JPS59153862A - Sintered hard tungsten carbide alloy member for cutting tool and production thereof - Google Patents

Sintered hard tungsten carbide alloy member for cutting tool and production thereof

Info

Publication number
JPS59153862A
JPS59153862A JP58028172A JP2817283A JPS59153862A JP S59153862 A JPS59153862 A JP S59153862A JP 58028172 A JP58028172 A JP 58028172A JP 2817283 A JP2817283 A JP 2817283A JP S59153862 A JPS59153862 A JP S59153862A
Authority
JP
Japan
Prior art keywords
cemented carbide
nitride
cutting
metals
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58028172A
Other languages
Japanese (ja)
Other versions
JPS6058295B2 (en
Inventor
Hironori Yoshimura
吉村 寛範
Hiroyuki Oi
浩之 大井
Munenori Nakajima
中島 宗紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58028172A priority Critical patent/JPS6058295B2/en
Publication of JPS59153862A publication Critical patent/JPS59153862A/en
Publication of JPS6058295B2 publication Critical patent/JPS6058295B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titled sintered hard alloy member having the resistance to wear, plastic deformation and impact by providing a prescribed average layer thickness of an O2-contg. surface layer to a sintered hard WC alloy member contg. ferrous metals as a component for forming a bond phase and carbide, nitride, etc. of 4a and 5a group metals as a component for forming a hard phase. CONSTITUTION:A sintered hard WC alloy member contg. respectively 5-30% >=1 kind among ferrous metals as a component for forming a bond phase, and 5-50%>=1 kind among carbide and nitride of 4a and 5a group metals of periodic table as a component for forming a hard phase is prepd. The member is subjected to a heating treatment in an O2-contg. atmosphere under a temp. condition of 1,200-1,300 deg.C to form an oxygen-contg. surface reaction layer having 10-400mum average layer thickness. The contents of the ferrous metal in the central part of the member and the carbide and nitride thereof are regulated respectively at 0.1-0.9 the ferrous metal and 1.2-2.5 the carbide and nitride in the ratio thereof in the member body.

Description

【発明の詳細な説明】 この発明は、すぐれた耐摩耗性、耐塑性変形性、および
耐衝撃性を有し、特にこれらの特性が要求されるフライ
ス切削や断続切削などに切削工具として使用した場合に
すぐれた切削性能を発揮する炭化タングステン(以下W
Cで示す)超超硬合金部材およびその製造法に関するも
のである。
[Detailed Description of the Invention] This invention has excellent wear resistance, plastic deformation resistance, and impact resistance, and is particularly suitable for use as a cutting tool in milling cutting, interrupted cutting, etc. where these characteristics are required. Tungsten carbide (hereinafter referred to as W) exhibits excellent cutting performance when
The present invention relates to a cemented carbide member (indicated by C) and a manufacturing method thereof.

従来、例えばWe−C!o超硬合金部制が鋳鉄用切削工
具として、またwe −(w、 T、t、 Ta) O
−CO超超硬合金月利鋼用切削工具としてそれぞれ使用
されている。
Conventionally, for example, We-C! o Cemented carbide parts can be used as cutting tools for cast iron, and we - (w, T, t, Ta) O
-CO is used as a cutting tool for cemented carbide steel.

これら従来WC基超超合金部制においては、その切削用
途に合わせて、適宜Co含有量や(TjC+TaC)含
有量を変化させて使用しているが、Co量を増すと部材
の耐衝撃性は向上するように々るが、反面耐摩耗性およ
び耐塑性変形性が低下するようになり、壕だ(TiC+
TaC)量を増すと耐摩耗性は向上するが、耐衝撃性が
低下するようになシ、とのように耐摩耗性、耐塑性変形
性、および耐衝撃性のすべてを具備した切削工具用WC
C超超硬合金部材未だ開発されていないのが現状である
In these conventional WC-based super-superalloy parts, the Co content and (TjC+TaC) content are changed as appropriate depending on the cutting application, but as the Co content increases, the impact resistance of the part decreases. However, on the other hand, the wear resistance and plastic deformation resistance deteriorated (TiC+
For cutting tools that have all of wear resistance, plastic deformation resistance, and impact resistance. W.C.
At present, C cemented carbide members have not yet been developed.

壕だ、一方で、上記の従来WCC超超硬合金部材もつ耐
衝撃性をいかし、これにml摩耗性を付方する目的で、
前記WCC超超硬合金部材表面に、周期律表の4a、δ
a、および6a族金属の炭化物、窒化物、酸化物、硫化
物、および硼化物、並びにこれらの2種以上の固溶体、
さらにAg203および/VN。
On the other hand, in order to take advantage of the impact resistance of the conventional WCC cemented carbide member mentioned above and add ML abrasion resistance to it,
4a and δ of the periodic table on the surface of the WCC cemented carbide member.
a, and carbides, nitrides, oxides, sulfides, and borides of Group 6a metals, and solid solutions of two or more of these;
Additionally, Ag203 and /VN.

並びに前記2成分の固溶体からなる群のうちの1種の単
層あるいは2種以上の複層からなる被覆層を化学蒸着法
や物理蒸着法などを用いて形成してなる表面被覆WCC
超超硬合金部材捉案され、旋削の分野で広く実用に供さ
れている。しかし、前記被覆層の形成にあたっては、通
常、反応ガスとしてT]、C14,CH4、H2,およ
びN2などを用いるため、装置自体が犬がかりとなるば
かりでなく、コスト高ともなり、さらにTi0.54が
分解して発生するCtガスによる装置構造部材の腐食、
およびatガスの漏洩防止など保安管理」−多くの問題
がある。
and a surface-coated WCC formed by forming a coating layer consisting of a single layer of one type or a multilayer of two or more types from the group consisting of solid solutions of the two components using a chemical vapor deposition method, a physical vapor deposition method, etc.
It has been proposed for use in cemented carbide materials and is widely used in the turning field. However, in forming the coating layer, typically T], C14, CH4, H2, N2, etc. are used as reaction gases, which not only makes the apparatus itself complicated but also increases the cost. Corrosion of equipment structural members due to Ct gas generated by decomposition of 54,
and safety management such as prevention of AT gas leaks - there are many problems.

寸だ、−4二記の表面被覆WCC超超硬合金部材おいて
は、その被覆層を化学蒸着法により形成した場合、被覆
層直下の基体表面部に脱炭層が形成するのを避は乞こと
ができず、このように脱炭層が形成されると部材自体の
靭性が低下するようになるため、これを衝撃の激しいフ
ライス切削や断続切削に使用した場合、必ずしも満足す
る切削性能を示さないものである。
In the case of the surface-coated WCC cemented carbide member described in -4-2, when the coating layer is formed by chemical vapor deposition, it is impossible to avoid the formation of a decarburized layer on the surface of the substrate directly under the coating layer. When a decarburized layer is formed in this way, the toughness of the material itself decreases, so if this material is used for milling or interrupted cutting that involves high impact, it will not necessarily show satisfactory cutting performance. It is something.

そこて、本発明者等は、上述のような観点から、化学蒸
着法や物理蒸着法などの被覆層形成手段によらずに、す
ぐれた耐摩耗性、耐塑性変形性、および耐衝撃性を兼ね
備えた切削工具用W C超超硬合金部材を得べく研究を
行なった結果、重量係で、結合相形成成分と1〜ての鉄
族金属のうちの1種または2種以北:5−30飴、 硬質相形成成分としての周期律表の4aおよび5a族金
属の炭化物および窒化物のうちの1種または2種以上(
以下これらを総称して金属の炭・窒化物という):5〜
50係、 を含有し、残りが同じく硬質相形成成分としてのWCと
不可避不純物からなる組成を有するWCC超超硬合金部
材、 酸素含有雰囲気中、1200〜1350℃の範囲内の所
定温度に加熱保持の条件で加熱処理を施すと、 上記部材の表面部において、部材の構成成分と雰囲気中
の酸素とが反応して安定な酸化物が形成され、この間部
側本体の内部と表面部との間には前記構成成分の拡散が
起るため、金属の炭・窒化物の含有量が部材本体内部に
比して相対的に高く、一方鉄族金属の含有量は反対に低
く、かつ酸素を含めて、これらの成分はいずれも連続的
濃度勾西己をもった表面反応層が部材表面部に形成され
るようになり、しかもこの表面反応層を、10〜400
μn7の平均層厚を有し、かつその中央部における鉄族
金属および金属の炭・窒化物の含有量を、部材本体内部
のそれに対する害1上合で、 鉄族金属:0.1〜09゜ 金属の炭・窒化物:12〜25゜ ’fc 7Pa足するものとすると、この結果の表面反
応層はすぐれた耐摩耗性および耐塑性変形性を有するよ
うになり、したがってWCC超超硬合金部材、すぐれた
耐摩耗性、耐塑性変形性、および耐衝撃性を具備するよ
うになるという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors have attempted to achieve excellent wear resistance, plastic deformation resistance, and impact resistance without using coating layer forming methods such as chemical vapor deposition or physical vapor deposition. As a result of research to obtain a WC cemented carbide member for cutting tools that has the following properties, we found that, in terms of weight, the binder phase forming component and one or two of the iron group metals: 5- 30 candy, one or more carbides and nitrides of metals from groups 4a and 5a of the periodic table as hard phase forming components (
These are hereinafter collectively referred to as metal carbon/nitrides): 5~
Section 50, a WCC cemented carbide member having a composition in which the remainder similarly consists of WC as a hard phase forming component and unavoidable impurities, heated and maintained at a predetermined temperature within the range of 1200 to 1350°C in an oxygen-containing atmosphere. When heat treatment is performed under these conditions, the constituent components of the member react with oxygen in the atmosphere on the surface of the member, forming a stable oxide, and during this time, the space between the inside of the main body and the surface Because diffusion of the constituent components occurs, the content of metal carbon and nitride is relatively high compared to the inside of the member body, while the content of iron group metals is low, including oxygen. As a result, a surface reaction layer with a continuous concentration gradient is formed on the surface of each component, and this surface reaction layer is
It has an average layer thickness of μn7, and the content of iron group metals and metal carbon/nitrides in the central part is 1 or more harmful to that inside the member body, iron group metals: 0.1 to 0.9゜Metal carbon/nitride: 12~25゜'fc 7Pa shall be added, the resulting surface reaction layer will have excellent wear resistance and plastic deformation resistance, therefore WCC cemented carbide They found that the material has excellent wear resistance, plastic deformation resistance, and impact resistance.

この発明は上記知見にもとづいてなされたものであり、
丑たこの発明の方法を実施するに際して、酸素含有雰囲
気としては、CO2雰囲気とするのが望ましく、これは
、CO2は高温でCoに変化しやすく、酸素分圧はきわ
めて低いが、反応の初期酸化による脱炭と、反応の後期
のCOによる浸炭とが相殺し、部材自体の炭素含有量を
ほとんど変化させないという利点がもたらされることに
よるものである。
This invention was made based on the above knowledge,
When carrying out the method of this invention, it is preferable to use a CO2 atmosphere as the oxygen-containing atmosphere, because CO2 easily changes to Co at high temperatures, and although the oxygen partial pressure is extremely low, the initial oxidation of the reaction is This is because the decarburization caused by CO and the carburization caused by CO in the latter stage of the reaction cancel each other out, resulting in the advantage that the carbon content of the member itself hardly changes.

甘だ、この発明の表面反応層における酸素含有量に関し
、表面反応層のみの酸素含有量を測定することは不可能
であるが、部材全体の酸素含有量を測定すると02〜2
.0 % i示し、−刃表面反応層を削除した状態での
部材の酸素含有量は0.03〜0.1%であることから
、表面反応層における酸素含有量は少なくとも02係以
上であることが推測されるものである。
Naive, regarding the oxygen content in the surface reaction layer of this invention, it is impossible to measure the oxygen content of only the surface reaction layer, but if you measure the oxygen content of the entire member, it will be 02 to 2.
.. Since the oxygen content of the member with the blade surface reaction layer removed is 0.03 to 0.1%, the oxygen content in the surface reaction layer must be at least 02% or higher. is estimated.

つぎに、この発明において、we基超超硬合金部材成分
組成、表面反応層の平均層厚および成分含有割合、並び
に加熱処理温度ヲ」二記の通りに限定した理由を説明す
る。
Next, in this invention, the reason why the component composition of the we-based cemented carbide, the average layer thickness and component content of the surface reaction layer, and the heat treatment temperature are limited to the following will be explained.

A、WCC超超硬合金部材成分組成 (a)  鉄族金属 これらの成分には部材の耐衝撃性を向」−させる作用が
あるが、その含有量が5%未満では所望の耐衝撃性を確
保することができず、一方30%を越えて含有させると
耐摩耗性が低下するようにムることから、その含有量を
5〜30チと定めた。
A. WCC cemented carbide component composition (a) Iron group metal These components have the effect of improving the impact resistance of the component, but if their content is less than 5%, the desired impact resistance may not be achieved. On the other hand, if the content exceeds 30%, the wear resistance will decrease, so the content was set at 5 to 30%.

(b)  金属の炭・窒化物 これらの成分には、部材の耐摩耗性および耐塑性変形性
を向」ニさせる作用があるが、その含有量が5%未満で
は前記作用に所望の効果が得られないばかりでなく、耐
摩耗性および耐塑性変形性のすくれた表面反応層を形成
することができず、一方50%を越えて含有させると部
材の耐衝撃性の低下が著しくなることから、その含有量
を5〜50係と定めた。
(b) Metallic carbon/nitride These components have the effect of improving the wear resistance and plastic deformation resistance of parts, but if their content is less than 5%, the desired effects may not be achieved. Not only is it not possible to obtain this, but a surface reaction layer with poor wear resistance and plastic deformation resistance cannot be formed, and on the other hand, if the content exceeds 50%, the impact resistance of the member will be significantly reduced. Therefore, the content was determined to be between 5 and 50.

B1表面反応層 (a)  平均層厚 その平均層厚が10μm未満では、所望のすぐれた耐摩
耗性および耐塑性変形性を確保することができず、一方
その平均層厚が400μmを越えると表面反応層自体に
微細なチッピングが発生するようになり、これが亀裂に
発展する場合もあることから、その平均層厚を10〜4
00μmと定めた。
B1 Surface reaction layer (a) Average layer thickness If the average layer thickness is less than 10 μm, the desired excellent wear resistance and plastic deformation resistance cannot be ensured, while if the average layer thickness exceeds 400 μm, the surface As fine chipping begins to occur in the reaction layer itself, and this may develop into cracks, the average layer thickness is reduced to 10 to 4
00 μm.

(b)  成分含有割合 表面反応層における鉄族金属および金属の炭・窒化物の
含有量は加熱処理条件によって変化させることができる
が、その中央部における鉄族金属の含有量が、部材本体
内部の鉄族金属のそれに対する割合で0.9i越えると
、表面反応層の耐摩耗性および耐塑性変形性が劣化する
ように°なり、一方同割合が0.1未満では表面反応層
自体が脆化して割れが発生するようになることから、表
面反応層における鉄族金属の含有割合’50.1〜0.
9と定めた。
(b) Component content ratio The content of iron group metals and metal carbon/nitrides in the surface reaction layer can be changed depending on the heat treatment conditions, but the content of iron group metals in the central part of the surface reaction layer is If the ratio of iron group metals exceeds 0.9i, the wear resistance and plastic deformation resistance of the surface reaction layer will deteriorate, while if the ratio is less than 0.1, the surface reaction layer itself will become brittle. The content ratio of iron group metal in the surface reaction layer is from 50.1 to 0.
It was set as 9.

また、表面反応層中央部における金属の炭・窒化物の含
有量が、部材本体内部の炭・窒化物のそれに対する割合
で1.2未満では、所望のすぐれた耐摩耗性および耐塑
性変形性を確保することができず、一方同割合が2.5
を越えると、表面反応層は著しく脆化し、割れが発生し
易くなることから、表面反応層における金属の炭・窒化
物の含有割合を1.2〜2.5と定めた。
In addition, if the content of metal carbon/nitride in the central part of the surface reaction layer is less than 1.2 in proportion to that of carbon/nitride inside the member body, desired excellent wear resistance and plastic deformation resistance can be achieved. However, the same ratio is 2.5
If it exceeds this, the surface reaction layer becomes extremely brittle and cracks are likely to occur, so the content ratio of metal carbon/nitride in the surface reaction layer was determined to be 1.2 to 2.5.

C0加熱処理温度 その温度が1200℃未満では、表面反応層の形成がほ
とんど行々われず、一方その温度が1350℃を越える
と、部材表面に肌荒れが生じ、所定の寸法精度を確保す
ることが困難になることから、その温度を1200〜1
350℃と定め−た。
C0 heat treatment temperature If the temperature is less than 1200°C, the formation of a surface reaction layer will hardly take place, while if the temperature exceeds 1350°C, roughness will occur on the surface of the member and it will be difficult to ensure the specified dimensional accuracy. Because it becomes difficult, the temperature should be set at 1200~1
The temperature was set at 350°C.

つぎに、この発明を実施例により具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例 原料粉末として、平均粒径:2.2μynfr有するw
C粉末、同1.0μ?nのT’i0粉末、同1.3 p
mのZrO粉末、同1,2μmのHfC粉末、同1.2
 pmのVC粉末、同1.0pmのN1)O粉末、同1
.1 pmのTaO粉末、同1.2/1mのTiN粉末
、同1.8μmのZrN粉末、同2.0μmのHfN粉
末、同2.0μmのVN粉末、同1.’8μmのNbN
粉末2同1.7pmのTaN粉末、同1.2 pmのC
o粉末。
As the raw material powder of the example, average particle size: 2.2 μynfr w
C powder, same 1.0μ? T'i0 powder of n, 1.3 p
ZrO powder of 1.2 μm, HfC powder of 1.2 μm
pm VC powder, same 1.0 pm N1) O powder, same 1.0 pm
.. 1 pm TaO powder, 1.2/1 m TiN powder, 1.8 μm ZrN powder, 2.0 μm HfN powder, 2.0 μm VN powder, 1. '8μm NbN
Powder 2 1.7 pm TaN powder, 1.2 pm C
o powder.

同183μmのN1粉末、および同1.2μmのFe粉
末を用意し、これら原料粉末をそれぞれ適宜配合し、通
常の条件で混合した後、圧粉体に成形し、この圧粉体を
、圧カニ 10−2torrの真空中、それぞれ第1表
に示される温度に1時間保持してそれぞれ第1表に示さ
れる成分組成をもった焼結体とし、ついでJ工S規格5
NP432に則した形状に研磨した後、それぞれ第1表
に示される条件にて加熱処理を行なうことによって、表
面反応層を有する本発明超硬合金チップ1〜25および
比較超硬合金チップ1〜4をそれぞれ製造した。なお、
比較超硬合金チップ1〜4ば、いずれも配合組成および
加熱処理温度のうちのいずれかがこの発明の範囲から外
れた条件(第1表に※印を付す)で製造されたものであ
る。
N1 powder with a diameter of 183 μm and Fe powder with a diameter of 1.2 μm are prepared, these raw material powders are appropriately blended, mixed under normal conditions, and then molded into a green compact. Each was held at the temperature shown in Table 1 for 1 hour in a vacuum of 10-2 torr to form a sintered body having the component composition shown in Table 1, and then sintered with J Engineering S Standard 5.
After polishing into a shape conforming to NP432, heat treatment was performed under the conditions shown in Table 1 to obtain cemented carbide chips 1 to 25 of the present invention and comparative cemented carbide chips 1 to 4, each having a surface reaction layer. were manufactured respectively. In addition,
Comparative cemented carbide chips 1 to 4 were all manufactured under conditions in which either the composition or the heat treatment temperature was outside the scope of the present invention (marked with * in Table 1).

つぎに、この結果得られた本発明超硬合金チップ]〜2
5および比較超硬合金チップ1〜4について、表面反応
層の平均層厚を測定すると共に、表面反応層中央部とチ
ップ本体内部の鉄族金属および金属の炭・窒化物の含有
量を測定し、その含有割合を算出した。これらの結果を
第1表に示した。
Next, the obtained cemented carbide chip of the present invention]~2
5 and comparative cemented carbide chips 1 to 4, the average layer thickness of the surface reaction layer was measured, and the content of iron group metals and metal carbon/nitrides in the central part of the surface reaction layer and inside the chip body was measured. , the content ratio was calculated. These results are shown in Table 1.

寸だ、上記の本発明超硬合金チップ1〜25および比較
超硬合金チップl〜4、さらに比較の目的で用意した、
それぞれ第1表に示される従来超硬合金チップ1〜5f
:用い、 (a)被削材: S N OM −8(硬さ:HB22
0)、切削速度: 200 nI/min、 送り0.36 mm/ rev、、 切込み:1.5+mn、 切削時間 10ml7+、 の条件(以下切削条件Aという)での連続切削試験、 (b)  被削材:SNCM−8(硬さ:HB280)
、切削速度 140 m 1mm、 送り : 0.3 mm/rev、、 切込み 2I+ll11、 切削時間 3 min、 の条件(以下切削条件Bという)での断続切削試験、 (C)被削材:SNC!M−8(硬さ HB 240 
)、切削速度 130 m/mUI、 送5:0.45胴/rev、 切込み 2間、 切削時間 1(llIn、 の条件(以下切削条件Cという)での連続切削試:10
0闇)、 リノ削速度 ’ 475m/I’fHn、送り 0.3
 mm/ rev、 切込み 4 mm、 切削時間H20nun。
In addition to the above-mentioned cemented carbide chips 1 to 25 of the present invention and comparison cemented carbide chips 1 to 4, prepared for the purpose of comparison,
Conventional cemented carbide tips 1 to 5f shown in Table 1, respectively
: Used, (a) Work material: SNOM-8 (hardness: HB22
0), Cutting speed: 200 nI/min, Feed: 0.36 mm/rev, Depth of cut: 1.5+mn, Cutting time: 10ml7+, Continuous cutting test under the following conditions (hereinafter referred to as cutting condition A), (b) Workpiece Material: SNCM-8 (hardness: HB280)
, cutting speed 140 m 1 mm, feed: 0.3 mm/rev, depth of cut 2I+ll11, cutting time 3 min, Intermittent cutting test under the following conditions (hereinafter referred to as cutting condition B), (C) Work material: SNC! M-8 (hardness HB 240
), cutting speed 130 m/mUI, feed rate 5: 0.45 cylinder/rev, depth of cut 2 intervals, cutting time 1 (llIn), continuous cutting trial under the following conditions (hereinafter referred to as cutting condition C): 10
0 darkness), lino cutting speed '475m/I'fHn, feed 0.3
mm/rev, depth of cut 4 mm, cutting time H20nun.

工具直径:160鼠(単刃)、 の条件で、かつ工具の中心を被削材長手方向の中心線上
に合わせ、乾式の条件(以下切削条件りという)での正
面フラ・fス切削試験、 (θ)被削材 SNCM−8(硬さHB260)、切削
速度 150 m 7mIn、 送り 0.375 mm/r e v4、切込み 2 
mm、 切削時間: 10 min、 の条件(以下切削条件Eという)での連続切削試験、 +f)  被削利 S N C! ls −8(硬さ 
HB280)、切削速度: 100 m 1mIn、 送、!7:0.375胴/rev、、 切込み 2硼、 切削時間 3 min、 の条件(以下切削条件Fという)での断続切削試験、 を行ない、−に記連続切削試験ではチップ切刃の逃げ面
摩耗幅とすくい面摩耗深さを測定し、捷た上記断続切削
試験では試験切刃数10個のうちの欠損切刃数をチェッ
クし、さらに上記正面フライス切削試験では、切刃の逃
げ面を、その表面から400μmの深さ削り込んで鏡面
に仕上げ、この状態での切刃逃げ面における亀裂本数、
亀裂トータル長さ、および亀裂平均長さをそれぞれ測定
した。
Tool diameter: 160mm (single edge), and the center of the tool was aligned on the longitudinal center line of the workpiece material, and a face-flask cutting test was carried out under dry conditions (hereinafter referred to as cutting conditions). (θ) Work material SNCM-8 (hardness HB260), cutting speed 150 m 7 mIn, feed 0.375 mm/r e v4, depth of cut 2
mm, Cutting time: 10 min, Continuous cutting test under the conditions (hereinafter referred to as cutting conditions E), +f) Workpiece profit S N C! ls -8 (hardness
HB280), cutting speed: 100 m 1 mIn, feed,! 7: An interrupted cutting test was conducted under the following conditions (hereinafter referred to as cutting condition F): 0.375 cylinder/rev, depth of cut: 2 mm, cutting time: 3 min. In the continuous cutting test described in -, the flank surface of the chip cutting edge was The wear width and rake face wear depth were measured, and in the above-mentioned interrupted cutting test, the number of missing cutting edges among the 10 tested cutting edges was checked.Furthermore, in the above-mentioned face milling cutting test, the flank surface of the cutting edge was checked. The number of cracks on the flank of the cutting edge in this state is
The total crack length and average crack length were measured.

これらの測定結果を第2表に示した。The results of these measurements are shown in Table 2.

第2表に示される結果から、本発明超硬合金チップ1〜
25は、いずれもすぐれた耐摩耗性、耐塑性変形性、お
よび耐衝撃性を具備しているので、いずれの切削試験で
もきわめてすぐれた切削性能を示すのに対して、比較超
硬合金チップ1〜4および従来超硬合金チップ1〜5に
おいては、前記の特性のうち少なくともいずれかの特性
に劣るものであるため、必ずしも満足する切削性能を示
さないことが明らかである。
From the results shown in Table 2, the cemented carbide chips 1 to 1 of the present invention
No. 25 has excellent wear resistance, plastic deformation resistance, and impact resistance, so it shows extremely excellent cutting performance in all cutting tests, whereas Comparative Cemented Carbide No. 1 It is clear that the conventional cemented carbide tips 1 to 4 and conventional cemented carbide tips 1 to 5 do not necessarily exhibit satisfactory cutting performance because they are inferior in at least one of the above characteristics.

上述のように、この発明によれば、大がかりな装置を必
要とすることなく、また保安管理上大きな問題の発生も
々く、耐摩耗性、耐塑性変形性、および耐衝撃性にすぐ
れたWC基超超合金部部側コスト安く製造することがで
き、しかもこれを切削工具、特に7ライス切削や断続切
削用として使用した場合に著しくすぐれた切削性能を発
揮するなど工業上有用な効果がもたらされるのである。
As described above, according to the present invention, a WC that does not require large-scale equipment, does not easily cause major problems in terms of safety management, and has excellent wear resistance, plastic deformation resistance, and impact resistance. The base super superalloy part can be manufactured at low cost, and when used as a cutting tool, especially for 7-rice cutting or interrupted cutting, it has industrially useful effects such as extremely excellent cutting performance. It is possible.

出願人 三菱金属株式会社 代理人 富 1)和 夫 外1名Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)平均層厚:10〜400μmの酸素含有表面反応
層を有する炭化タングステン基超硬合金部材にして、前
記超硬合金部材の本体は、 結合相形成成分としての鉄族金属のうちの1種脣たは2
種以上:5〜30%、 硬質相形成成分としての周期律表の4aおよび5a族金
属の炭化物および窒化物のうちの1種または2種以上(
以下これらを総称して金属の炭・窒化物という):5〜
50%、 を含有し、残りが同じく硬質相形成成分としての炭化タ
ングステンと不可避不純物からなる組成(以上重量%)
を有し、 かつ上記表面反応層の2中央部における鉄族金属および
金属の炭・窒化物の含有量が、上記超硬合金部材の本体
のそれに対する割合で、それぞれ鉄族金属:0.1〜0
.9゜ 金属の炭・窒化物 12〜25゜ を満足することを特徴とする切削工具用炭化タングステ
ン基超硬合金部制。
(1) A tungsten carbide-based cemented carbide member having an oxygen-containing surface reaction layer with an average layer thickness of 10 to 400 μm, the main body of the cemented carbide member comprising one of the iron group metals as a binder phase forming component. Seed or 2
Species or more: 5 to 30%, one or more carbides and nitrides of group 4a and 5a metals of the periodic table as hard phase forming components (
These are hereinafter collectively referred to as metal carbon/nitrides): 5~
50%, with the remainder consisting of tungsten carbide as a hard phase forming component and inevitable impurities (weight%)
and the content of iron group metal and metal carbon/nitride in the two central portions of the surface reaction layer is respectively iron group metal: 0.1 in proportion to that of the main body of the cemented carbide member. ~0
.. A tungsten carbide-based cemented carbide part for a cutting tool, characterized in that it satisfies the angle of 9° metal carbon/nitride 12 to 25°.
(2)結合相゛形成成分としての鉄族金属のうちの1種
または2種以上:5〜30チ、 硬質相形成成分としての周期律表の4aおよび5a族金
属の炭化物および窒化物のうちの1種または2種以上(
以下これらを総称して金属の炭・窒化物という):5〜
50%、 を含有し、残りが同じく硬質相形成成分としての炭化タ
ングステンと不可避不純物からなる組成(以上重量係)
を有する炭化タングステン基超硬合金部材を、 酸素含有雰囲気中、1200〜1350℃の範囲内の所
定温度で加熱処理して、その表面に、10〜400μm
の平均層厚を有し、 かつ中央部における鉄族金属および金属の炭窒化物の含
有量が、それぞれ上記超硬合金部側の本体のそれに対す
る割合で、 鉄族金属、O1〜09゜ 金属の炭・窒化物 12〜2.5゜ を満足する酸素含有の表面反応層を形成すること全特徴
とする切削工具用炭化タングステン基超硬合金部材の製
造法。
(2) One or more iron group metals as a binder phase-forming component: 5 to 30 carbides and nitrides of metals from groups 4a and 5a of the periodic table as hard phase-forming components. One or more types of (
These are hereinafter collectively referred to as metal carbon/nitrides): 5~
A composition containing 50% of
A tungsten carbide-based cemented carbide member with
, and the content of iron group metals and metal carbonitrides in the central part is the ratio to that of the main body on the side of the cemented carbide part, respectively. A method for manufacturing a tungsten carbide-based cemented carbide member for a cutting tool, which is characterized by forming an oxygen-containing surface reaction layer satisfying a carbon/nitride angle of 12 to 2.5°.
JP58028172A 1983-02-22 1983-02-22 Tungsten carbide-based cemented carbide member for cutting tools and its manufacturing method Expired JPS6058295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028172A JPS6058295B2 (en) 1983-02-22 1983-02-22 Tungsten carbide-based cemented carbide member for cutting tools and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028172A JPS6058295B2 (en) 1983-02-22 1983-02-22 Tungsten carbide-based cemented carbide member for cutting tools and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS59153862A true JPS59153862A (en) 1984-09-01
JPS6058295B2 JPS6058295B2 (en) 1985-12-19

Family

ID=12241310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028172A Expired JPS6058295B2 (en) 1983-02-22 1983-02-22 Tungsten carbide-based cemented carbide member for cutting tools and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6058295B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428026Y2 (en) * 1987-10-02 1992-07-07

Also Published As

Publication number Publication date
JPS6058295B2 (en) 1985-12-19

Similar Documents

Publication Publication Date Title
JP2009028894A (en) Coated cutting tool
JPH02197569A (en) Coated sintered hard alloy and production thereof
KR20000057904A (en) Cemented carbide insert
KR101133476B1 (en) ??? coated cutting tool insert
JP2012144766A (en) Coated member
EP1352697B1 (en) Coated cutting tool insert
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JPS59170262A (en) Surface-coated tool member with superior wear resistance
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2011122222A (en) Surface-coating member
JPS59153862A (en) Sintered hard tungsten carbide alloy member for cutting tool and production thereof
JPS5928628B2 (en) Surface coated cemented carbide tools
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JPS6299467A (en) Surface-coated sintered hard alloy
JP2001310202A (en) Surface covered cermet made cutting tool on which hard covered layer displays excellent chipping resistance
JPS5856033B2 (en) Coated cemented carbide parts
JPS6343453B2 (en)
JPS6119777A (en) Abrasion and heat resistant coated cemented hard alloy meterial
JPH07122139B2 (en) Method for producing coated cemented carbide tool
JPS63103071A (en) Surface coated sintered hard alloy
JPS63103072A (en) Surface coated sintered hard alloy
JPS62105628A (en) High-tenacity coated cemented carbide and manufacture thereof
JPS60174876A (en) Manufacture of coated cutting tool
JPH1086002A (en) Cutting tool made of surface-coated cemented carbide excellent in thermal shock resistance
JPS5953342B2 (en) A tungsten carbide-based cemented carbide member with a multilayer structure on the surface and excellent wear resistance and impact resistance.