en) Tread compositions for tires having low rolling resistance
JP3184986B2 (en) Rubber composition for tire tread
JPS591549A (en) Vulcanized rubber
JPS62143947A (en) Rubber composition for tire tread
JPS62143945A (en) Rubber composition for tire tread
KR100432128B1 (en) Rubber Composition for Studless Tire Tread
JP2707278B2 (en) Pneumatic tire
EP0897952B1 (en) Rubber composition
JP3933796B2 (en) Rubber mixture and rubber composition
JP2694547B2 (en) Rubber composition for tire tread
KR100553994B1 (en) Rubber composition for tire of truck or bus
JPH01174546A (en) Tire for studless use
JPS62129327A (en) Rubber composition for tire tread
EP0718359A1 (en) Rubber composition for tyre treads
KR100606190B1 (en) Rubber composition for studless snow tire tread
JPH0471938B2 (en)
JPH1060176A (en) Rubber composition for tire tread
JPS6236060B2 (en)
KR100356590B1 (en) Tread compounds for pnuematic tire
JPS594631A (en) Rubber composition
JPS58162644A (en) Rubber composition
JPS641500B2 (en)