JPS59154731A - Charged beam deflection system - Google Patents

Charged beam deflection system

Info

Publication number
JPS59154731A
JPS59154731A JP2615383A JP2615383A JPS59154731A JP S59154731 A JPS59154731 A JP S59154731A JP 2615383 A JP2615383 A JP 2615383A JP 2615383 A JP2615383 A JP 2615383A JP S59154731 A JPS59154731 A JP S59154731A
Authority
JP
Japan
Prior art keywords
deflection
signal
charged beam
generator
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2615383A
Other languages
Japanese (ja)
Other versions
JPH0563895B2 (en
Inventor
Kazushi Yoshimura
和士 吉村
Toshimitsu Hamada
浜田 利満
Tomohiro Kuji
久邇 朝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2615383A priority Critical patent/JPS59154731A/en
Publication of JPS59154731A publication Critical patent/JPS59154731A/en
Publication of JPH0563895B2 publication Critical patent/JPH0563895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path

Abstract

PURPOSE:To extract a signal such as a video signal by deflecting at a high speed the charged beam through the process that a sine wave is used as a deflection signal, it is detected that the charged beam has shifted for the constant position by such signal and sampling is carried out in such a timing. CONSTITUTION:A sine wave deflection signal generated by a deflection signal generator 1 is supplied to a deflection coil 6 through a deflection amplifier 5. simultaneously, the deflection sine wave signal is also supplied to a sampling pulse generator 2. when the charged beam shifts for the specified interval, this generator 2 detects it and generates the sampling pulse at thimemory 4. A detected signal such as a video signal detected by the detector 7 is supplied to a converter 3 through an amplifier 8. At this timing, the detected signal is sapled by the pulse supplied from the pulse generator 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は荷電ビームの偏向方式に係り、特に走査電子顕
微鏡や電子線描画装置等における成子ビーム等を偏向す
るに好適な荷電ビーム偏向方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a charged beam deflection method, and more particularly to a charged beam deflection method suitable for deflecting a consonant beam or the like in a scanning electron microscope, an electron beam lithography apparatus, or the like.

〔従来技術〕[Prior art]

従来の走査成子顕微鏡等における電子ビーム等の偏向方
式には、試料面上の各サンプリング点における電子ビー
ムの照射時間を一定にする等の理由から、電子ビームを
等速に移動きせるため、偏向信号としてのこぎり波また
は三角波等を用いている。この場合には、電子ビームの
移動速度が一定であるから、電子ビームの一定の位置間
隔で各点の値をサンプリングするためには、偏向信号の
一定の時間間隔でサンプリングすればよい。
Conventional methods for deflecting electron beams, etc. in scanning seiko microscopes, etc., require a deflection signal to move the electron beam at a constant speed for reasons such as keeping the irradiation time of the electron beam constant at each sampling point on the sample surface. A sawtooth wave or a triangular wave is used. In this case, since the moving speed of the electron beam is constant, in order to sample the value of each point at constant position intervals of the electron beam, it is sufficient to sample the deflection signal at constant time intervals.

しかしながら、このような従来の偏向方式では、電子ビ
ーム等を直接偏向きせる偏向コイル等の偏向手段が純粋
な抵抗成分のみでないため偏向信号波の不連続点すなわ
ちのこきり波オたけ三角波等の極大・極小点付近におい
て偏向手段のりアクタンス成分による振動全発生する。
However, in such conventional deflection methods, since the deflection means such as a deflection coil that directly deflects the electron beam etc. does not consist of pure resistance components, discontinuities in the deflection signal wave, i.e. local maxima such as sawtooth waves, triangular waves, etc. - All vibrations are generated near the minimum point due to the actance component of the deflection means.

この偏向信号波の振動にともない、電子ビーム等の照射
位置が振動する結果となる。この振動は、−走査の周期
が長いすなわち低速で偏向する場合には特に問題となら
なかったが、高速で偏向を行なおうとする場合Kld、
偏向信号波の直線部分に対してこのりアクタンス成分に
よる振動部分の占める割合が大きくなり、正常な映像が
得られなくなる。このため走査の周期を長くとらなけれ
ばならなくなり、偏向速度を上げられない等の欠点があ
った。
This vibration of the deflection signal wave results in vibration of the irradiation position of the electron beam or the like. This vibration did not pose a particular problem when the scanning period was long, that is, when the deflection was performed at a low speed, but when the deflection was performed at a high speed, the Kld,
The ratio of the vibration part due to the actance component to the straight part of the deflection signal wave becomes large, and a normal image cannot be obtained. For this reason, the scanning period had to be long, and there were drawbacks such as the inability to increase the deflection speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、高
速に電子ビーム等を偏向することのできる荷電ビーム編
向方式を提供することにある○ 〔発明の概要〕 本発明け、上記の偏向コイル等の偏向手段のりアクタン
ス成分による振動が、従来の偏向1百号に用いた不連続
点のあるのこぎり波や三角波に含捷れる各周波数成分の
位相が偏向手段のりアクタンス成分によってずれること
により起ることに着目し、このリアクタンス成分による
振動を除くために偏向信号として正弦波を用いると共に
、この正弦波を用いたことにより荷電ビームの移動速度
が一定でなくなるから従来の一定の時間間隔のサンプリ
ングでは荷電ビームの一定の位置間隔での値のサンプリ
ングができなくなるため、正弦波の偏向信号より荷電ビ
ームが一定の位置間隔移動したことを検知し、そのタイ
ミングでサンプリングパルス発生器段により、一定の位
置間隔でサンプリングできるようにしたことを特徴とす
る荷電ビーム偏向方式である。
An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide a charged beam orientation system capable of deflecting an electron beam or the like at high speed. Vibration due to the actance component of the deflection means such as a coil is caused by the phase of each frequency component included in the sawtooth wave or triangular wave with discontinuities used in the conventional deflection No. 100 being shifted by the actance component of the deflection means. Focusing on this, we used a sine wave as a deflection signal to eliminate vibrations due to this reactance component, and because using this sine wave, the moving speed of the charged beam would no longer be constant, we decided to use conventional sampling at fixed time intervals. Since it is not possible to sample the value at fixed position intervals of the charged beam, it is detected from the sine wave deflection signal that the charged beam has moved by a fixed position interval, and at that timing, the sampling pulse generator stage This is a charged beam deflection method that is characterized by being able to sample at positional intervals.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例として偏向手段に偏向コイルを
用いた走査電子額微鏡に適用した場合について説明する
Hereinafter, as an embodiment of the present invention, a case where the present invention is applied to a scanning electronic forehead microscope using a deflection coil as the deflection means will be described.

第1図は本発明による荷電ビーム偏向方式の一実施例の
全体構成を示すブロック図で、図中の1は正弦波の便向
侶号を発生する偏向信号発生器(正弦波発生器)、2は
偏向信号より荷電ビーム(電子ビーム)が一定の位置間
隔移動したことを検知してサンプリングパルスを発生す
るサンプリングパルス発生器、6はA、 / 1)変換
器、4はメモリ、5は偏向増幅器、6は荷電ビームを偏
向する偏向手段である偏向コイル、7は偏向された荷電
ビームの照射等により得られる試料等の映像信号等をと
らえる検出器、8け検出信号増幅器である。第2図は第
1図の動作説明用の各部i++!+作波形図である。
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the charged beam deflection method according to the present invention, in which numeral 1 indicates a deflection signal generator (sine wave generator) that generates a sine wave signal; 2 is a sampling pulse generator that generates a sampling pulse by detecting that a charged beam (electron beam) has moved by a certain distance from a deflection signal, 6 is A, / 1) converter, 4 is a memory, 5 is a deflection 6 is a deflection coil which is a deflection means for deflecting a charged beam; 7 is a detector for capturing video signals of a sample etc. obtained by irradiation with the deflected charged beam; and 8 detection signal amplifiers. Figure 2 shows each part i++! for explaining the operation of Figure 1. + This is a waveform diagram.

この構成で、偏向信号発生器1により発生された正弦波
の偏向信号(電圧)■は駆動用の定電流増幅器である偏
向増幅器5を通して偏向手段である偏向コイル6供給さ
れ、図示してい寿い荷電ビームを偏向する。同時に、偏
向信号発生器1の正弦波の出力1dサンプリングパルス
発生器2にも供給されるーこれによりサンプリングパル
ス発生器2は、第2図に示すように偏向信号Vが一定の
1−配圧幅変化すると、つまりこれに比例して荷電ビー
ムの位4Q xが一定の位置間゛ 隔移動すると、これ
を検知してそのタイミングでサンプリングパルスを発生
1−2、このサンプリングパルスをA/D変換器6およ
びメモリ4に供給する。これにより、検出器7によりと
らえられた図示していない試料等の映像信号等の検出信
号が検出信号増幅器8を通(−てA/D変換器ろに与え
られると、この検出信号が上記サンプリングパルス発生
器2より供給されるサンプリングパルスによりサンプリ
ングされ、そのタイミングにおける荷電ビームの移動位
置(照射位置)の各点の映像信号等がA/D変換器3に
よりA’/I)変換され、この荷電ビームのある一定の
位置間隔での映像信号等の値をメモリ4により記憶し記
録することができる。
With this configuration, the sine wave deflection signal (voltage) 2 generated by the deflection signal generator 1 is supplied to the deflection coil 6 which is the deflection means through the deflection amplifier 5 which is a constant current amplifier for driving. Deflect the charged beam. At the same time, the sinusoidal output 1d of the deflection signal generator 1 is also supplied to the sampling pulse generator 2 - this causes the sampling pulse generator 2 to receive a deflection signal V of a constant 1 - pressure distribution width as shown in FIG. When the charged beam changes, that is, when the charged beam position 4Qx moves by a certain distance in proportion to this, this is detected and a sampling pulse is generated at that timing 1-2, and this sampling pulse is sent to the A/D converter. 6 and memory 4. As a result, when a detection signal such as a video signal of a sample (not shown) captured by the detector 7 is applied to the A/D converter through the detection signal amplifier 8 (-), this detection signal is transferred to the sampling The video signal etc. at each point of the moving position (irradiation position) of the charged beam at that timing is sampled by the sampling pulse supplied from the pulse generator 2, and is converted to A'/I) by the A/D converter 3. The memory 4 can store and record the values of video signals and the like at certain fixed position intervals of the charged beam.

つぎに第3図は第1図のサンプリングパルス発生器2の
回路構成を例示する回路図で、図中の9はサンプル・ホ
ールド、10は減算器、11は絶対値回路、12はコン
パレータ、16は単安定マルチバイブレータである7、
寸た第4図は第う図の動作説明用の各部動作波形図であ
る。
Next, FIG. 3 is a circuit diagram illustrating the circuit configuration of the sampling pulse generator 2 shown in FIG. is a monostable multivibrator7,
FIG. 4 is an operation waveform diagram of each part for explaining the operation of FIG.

この構成で、本回路のサンプリングパルス発生器2に入
力される偏向信号(電圧)■は、サンプル・ホールド9
によってホールドされたある時刻における偏向信号のホ
ールド値VHと常時、減算器10および絶対値回路11
によりその差の絶対値(IV−VHl)が求められる。
With this configuration, the deflection signal (voltage) input to the sampling pulse generator 2 of this circuit is
The hold value VH of the deflection signal at a certain time held by the subtracter 10 and the absolute value circuit 11
The absolute value of the difference (IV-VHl) can be found.

ついでこの差の絶対値はコンパレータ12により常時、
設定されたしきい値VTRと比較される。そしてこの差
の絶対値(iv−vHl)が設定しきい値VTHf越え
ると、コンパレータ12の出力が変化して単安定マルチ
バイブレーク13−i)IJガするこの時、単安定マル
チバイブレータ1ろより出力されるパルスを用いて、そ
の時刻における偏向信号Vをサンプル・ホールド9にホ
ールドさせこれを新たなホールド値VHとする。以後、
この繰り返しにより、第4図に例示するような正弦波の
偏向信号(電圧)■に対応した各波形のサンプル・ホー
ルド9のホールド値VH+その差の絶対値(1V  V
 H1) +単安定マルチバイブレーク1ろのサンプリ
ングパルスの信号が得られる。
Then, the absolute value of this difference is constantly determined by the comparator 12.
It is compared with a set threshold value VTR. When the absolute value of this difference (iv-vHl) exceeds the set threshold value VTHf, the output of the comparator 12 changes and the monostable multivibrator 13-i) IJ is activated.At this time, the output from the monostable multivibrator 1 Using this pulse, the deflection signal V at that time is held in the sample/hold 9, and this is set as a new hold value VH. From then on,
By repeating this process, the hold value VH of the sample/hold 9 of each waveform corresponding to the sine wave deflection signal (voltage) ■ as illustrated in FIG. 4 + the absolute value of the difference (1V V
H1) + Monostable multi-by-break 1 sampling pulse signal is obtained.

こうして単安定マルチバイブレータ16より出力される
パルスが本回路のサンプリングパルス発生器2の出力で
あるサンプリングツくルスとなり第1図の偏向コイル6
への偏向信号Vが設定しきい値VTHだけ変化する各タ
イミングで検出器7よりの映像信号等のサンプリングが
行なわれつまり電子ビームの対応する一定の位置間隔で
サンプリングが行なわれることになる。しだがって、こ
のサンプリングの一定の位置間隔は、コンパレータ12
の設定しきい値VTR’c可変にすることにより容易に
変えることができる。
In this way, the pulse output from the monostable multivibrator 16 becomes the sampling pulse, which is the output of the sampling pulse generator 2 of this circuit, and becomes the deflection coil 6 of FIG.
Sampling of the video signal etc. from the detector 7 is performed at each timing when the deflection signal V to changes by the set threshold value VTH, that is, sampling is performed at constant position intervals corresponding to the electron beam. Therefore, the constant position interval of this sampling is determined by the comparator 12
This can be easily changed by making the set threshold VTR'c variable.

なお、以上の実施例では、検出器7よりの映像信号等を
A/D紫換]7てメモリに記憶しているが、同期し7て
走査するブラウン管上等に表示することもできる。また
偏向手段として電磁偏向コイルを用いているが、他の静
電偏向板等を用いてもよい。さらに上記実施例は偏向コ
イルを用いた走査電子顕微鏡に適用した場合について説
明したが、他のたとえば電子線描画装置等をはじめ偏向
された電子ビームやイオンビーム等の荷電ビームを利用
した装置や、荷電ビームによって得られる映像信号等を
表示または記録する装置等に同様に適用可能である。
In the above embodiment, the video signal etc. from the detector 7 is stored in the memory through A/D converter 7, but it may also be displayed on a cathode ray tube or the like which is scanned synchronously. Furthermore, although an electromagnetic deflection coil is used as the deflection means, other electrostatic deflection plates or the like may be used. Furthermore, although the above embodiment has been described with reference to a case where it is applied to a scanning electron microscope using a deflection coil, other devices such as an electron beam lithography device, etc., which utilize a charged beam such as a deflected electron beam or an ion beam, etc. The present invention can be similarly applied to devices that display or record video signals obtained by charged beams.

以上のようにして、本実施例によれば走査電子顕微鏡等
において、偏向コイル等のりアクタンス成分による振動
を生ずることなく、高速で荷電ビームを偏向し一定の位
置間隔でサンプリングしだ映像信号等を簡単かつ容易に
得ることができる。1だ本実施例によれば荷電ビームの
偏向悄号に単一の正弦波を用いているため、従来用いて
いたのこぎり波や三角波に含まれていたような高次の高
調波成分がないから、偏向手段である偏向コイル等を駆
動するだめの偏向増幅器の帯域が低くてすむなどの効果
がある0〔発明の効果〕 以上の説明から明らかなように、本発明の荷重5ビーム
偏向方式によれば、従来の偏向コイル等の偏向手段のり
アクタンス成分による振動が発生することなく、高速で
荷電ビーJ−を偏向して映像信号等の信号を取り出すこ
とができ、広く荷電ビーム装置の偏向方式に利用可能で
ある。
As described above, according to this embodiment, in a scanning electron microscope or the like, a charged beam can be deflected at high speed and sampled at constant position intervals without causing vibrations due to actance components such as deflection coils. can be easily and easily obtained. 1. According to this embodiment, a single sine wave is used for the deflection wave of the charged beam, so there is no high-order harmonic component included in the conventionally used sawtooth wave or triangular wave. 0 [Effects of the Invention] As is clear from the above explanation, the load 5 beam deflection method of the present invention has the advantage that the band of the deflection amplifier that drives the deflection coil etc. that is the deflection means is low. According to the invention, it is possible to deflect the charged beam J- at high speed and extract signals such as video signals without causing vibrations due to actance components of deflection means such as conventional deflection coils, and it is widely used as a deflection method for charged beam devices. is available.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による荷電ビーム偏向方式の一実施例の
全体構成を示すブロック図、第2図は第1図の各部動作
波形例図、第3図は第1図のサンプリングパルス発生器
の回路構成を例示する回路図、第4図は第3図の各部動
作波形例図である。 1・偏向信号発生器(正弦波発生器) 2・・・サンプリングパルス発生器 3・・A/D変換器 4・・・メモリ 6・・・偏向手段(偏向コイル) 7・検出器 第 1 目 12 口 勇 3I¥] 嶌 4 回
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the charged beam deflection system according to the present invention, FIG. 2 is an example of operation waveforms of each part of FIG. 1, and FIG. 3 is a diagram of the sampling pulse generator of FIG. 1. FIG. 4 is a circuit diagram illustrating the circuit configuration, and FIG. 4 is an example diagram of operation waveforms of each part in FIG. 3. 1.Deflection signal generator (sine wave generator) 2..Sampling pulse generator 3..A/D converter 4..Memory 6..Deflection means (deflection coil) 7.Detector 1st 12 Kuchi Isamu 3I ¥] Shima 4 times

Claims (1)

【特許請求の範囲】[Claims] 正弦波の偏向信号を発生する偏向信号発生器と、この偏
向信号発生器からの偏向信号により荷電ビームを偏向す
る偏向手段と、この偏向手段により偏向された荷電ビー
ムにより得られる信号をこの偏向された荷電ビームの一
定の位置間隔でサンプリングして取り出す手段とからな
る荷電ビーム偏向方式。
a deflection signal generator that generates a sinusoidal deflection signal; a deflection means that deflects a charged beam using the deflection signal from the deflection signal generator; A charged beam deflection method consisting of a means for sampling and extracting a charged beam at fixed position intervals.
JP2615383A 1983-02-21 1983-02-21 Charged beam deflection system Granted JPS59154731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2615383A JPS59154731A (en) 1983-02-21 1983-02-21 Charged beam deflection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2615383A JPS59154731A (en) 1983-02-21 1983-02-21 Charged beam deflection system

Publications (2)

Publication Number Publication Date
JPS59154731A true JPS59154731A (en) 1984-09-03
JPH0563895B2 JPH0563895B2 (en) 1993-09-13

Family

ID=12185585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2615383A Granted JPS59154731A (en) 1983-02-21 1983-02-21 Charged beam deflection system

Country Status (1)

Country Link
JP (1) JPS59154731A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681906B1 (en) * 2014-09-01 2016-12-02 주식회사 제낙스 Fabric-friendly rechargeable battery package

Also Published As

Publication number Publication date
JPH0563895B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
JPS59154731A (en) Charged beam deflection system
US4713687A (en) Scan line type dynamic observation apparatus
JPS6139441A (en) Printing development preventing circuit device on video screen
WO2016024704A1 (en) Particle beam control apparatus and method for charged particle microscope
US5121037A (en) Circular zig-zag scan video format
JPH0360297A (en) Image pickup device and its operating method
JP3268445B2 (en) Electron microscope equipment
JP3383175B2 (en) Image display method of scanning microscope and scanning microscope
JPS6212624B2 (en)
JPS6362142A (en) Surface analysis device
SU1669083A2 (en) Method of formation of picture video signal
JPH024440Y2 (en)
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
SU911651A1 (en) Method of obtaining images in raster electron microscope
JPH0221549A (en) Scanning electron microscope
JPH0240849A (en) Charged particle beam device
JPS5917496B2 (en) Focusing method and device for scanning electron microscope, etc.
JPH0574402A (en) Scanning type electron microscope
SU1080253A1 (en) Process for compensating distortions of electron beam in crt picture tube
JPH0228601Y2 (en)
JPS59134366U (en) scanning electron microscope
SU1552401A1 (en) Method of recording poligraphic fotographic forms
JPH0527215B2 (en)
JPH0334184B2 (en)
GB1410955A (en) Automatic focusing of a video camera tube