JPS59154159A - Atomizer - Google Patents

Atomizer

Info

Publication number
JPS59154159A
JPS59154159A JP2792983A JP2792983A JPS59154159A JP S59154159 A JPS59154159 A JP S59154159A JP 2792983 A JP2792983 A JP 2792983A JP 2792983 A JP2792983 A JP 2792983A JP S59154159 A JPS59154159 A JP S59154159A
Authority
JP
Japan
Prior art keywords
atomizer
oscillation
temp
inductor
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2792983A
Other languages
Japanese (ja)
Other versions
JPS6366267B2 (en
Inventor
Shinichi Nakane
伸一 中根
Naoyoshi Maehara
前原 直芳
Kazushi Yamamoto
一志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2792983A priority Critical patent/JPS59154159A/en
Priority to US06/563,522 priority patent/US4632311A/en
Publication of JPS59154159A publication Critical patent/JPS59154159A/en
Publication of JPS6366267B2 publication Critical patent/JPS6366267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto

Landscapes

  • Special Spraying Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PURPOSE:To change the oscillation frequency in an oscillation driving part in follow up to the temp. deviation in a mechanical resonance point by providing a temp. characteristic compensator and compensating the change with the temp. in a series resonance part. CONSTITUTION:A self-oscillation system is formed of an inductor 17, a series resonance part consisting essentially of an equiv. capacity component of an atomizer, and an amplifier 18, and a capacitor 20 as a temp. compensator compensates the change with the temp. in the series resonance part. Then the oscillation frequency in the oscillation driving part is changed in follow up to the deviation in the temp. of the mechanical resonance point operating efficiently as an atomizer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、灯油や軽油等の液体燃料、水、薬浴液、記録
液等を、電気的振動子を用いて霧化する液体の霧化装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid atomization device that atomizes liquid fuel such as kerosene or light oil, water, medicinal bath liquid, recording liquid, etc. using an electric vibrator. Regarding.

従来例の構成とその問題点 従来から液体の霧化装置には種々のものが提案されてお
シ、圧電素子等の電気的振動子を用いたものも多く見う
けられる。特に周囲温度変化に対し、圧電素子が効率よ
く振動する機械的共振点も変化するので、発振周波数を
前記共振点の変動に追随するように変化させる方法がと
られていた。
Conventional configurations and their problems Various types of liquid atomization devices have been proposed in the past, and many of them use electrical vibrators such as piezoelectric elements. In particular, as the ambient temperature changes, the mechanical resonance point at which the piezoelectric element vibrates efficiently also changes, so a method has been adopted in which the oscillation frequency is changed to follow the fluctuation of the resonance point.

例えば、特公昭50−13657号公報「セラミンク体
の駆動方式」に見られるように、周囲温度変化による共
振周波数偏位に追随して移相器の中心周波数をずらせ、
電圧と電流の位相差を無くしたり、あるいは、圧電素子
への電圧と電流の位相を同一にするように、位相差検出
器からの信号で発振器の発振周波数を変化させるなどの
方法があった。
For example, as seen in Japanese Patent Publication No. 50-13657 ``Ceramink Body Driving System'', the center frequency of the phase shifter is shifted to follow the resonance frequency deviation due to changes in ambient temperature.
There have been methods such as changing the oscillation frequency of an oscillator using a signal from a phase difference detector to eliminate the phase difference between the voltage and current, or to make the voltage and current to the piezoelectric element have the same phase.

しかし、上記従来の周囲温度補償機能を有する霧化装置
では、圧電素子駆動信号発生用の発振器や、位相検出器
などを持たねばならず、全体として複雑な構成とならざ
るを得なかった。
However, the conventional atomizing device having an ambient temperature compensation function has to have an oscillator for generating a piezoelectric element drive signal, a phase detector, etc., and has to have a complicated structure as a whole.

発明の目的 本発明は、このような従来の欠点を除去するために、霧
化器が容量特性を有する点に着目して構成した簡易な発
振駆動部であり、しかも、周囲温度補償機能を持つ霧化
装置の提供を目的とする。
Purpose of the Invention In order to eliminate such conventional drawbacks, the present invention is a simple oscillation drive unit constructed by focusing on the fact that an atomizer has capacitance characteristics, and also has an ambient temperature compensation function. The purpose is to provide an atomization device.

発明の構成 この目的を達成するために本発明は、液体を充填する加
圧室を備えたボディーと、前記加圧室に液体を供給する
ための供給部と、前記加圧室に臨むように設けたノズル
を有するノズル部と、前′記ノズル部を付勢して前記ノ
ズルを加振する電気的振動子とで霧化器を構成し、前記
霧化器に流れる電流を検出する電流検出器と、前記電流
検出器の信号を増幅する増幅部と、前記増幅部からの信
号を前記霧化器に伝達するインダクタとで発振駆動部を
構成し、温度に対する前記霧化器の等価容量変化分と前
記インダクタの変化分を補償して、前記発振駆動部の発
振周波数を前記霧化器の機械的共振点変化に追随させる
補償器を持ち、前述した霧化器と発振駆動部と補償器と
で全体の霧化装置を構成している。
Structure of the Invention In order to achieve this object, the present invention includes a body provided with a pressurized chamber filled with liquid, a supply section for supplying liquid to the pressurized chamber, and a supply section facing the pressurized chamber. An atomizer is constituted by a nozzle section having a nozzle provided therein, and an electric vibrator that energizes the nozzle section and vibrates the nozzle, and current detection detects the current flowing through the atomizer. An oscillation drive unit is constituted by an amplifier, an amplifier that amplifies the signal of the current detector, and an inductor that transmits the signal from the amplifier to the atomizer, and the equivalent capacitance of the atomizer changes with respect to temperature. and a compensator for making the oscillation frequency of the oscillation drive unit follow the change in the mechanical resonance point of the atomizer by compensating for the change in the inductor and the atomizer, the oscillation drive unit, and the compensator. This constitutes the entire atomization device.

この構成により、インダクタと霧化器の等価容量分を主
体とした直列共振部と、増幅部とで自励発振系をなすと
共に、温度特性補償器が前記直列共振部の温度による変
化を補償して、μ化器として効率よく動作する機械的共
振点の温度ずれに追随して発振駆動部の発振周波数を変
化させる。
With this configuration, the series resonant section mainly consisting of the equivalent capacitance of the inductor and the atomizer, and the amplifier section form a self-oscillation system, and the temperature characteristic compensator compensates for changes due to temperature in the series resonant section. Then, the oscillation frequency of the oscillation drive unit is changed in accordance with the temperature shift of the mechanical resonance point that efficiently operates as a µ-enricher.

実施例の説明 第1図で本発明の一実施例である霧化器について説明す
る。液体を充填する加圧室1を備えたボディー2は、ビ
ス3で取付板4に固定されている。
DESCRIPTION OF EMBODIMENTS Referring to FIG. 1, an atomizer which is an embodiment of the present invention will be described. A body 2 including a pressurized chamber 1 filled with liquid is fixed to a mounting plate 4 with screws 3.

液体は供給パイプ5を介して前記加圧室1に入り、霧化
動作中は、気体排出用のバイブロの途中まで満たされる
。7は加圧室1の一面に臨んで配されたノズル部で、外
周はボディー2に接合されている。ノズル部7の中央に
は、液滴吐出用の微細な孔を有する球面状の突起8が形
成されている。さらにノズル部7には、円環状の電気的
振動子、ここでは圧電素子9が装着されている。この圧
電素子9は厚さ方向に分極された圧電セラミックで、ノ
ズルとの接合面及び反対側の面には電極を有している。
The liquid enters the pressurizing chamber 1 through the supply pipe 5, and during the atomization operation, the vibro for gas discharge is filled halfway. Reference numeral 7 denotes a nozzle portion facing one side of the pressurizing chamber 1, and its outer periphery is joined to the body 2. A spherical protrusion 8 having a fine hole for ejecting droplets is formed in the center of the nozzle portion 7 . Furthermore, an annular electric vibrator, here a piezoelectric element 9, is attached to the nozzle portion 7. This piezoelectric element 9 is a piezoelectric ceramic polarized in the thickness direction, and has electrodes on the surface to be joined to the nozzle and on the opposite surface.

1oは、圧電素子9へ1駆動信号を伝達するリード線で
、一方は圧電素子9の片方の電極面へ半田接着され、他
方はボディー2ヘビス11で接続されている。駆動信号
により圧電素子9の機械的振動が励起されると、ノズル
部7も付勢されて振動するので、結果として加圧室1内
の液体が霧化粒子12となって吐出される。
1o is a lead wire for transmitting a 1 drive signal to the piezoelectric element 9, one of which is soldered to one electrode surface of the piezoelectric element 9, and the other is connected to the body 2 with a helix 11. When the mechanical vibration of the piezoelectric element 9 is excited by the drive signal, the nozzle part 7 is also energized and vibrates, so that the liquid in the pressurizing chamber 1 is discharged as atomized particles 12 as a result.

ところで、加圧室1へ供給される液体は、霧化器設置構
成で前記気体排出用のバイブロ途中まで充填してもよい
が、別手段として、霧化器の設置構成では加圧室1及び
排気バイブロ中は空で、液滴吐出シーケンスに入る前に
、例えば排気バイブロを通じて負圧を加え、液体を加圧
室1に充填すると共に排気バイブロ途中まで引き上げて
もよい。
By the way, the liquid supplied to the pressurizing chamber 1 may be filled halfway with the vibro for gas discharge in the atomizer installation configuration, but as an alternative, in the atomizer installation configuration, the liquid supplied to the pressurizing chamber 1 and The exhaust vibro is empty, and before entering the droplet ejection sequence, for example, negative pressure may be applied through the exhaust vibro to fill the pressurizing chamber 1 with liquid and draw the exhaust vibro halfway up.

後者の方法によれば、ノズル孔部で液体中の不純物等が
固化し、液滴を噴出できないという不具合が生じない。
According to the latter method, impurities in the liquid solidify in the nozzle hole and the problem that droplets cannot be ejected does not occur.

第2図は、前記圧電素子9を近似した電気的等価回路で
あり、13の等価並列容量C8と、14゜15.16の
それぞれ直列インダクタンス分LO1容量分CO1抵抗
分ROで構成されている。
FIG. 2 is an electrical equivalent circuit that approximates the piezoelectric element 9, and is composed of 13 equivalent parallel capacitances C8 and a series inductance LO of 14°15.16, 1 capacitance CO, 1 resistance RO.

第3図は、前記霧化器の圧電素子9に周波数を変化させ
て駆動信号(例えば正弦波)を印加した場合の電流変化
を示し、加圧室1内に液体が充填されているときの負荷
時の特性と、液体が入っていない空の状態、すなわち無
負荷時の特性を表わしている。実線で示した無負荷時の
特性では、電気的共振周波数11 では第2図で示した
LO14とC015の直列共振が発生し、1駆動電流の
ピーク値が表われている。また、電気的反共振周波数f
2では第2図で示したL014とC813との並列共振
が発生し、駆動電流が極小値となっている。図に示した
frは、flとf2のほぼ中間周波数で機械的共振周波
数という。同第3図の破線が負荷時のもので、前述f1
.f2の各電流値の差は無負荷時に比べて極端には大き
くない。
FIG. 3 shows the current change when a driving signal (for example, a sine wave) is applied to the piezoelectric element 9 of the atomizer by changing the frequency, and shows the current change when the pressurizing chamber 1 is filled with liquid. It shows the characteristics when loaded and the empty state with no liquid, that is, the characteristics when there is no load. In the no-load characteristics shown by the solid line, series resonance between LO14 and C015 shown in FIG. 2 occurs at an electrical resonance frequency of 11, and the peak value of one drive current appears. Also, the electrical anti-resonance frequency f
In No. 2, parallel resonance occurs between L014 and C813 shown in FIG. 2, and the drive current becomes a minimum value. The fr shown in the figure is approximately an intermediate frequency between fl and f2 and is called a mechanical resonance frequency. The broken line in Fig. 3 is the one under load, and the above-mentioned f1
.. The difference between the respective current values of f2 is not extremely large compared to when there is no load.

第4図は、負荷時の駆動周波数変化に対する電流値変化
と、霧化量変化を示している。機械的共振周波数fxの
ときに霧化量が最大値になっている。実際に噴霧させる
ときには、このfr付近の駆動周波数で動作させる。
FIG. 4 shows changes in current value and changes in atomization amount with respect to changes in drive frequency under load. The amount of atomization is at its maximum value at the mechanical resonance frequency fx. When actually spraying, it is operated at a driving frequency near this fr.

第5図は、インダクタ17を介して霧化器(振動源とし
ては圧電素子9)へ増幅部18の信号を伝達するインダ
クタ結合自励発振系のブロック構成図である。19は、
霧化器に流れる電流を検出する電流検出器である。前述
第3図から1.駆動電流工が駆動周波数fの増加に伴っ
て増えており、霧化器として容量特性を示すことがわか
る。この等価容量をCTと表し、インダクタ17をLと
すれば第5図で示す発振駆動部の発振周波数fOは、f
O−1/2πF■ で決まる。この基本構成では、インダクタ17の値りを
適当に調整することにより、霧化器の機械的共振点で発
振駆動させることができる。本構成では、外部に発振器
を持たなくてよい。
FIG. 5 is a block diagram of an inductor-coupled self-oscillation system that transmits a signal from the amplifier section 18 to the atomizer (the piezoelectric element 9 as a vibration source) via the inductor 17. 19 is
This is a current detector that detects the current flowing through the atomizer. From Figure 3 above, 1. It can be seen that the drive current increases as the drive frequency f increases, and the atomizer exhibits capacity characteristics. If this equivalent capacitance is expressed as CT and the inductor 17 is L, then the oscillation frequency fO of the oscillation drive section shown in FIG.
It is determined by O-1/2πF■. In this basic configuration, by appropriately adjusting the value of the inductor 17, it is possible to drive the atomizer to oscillate at its mechanical resonance point. This configuration does not require an external oscillator.

第6図のAは、周囲温度Ta(’C)  の変化に対す
る等価容量CT(pF)の変化特性を示し、温度上昇と
共に増加している。同6図のBは、温度Ta(”C)の
変化に対する霧化器の機械的共振点fr の変化(実線
)と第6図で示した自励発振回路系での発振周波数の変
化(一点鎖線)を示す。T a = 20°Cにおいて
インダクタンスLを調整して発振周波数を機械的共振点
(例えば、f=50(kt(z))に合わせても、イン
ダクタンスLの温度変化分と、第6図Aで示した等価容
量CTの温度変化分の値によって、機械的共振点の温度
特性に追随しないことがある。第6図Bの一点鎖線の例
は、例えばCTの温度による変化分が多過ぎて、高温に
おいて機械的共振点以下の発振周波数となった場合であ
る。
A in FIG. 6 shows the change characteristics of the equivalent capacitance CT (pF) with respect to changes in the ambient temperature Ta ('C), which increases as the temperature rises. B in Figure 6 shows the change in the mechanical resonance point fr of the atomizer (solid line) with respect to the change in temperature Ta ("C), and the change in the oscillation frequency in the self-oscillation circuit system shown in Figure 6 (one point). Even if the inductance L is adjusted at T a = 20°C to match the oscillation frequency to the mechanical resonance point (for example, f = 50 (kt(z))), the temperature change in the inductance L and Depending on the value of the temperature change of the equivalent capacitance CT shown in Fig. 6A, it may not follow the temperature characteristics of the mechanical resonance point. This is a case where the oscillation frequency becomes less than the mechanical resonance point at high temperatures due to too much.

このときは、圧電素子の電気エネルギーを機械エネルギ
ーに変換する効率が低く、第4図で示したように霧化量
も低下する。
At this time, the efficiency of converting the electrical energy of the piezoelectric element into mechanical energy is low, and the amount of atomization also decreases as shown in FIG.

以下では、補償器により、霧化器の容量特性を発振要素
として扱う山勘発振系において機械的共振点を追尾する
本発明を説明する。
The present invention will be described below, in which a compensator is used to track a mechanical resonance point in a mountain oscillation system that treats the capacitance characteristics of an atomizer as an oscillation element.

第7図は本発明の一実施例を示すブロック構成図で第6
図と同一番号のものは、同じ機能を有する構成要素であ
る。A、Bはそれぞれ補償器としてのコンデンサ20,
21を霧化器と並列、直列接続したもので、その温度に
よる変化分が、第6図Aで示したCTの変化分を補償し
て、インダクタとの共振特性を機械的共振点の温度特性
に合致させている。Aでの発振周波数は、コンデンサ2
゜を−01とすれば f−1/2π、バ扁罷語− で決する。第6図Bで一点鎖線の特性を補償するために
は、CTの温度変化割合に対して、(CT+ C* )
での温度変化割合を減少させる方向のコンデンサC1を
選定すればよい。第7図Bでの発振周波数は、コンデン
サ21を02とすれば、下記で決まる。
FIG. 7 is a block diagram showing one embodiment of the present invention.
Components with the same numbers as those in the drawings have the same functions. A and B are capacitors 20 and 20, respectively, as compensators.
21 is connected in parallel and series with the atomizer, and the change due to temperature compensates for the change in CT shown in Figure 6A, changing the resonance characteristics with the inductor to the temperature characteristics at the mechanical resonance point. It matches. The oscillation frequency at A is capacitor 2
If ゜ is set to -01, f-1/2π is determined by F-1/2π. In order to compensate for the characteristics indicated by the dashed-dotted line in Figure 6B, (CT+C*) is required for the temperature change rate of CT.
It is sufficient to select a capacitor C1 that reduces the rate of temperature change at . The oscillation frequency in FIG. 7B is determined as follows, assuming that the capacitor 21 is 02.

f=1/2π匹扉石石5 この場合も、CT7)℃2の合成特性が、CTだけの温
度変化割合を減少させる方向の02を選べばよい。この
ように、並列、又は、直列接続するコンデンサを補償器
とするのは、霧化器自体の等価容量CTの温度変化が大
きく、インダクタとしてのコイル等の温度変化分が小さ
く補償できないときに有効な手段である。
f=1/2π door stone 5 In this case as well, it is sufficient to select 02 in which the composite characteristic of CT7)°C2 decreases the temperature change rate of only CT. In this way, using a capacitor connected in parallel or in series as a compensator is effective when the temperature change in the equivalent capacitance CT of the atomizer itself is large and the temperature change in the coil, etc. as an inductor is small and cannot be compensated for. It is a method.

第8図は本発明の一実施例を示す具体的な回路図である
。補償器の構成は、コンデンサ2oを霧化器の圧電素子
9と並列接続している。増幅部18は、トランジスタ(
22,23,24,26)。
FIG. 8 is a specific circuit diagram showing one embodiment of the present invention. The configuration of the compensator is such that a capacitor 2o is connected in parallel with a piezoelectric element 9 of the atomizer. The amplifying section 18 includes a transistor (
22, 23, 24, 26).

抵抗(26,27,28,2!9,30,31.32)
、コンデンサ(33,34)で構成されており、電流検
出器19は抵抗35で構成されている。36は直流電源
である。電流検出器19からの信号は、コンデンサ34
を通って、コンプリメンタリ−8EPP型増幅部へ送ら
れ、インダクタ17を介して、圧電素子9と補償器20
に伝達される。
Resistance (26, 27, 28, 2!9, 30, 31.32)
, and capacitors (33, 34), and the current detector 19 is composed of a resistor 35. 36 is a DC power supply. The signal from current detector 19 is connected to capacitor 34
It is sent to the complementary 8EPP type amplifier through the inductor 17 to the piezoelectric element 9 and the compensator 20.
transmitted to.

発明の効果 本発明の霧化装置によれば、霧化器自体のコンパクトな
構造に加えて、発振駆動部の構成が単純であり、しかも
、補償器によって霧化器が効率よく作動する機械的共振
点追尾が実現できる。
Effects of the Invention According to the atomizing device of the present invention, in addition to the compact structure of the atomizing device itself, the configuration of the oscillation drive section is simple, and the compensator allows the atomizing device to operate efficiently. Resonance point tracking can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は圧電
素子の等価回路図、第3図は1駆動周波数に対する電流
特性図、第4図は駆動周波数に対する電流と霧化量の特
性図、第5図はインダクタ結合自励発振系のブロック構
成図、第6図Aは霧化器等価容量の温度特性、Bは機械
的共振点及び自励発振系での発振周波数の温度特性を示
す図、第7図A、Bは本発明の一実施例を示すブロック
構成図、第8図は本発明の具体的回路図である。 1・・・・・・加圧室、2・・・・・・ボディー、5・
・・・・・供給部、7・・・・・・ノズル部、9・・・
・・・圧電素子、17・・・・・・インダクタ、18・
・・・・・増幅部、19・・・・・・電流検出器、20
.21・・・・・・補償器としてのコンデンサ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1θ 第2図 HI31乙 \   \   / 第3図 すr     = f  乃ヒ動I弓液1り;第5図 1δ 第6図 o         50      T、(’c)0
2050  碗
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is an equivalent circuit diagram of a piezoelectric element, Fig. 3 is a current characteristic diagram for one drive frequency, and Fig. 4 is a current and atomization amount for each drive frequency. Figure 5 is a block diagram of the inductor-coupled self-oscillation system, Figure 6A is the temperature characteristic of the atomizer equivalent capacity, and B is the temperature of the mechanical resonance point and the oscillation frequency in the self-oscillation system. FIGS. 7A and 7B are block diagrams showing an embodiment of the present invention, and FIG. 8 is a specific circuit diagram of the present invention. 1... Pressure chamber, 2... Body, 5...
...Supply section, 7...Nozzle section, 9...
...Piezoelectric element, 17...Inductor, 18.
...Amplification section, 19...Current detector, 20
.. 21...Capacitor as a compensator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 1 θ Fig. 2 HI31 Otsu \ \ / Fig. 3 S r = f Nohi motion I bow liquid 1 ri; Fig. 5 1 δ Fig. 6 o 50 T, ('c) 0
2050 Bowl

Claims (1)

【特許請求の範囲】[Claims] (1)  液体を充填する加圧室を備えたボディーと。 前記加圧室に液体を供給するための供給部と、前記加圧
室に臨むように設けたノズルを有するノズル部と、前記
ノズル部を付勢して前記ノズルを加振する電気的振動子
とからなる霧化器と、前記霧化器に流れる電流を検出す
る電流検出器と、前記電流検出器の信号を増幅する増幅
部と、前記増幅部からの信号を前記霧化器に伝達するイ
ンダクタとからなる発振駆動部と、温度に対する、前記
霧化器の等価容量変化分と前記インダクタの変化分を補
償して、前記発振駆動部の発振周波数を前記霧化器の機
械的共振変化に追随させる補償器とで構成された霧化装
置。 (4前記霧化器と並列、あるいは、直列接続したコンデ
ンサーで前記補償器を構成したことを特徴とする特許請
求の範囲第1項記載の霧化装置。
(1) A body equipped with a pressurized chamber filled with liquid. a supply unit for supplying liquid to the pressurizing chamber; a nozzle unit having a nozzle facing the pressurizing chamber; and an electric vibrator that biases the nozzle unit and vibrates the nozzle. an atomizer comprising: a current detector that detects the current flowing through the atomizer; an amplifying section that amplifies the signal of the current detector; and a signal from the amplifying section that transmits the signal to the atomizer. an oscillation drive unit comprising an inductor; and an oscillation drive unit that compensates for changes in the equivalent capacitance of the atomizer and changes in the inductor with respect to temperature, and adjusts the oscillation frequency of the oscillation drive unit to mechanical resonance changes of the atomizer. An atomization device consisting of a compensator for tracking. (4) The atomization device according to claim 1, wherein the compensator is constituted by a capacitor connected in parallel or in series with the atomization device.
JP2792983A 1982-12-20 1983-02-22 Atomizer Granted JPS59154159A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2792983A JPS59154159A (en) 1983-02-22 1983-02-22 Atomizer
US06/563,522 US4632311A (en) 1982-12-20 1983-12-20 Atomizing apparatus employing a capacitive piezoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2792983A JPS59154159A (en) 1983-02-22 1983-02-22 Atomizer

Publications (2)

Publication Number Publication Date
JPS59154159A true JPS59154159A (en) 1984-09-03
JPS6366267B2 JPS6366267B2 (en) 1988-12-20

Family

ID=12234575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2792983A Granted JPS59154159A (en) 1982-12-20 1983-02-22 Atomizer

Country Status (1)

Country Link
JP (1) JPS59154159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152719A (en) * 2011-01-28 2012-08-16 Canon Inc Vibration member driving circuit
JP2015128769A (en) * 2015-02-05 2015-07-16 キヤノン株式会社 Vibration body drive circuit, device, and optical instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368474U (en) * 1989-11-06 1991-07-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152719A (en) * 2011-01-28 2012-08-16 Canon Inc Vibration member driving circuit
JP2015128769A (en) * 2015-02-05 2015-07-16 キヤノン株式会社 Vibration body drive circuit, device, and optical instrument

Also Published As

Publication number Publication date
JPS6366267B2 (en) 1988-12-20

Similar Documents

Publication Publication Date Title
US4703213A (en) Device to operate a piezoelectric ultrasonic transducer
US5892315A (en) Apparatus and method for controlling an ultrasonic transducer
GB2154472A (en) Apparatus for atomising liquids
JPS592617B2 (en) ink jetting device
US3121534A (en) Supersonic liquid atomizer and electronic oscillator therefor
JPS59154159A (en) Atomizer
US5040514A (en) Arrangement for injecting fuel for an internal combustion engine
JPS648589B2 (en)
JP7390915B2 (en) Ultrasonic vibrator drive method, drive circuit, and ultrasonic atomization device
JPS5973072A (en) Atomizer
WO2004011154A2 (en) Droplet generation by transverse disturbances
JPS648587B2 (en)
JPS59112865A (en) Atomizer
JPS59201962A (en) Atomizing apparatus
JPS59136159A (en) Atomizer
JP2011101072A (en) Oscillation circuit and atomization device
JPS645947B2 (en)
JPS6022480A (en) Piezoelectric element of surface wave motor
JPS60172376A (en) Atomizing device
JPH0118785B2 (en)
JPS6327066B2 (en)
JPH06254455A (en) Supersonic vaporizer
JPS61120653A (en) Atomizer driving apparatus
JPS59112864A (en) Atomizer
JPS5855066A (en) Supersonic atomizer