JPS59153718A - Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier - Google Patents

Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier

Info

Publication number
JPS59153718A
JPS59153718A JP2655583A JP2655583A JPS59153718A JP S59153718 A JPS59153718 A JP S59153718A JP 2655583 A JP2655583 A JP 2655583A JP 2655583 A JP2655583 A JP 2655583A JP S59153718 A JPS59153718 A JP S59153718A
Authority
JP
Japan
Prior art keywords
fluid
capsule
pneumatic
compressed air
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2655583A
Other languages
Japanese (ja)
Other versions
JPS6354607B2 (en
Inventor
Tetsutaro Sugimoto
杉本 鉄太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AIR SHIYUUTAA KK
Original Assignee
NIPPON AIR SHIYUUTAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AIR SHIYUUTAA KK filed Critical NIPPON AIR SHIYUUTAA KK
Priority to JP2655583A priority Critical patent/JPS59153718A/en
Publication of JPS59153718A publication Critical patent/JPS59153718A/en
Publication of JPS6354607B2 publication Critical patent/JPS6354607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G51/00Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
    • B65G51/04Conveying the articles in carriers having a cross-section approximating that of the pipe or tube; Tube mail systems
    • B65G51/26Stations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To stop a capsule correctly without a shock and return the capsule by boring a connecting hole and a discharge hole through a work position so that a fluid is forced to flow into a pneumatic carrier through the connecting hole and the fluid is discharged through the discharge hole to balance fluid pressure. CONSTITUTION:A capsule 6 is fed to a work head 2 by compressed air in a pneumatic carrier 3, and at the same time, compressed air is fed into the work head 2 through a fluid conduit pipe 14 to flow into the pneumatic carrier 3 through each circulating hole 12, so that the capsule 6 is fed by pressure in the pneumatic carrier 3 and stopped at a position corresponding to a discharge hole 13 where the pressure of the compressed air fed from the opposite direction is balanced. Subsequently, compressed air is continued to flow from an analysis chamber 4, and solenoid valves 16, 22 are closed to exhaust the compressed air in the work head 2 quantitatively through an exhaust valve 17, so that the capsule 6 is lowered in the pneumatic carrier 3 at uniform speed and brought into pressure contact with a table seat 26 to be stopped.

Description

【発明の詳細な説明】 本発明は、人間が立入ることのできない悪環境下K オ
イて、試料を内蔵したカプセル−に対して適宜な作業を
行ない、試料への影響を調査する設備等で用いられる流
体搬送装置に関し、%に、カプセルの作業領域と調査領
域間の往復を行なう気送管における作業位置でのカプセ
ルの円滑な停止及びこの作業位置からの返送を行なう流
体搬送装置に関する。
[Detailed Description of the Invention] The present invention provides equipment, etc. that performs appropriate operations on a capsule containing a sample and investigates the effects on the sample in a bad environment where humans cannot enter. The present invention relates to a fluid conveying device used, and particularly relates to a fluid conveying device that smoothly stops the capsule in a working position in a pneumatic tube that shuttles the capsule between a working area and an investigation area, and returns it from this working position.

近年の遺伝子工学等の著しい発展にともない、危険物質
との接触等の事故を避けるため、人間が立入子8ことが
できない領域で研究、実験等の諸作業を行う必要性が生
じている。このような必要性に応えるKfl′、作業対
象となる試料を作業領域と作業結果を調査する分析室等
の調査領域との間で、安全、確実、かつ円滑に搬送しな
ければならず、【2かもこの搬送空間と前記作業領域及
び前記調査領域とけ、閉塞された空間でなければならな
い。閉塞空間内で目的物を搬送する装置としては、気送
管を2用いた流体搬送装置が知られているが、従来のこ
の種装置によると、気送管の所定位置にカプセル等の目
的物を衝撃なく正確に停止させたうえ、再び返送するこ
とは困却であった。
With the remarkable development of genetic engineering in recent years, it has become necessary to conduct research, experiments, and other work in areas where humans cannot enter, in order to avoid accidents such as contact with hazardous substances. To meet these needs, the Kfl' must safely, reliably, and smoothly transport the samples to be worked on between the work area and the research area such as the analysis room where the work results are investigated. 2) This transport space, the work area, and the investigation area must be in a closed space. As a device for transporting a target object in a closed space, a fluid transport device using two pneumatic tubes is known, but according to conventional devices of this type, a target object such as a capsule is placed in a predetermined position of the pneumatic tube. It was difficult to stop the machine accurately without impact and then send it back again.

本発明は上述の如き事情に鑑みて開発−さfまたもので
、気送管を用いた流体搬送装置を利用する一方、気送管
内の所定位置でカプセルを衝撃なく正確かつ円滑に停止
さす、再びカプセルを返送することを可能とすることに
よって、人間が立入ることのできない悪環境下にある作
業領域での所定の作業位置に試料を内蔵したカプセルを
送り込み、作業終了後にこのカプセルを作業結果を調査
する分析室等の調査領域へと返送することのできる、試
料を内蔵したカプセルに対する気送管内作業位置での停
止及び返送を行なう流体搬送装置を提供することを目的
とする。
The present invention was developed in view of the above-mentioned circumstances, and uses a fluid conveying device using a pneumatic tube, while accurately and smoothly stopping the capsule at a predetermined position within the pneumatic tube without impact. By making it possible to send the capsule back again, the capsule containing the sample can be sent to a predetermined working position in a work area in a hostile environment that cannot be accessed by humans, and after the work is completed, the capsule can be transferred to the work result. An object of the present invention is to provide a fluid transport device that stops a capsule containing a sample at a working position in a pneumatic pipe and returns it to a research area such as an analysis room where a sample is investigated.

本発明の特徴は、作業領域内に設けられて閉塞空間を形
成する作業ヘッド内に、試料を内蔵したカプセルを往復
動する気送管の一端部を緊密に導入し、この気゛送管の
導入さねた末端位置を作業位置とする一方、この作業位
置には連通孔を透設し、またこれと間隔をおいて排出孔
を透設することにより、前記連通孔から気送管内に流体
を流入させるとともに、前記排出孔から搬送及び反搬送
の両方向から流れてくる流体を排出させて流体圧のバラ
ンスをとり、カプセルを前記気送管内の排出孔に対応す
位置で停止させたのち、連通孔から気送管内に流入した
流体の圧力を制御することにより搬送速度を調整して衝
撃を受けることなく、安全、円滑かつ正確にカプセルを
作業位置に停止させ、カプセルが停止したことけカプセ
ル検出管を通って気送管内に流入させていた流木の流量
あるいは流圧が変化することで検出し、作業が終了【。
A feature of the present invention is that one end of a pneumatic tube that reciprocates a capsule containing a sample is tightly introduced into a working head that is provided in a working area and forms a closed space. While the end position of the introduced tongue is used as the working position, a communicating hole is provided at this working position, and a discharge hole is provided at a distance from the communicating hole to allow fluid to flow into the pneumatic pipe from the communicating hole. , and discharge the fluid flowing from both the conveying and anti-conveying directions from the discharge hole to balance the fluid pressure, and after stopping the capsule at a position corresponding to the discharge hole in the pneumatic pipe, By controlling the pressure of the fluid flowing into the pneumatic pipe from the communication hole, the conveyance speed is adjusted and the capsule is safely, smoothly, and precisely stopped at the working position without being subjected to shock. The work is completed by detecting changes in the flow rate or flow pressure of the driftwood flowing into the pneumatic pipe through the detection pipe.

た後は、排出孔を介して流体が流出しないように成し7
cうえ、カプセルを作業領域へ向けて返送するよう構成
したところにある。
After that, make sure that the fluid does not flow out through the drain hole.
Additionally, the capsule is configured to be directed back to the work area.

以下、本発明の好適な実施例を添付図面に基づいて詳細
に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the accompanying drawings.

第1図は流体として圧縮空気を用いた流体搬送装置の全
設備を櫃略的に示[たもので、適宜な実験等を行なう作
業領域たる密閉された作業室(1)内Kt/ゴ、上下両
端が閉塞されて閉塞空間を形成する作業ヘット責2)が
上方からほぼ垂直に、緊密に挿入配置されている。この
作業ヘッド(2)内には、気送管(3)の一端が緊密に
導入され、前記気送管(3)の他端は、調査領域たる密
閉された分析室(4)内に緊密に導入されている。前記
分析室(4]内には、前記気送管(3)内で往復搬送さ
れる、作業対象である試料(5)を内蔵しfrカプセル
(6)(第4図参照)を装脱するためのステーション(
7)が設けられている。そして、ステーション(7)K
対するカプセル(6)の装脱作業をはじめ、試料(5)
の分析作業等は、分析室(4)内に(M L ’)れた
マニピュレーター(8)によって行なわれる。また、前
記気送管(3)には前記分析室(4)内において、公知
の単管往復式流体搬送装置で用いられると同様の流体流
発生装置たるブロアー(図示せず)に接続された連通管
(9)が接続されている。
Figure 1 schematically shows the entire equipment of a fluid conveying device that uses compressed air as the fluid. A working head 2) whose upper and lower ends are closed to form a closed space is tightly inserted almost vertically from above. One end of a pneumatic tube (3) is tightly introduced into this working head (2), and the other end of said pneumatic tube (3) is tightly introduced into a closed analysis chamber (4) serving as the investigation area. has been introduced. The analysis chamber (4) contains a sample (5) to be worked on, which is transported back and forth within the pneumatic tube (3), and an FR capsule (6) (see Fig. 4) is loaded and unloaded therein. Station for (
7) is provided. And station (7) K
Including loading and unloading work of capsule (6) to sample (5)
The analysis work, etc., is performed by a manipulator (8) located (ML') in the analysis chamber (4). Further, the pneumatic pipe (3) is connected to a blower (not shown), which is a fluid flow generating device similar to that used in a known single-tube reciprocating fluid transport device, in the analysis chamber (4). A communication pipe (9) is connected.

前記連通管(9)も分析室(4)内に緊密に導入されて
おり、したがってカプセル(6)は常に閉塞された空間
内に位置することになる。
The communication tube (9) is also tightly introduced into the analysis chamber (4), so that the capsule (6) is always located in a closed space.

次に、第2図ないし第4図に基づいて、本発明の装置を
さらに詳細に説明する。
Next, the apparatus of the present invention will be explained in more detail based on FIGS. 2 to 4.

第2図及び第3図で明らか力ように、作業ヘッド(2)
の上端面に緊密に嵌入固定されヱ上下両面が閉塞された
カバー管αOを、カプラー01)を介して緊密に貫通し
て作業ヘッド(2)内に導入された気送管(3)の末端
は、閉塞されるとともに、作業位置たる作業ヘッド(2
)の下端部に位置している。そして、前記末端周面には
連通孔(6)が、周方向に等間隔をおいて4個透設され
ている。この気送管(3)の末端閉塞面に、カプセル(
6)が停止されるものである。
As shown in Figures 2 and 3, the working head (2)
The end of the pneumatic tube (3) is introduced into the working head (2) by tightly passing through the cover tube αO, which is tightly fitted and fixed to the upper end surface and closed on both upper and lower surfaces, via the coupler 01). is closed and the working head (2
) is located at the lower end of the Four communicating holes (6) are provided in the peripheral surface of the end at equal intervals in the circumferential direction. A capsule (
6) is to be stopped.

前記気送管(3)の前記各連通孔02より上部の周面に
汀、カバー管(11の下端に対応位置して、排出孔α(
が多数適当な長さ&Ii)囲にわたって透設されている
。したがって、気送管(3)内を圧送されてきた圧縮空
気は、前記各排出孔(Llを通ってカバー管a1内に流
出することになる。作業ヘッド(2)の上端部周面&l
−t、圧縮空気を連通孔0めから気送管(3)内へ流入
させるための流体導入管(ロ)の一端が、カプラー0自
を介して緊密に取り付けられている。流体導入管(14
1には圧縮空気の流通のオンオフ制御をする電磁弁06
が設けられるとともに、排気弁動を備えた定量くみ出し
ポンプ(2)から成る流圧制御機構が接続管01を介し
て設けられている。前記流体導入管c槍から作業ヘッド
(2)内に流入した圧縮空気け、各連通孔@から気送管
(3)内へと流入したうえ、各排出孔(至)からカバー
管aOへ流出する。したがって、分析室(4)方向から
気送管(3)内を圧送されてきた圧縮空気と、前記各連
通孔Q2から気送管(3)内に流入した圧縮空気とけ、
ともに前記各排出孔α3から流出するので、この流出位
置で両方向の圧縮空気の圧力がバランスを保つことにな
り、カプセル(6)はここで一旦停止することになる。
A drain hole α(
A large number of holes are transparently provided over an appropriate length &Ii). Therefore, the compressed air that has been pressure-fed through the pneumatic pipe (3) flows out into the cover pipe a1 through the respective discharge holes (Ll).
-t, One end of the fluid introduction pipe (b) for allowing compressed air to flow into the pneumatic pipe (3) from the communication hole 0 is tightly attached via the coupler 0. Fluid introduction pipe (14
1 is a solenoid valve 06 that controls on/off of the flow of compressed air.
is provided, and a fluid pressure control mechanism consisting of a metering pump (2) equipped with an exhaust valve is provided via a connecting pipe 01. Compressed air flows into the working head (2) from the fluid introduction pipe c, flows into the pneumatic pipe (3) through each communication hole, and flows out from each discharge hole into the cover pipe aO. do. Therefore, the compressed air that has been forced into the pneumatic pipe (3) from the direction of the analysis chamber (4) and the compressed air that has flowed into the pneumatic pipe (3) from the communication holes Q2,
Since both flow out from the respective discharge holes α3, the pressures of the compressed air in both directions are kept balanced at this outflow position, and the capsule (6) temporarily stops here.

そして、前述□の□圧縮空気の圧力のバランスは、定量
くみ出しポンプQSを作動すれば、くずすことができる
。前記各排出孔0:1から流出した圧縮空気は、カバー
管(10の上端周面にカプラー(ホ)を介して緊密に惚
り付けられた流体排気管6!υから排出される。、(イ
)は前記流体排気wbからの圧縮空気の排出をオンオフ
制御するための電磁弁である。また、気送管(3)の末
端面には、作業ヘッド(2)の上端周面かむカプラー(
ハ)を介して緊密&?[入されたカプセル検出管(財)
の先端が、連通するよう接季剋されている。このカプセ
ル検出管(ハ)は、常に微量の圧縮空気を気送g(3)
内に流入しているものであり、この流入部の変化は、カ
プセル検出管(財)に設けた流量センサーに)によって
検出される。前記気送管(3)のカプセル検出管@接続
部分には、カプセル検出管@の開口婦を囲むようにして
、環状の台座(ホ)が固設されている。そして、この台
座@上に載置さ1するようにし、て、カプセル(6)が
停止するものである。第4図で明らかなように、カプセ
ル(6)が停止すると、その長手方向中央部分に各連通
孔(2)が対応位置することになる続いて、上述した実
施例の作用について説明する。贅ず、各電磁弁00.(
イ)を開き、定量くみ出しポンプ0綽は停止状態とした
うえ、マニピュレーター(8)によって試料(5)を内
蔵したカプセル(6)を分析室(41内のステージ冒ン
(7)に装着し7、公知の方法で前記カプセル(6)を
気送管(3)内で作業ヘッド(2)ニ向けて圧縮空気に
より圧送する。一方、流体導入管(14)からも同時に
、作業ヘッド(2)内に圧縮空気を送り込み、各流通孔
θのから気送管(3)内へと圧縮空気を流入させる。な
お、これら反対方向から気送管(3)内へ送らtlだ圧
縮空気の圧力は、はぼ等しいことが望オしい。これによ
ってカプセル(6)は、気送管(3)内を圧送され、反
対方向から送り込まれた圧縮空気の圧力がバランスを保
つ排出孔03に対応する位置で停止する。次に、分析室
(4)方向からの圧縮空気の流入は雛持し、各電磁弁(
I伜、いを閉じたうえ、定量くみ出しポンプ08)を作
動させてその排気弁Q7)から作挙ヘッド(2+内σ人
圧縮空気を単位時間あたり定量ずつ排気する。すると、
気送管(3)内での圧縮空気のバランスがくずれ、カプ
セル(6)ハ気送管(3)内を均一速度を保って降下し
、台座(イ)に圧接されて停止する。これによって、開
口婦が閉塞されたカプセル検出管1241Fi、その圧
縮空気の流入がほぼ停止されることになり、この状態は
流量センサー(ホ)によって検出される。このようにし
てカプセル(6)が作業位置に停止したことが検出され
ると、定量くみ出しポンプ(2)を停止し、カプセル(
6)内の試料(5)に対して適宜物質を照射する等の作
業が所定時間にわたって行なわれる。この時、分析室(
4)方向から圧送されてきた圧縮空気は、気送管(3)
とカプセル(6)との間の微細間隙を通って各連通孔Q
カから気送管(3)外へ流出するので、カプセル(61
け冷却されることになる。所定の作業が終了し7たら、
電磁弁αOを開いたうえ、公知の方法で分析室(4)方
向からの圧縮空気の圧送を吸引に変換し、カプセル(6
)を分析室(4)内のステーション(7)へ返送する。
The pressure balance of the compressed air described in □ above can be disrupted by operating the metering pump QS. The compressed air flowing out from each of the discharge holes 0:1 is discharged from the fluid exhaust pipe 6!υ that is tightly attached to the upper circumferential surface of the cover pipe (10) via a coupler (E). A) is a solenoid valve for controlling on/off the discharge of compressed air from the fluid exhaust wb.Furthermore, a coupler (a) is attached to the end surface of the pneumatic pipe (3) and engages with the upper circumferential surface of the work head (2).
Ha) Closely through &? [Entered capsule detection tube (goods)
The tip of the tube is bent so that it is connected. This capsule detection tube (c) always sends a small amount of compressed air g (3)
Changes in this inflow are detected by a flow sensor installed in the capsule detection tube. An annular pedestal (E) is fixed to the capsule detection tube @ connection portion of the pneumatic tube (3) so as to surround the opening of the capsule detection tube @. Then, the capsule (6) is placed on this pedestal so that the capsule (6) stops. As is clear from FIG. 4, when the capsule (6) is stopped, each communication hole (2) is located in a corresponding position in the longitudinal center portion of the capsule (6).Next, the operation of the above-mentioned embodiment will be explained. Luxury, each solenoid valve 00. (
A) is opened, the metering pump 0 is stopped, and the capsule (6) containing the sample (5) is attached to the stage vent (7) in the analysis chamber (41) using the manipulator (8). , the capsule (6) is pumped by compressed air in the pneumatic tube (3) toward the working head (2) in a known manner.Meanwhile, the capsule (6) is simultaneously fed from the fluid introduction tube (14) to the working head (2). The compressed air is sent into the pneumatic pipe (3) from each communication hole θ.The pressure of the compressed air tl that is sent into the pneumatic pipe (3) from the opposite direction is , are preferably approximately equal.Thereby, the capsule (6) is pumped through the pneumatic pipe (3), and the position corresponding to the discharge hole 03 maintains a balance between the pressure of the compressed air sent from the opposite direction. Next, the inflow of compressed air from the direction of the analysis chamber (4) is maintained, and each solenoid valve (
After closing I and I, the metering pump 08) is operated to exhaust a fixed amount of compressed air per unit time from the exhaust valve Q7).
The balance of the compressed air in the pneumatic pipe (3) is disrupted, and the capsule (6) descends at a uniform speed inside the pneumatic pipe (3), comes into pressure contact with the pedestal (A), and stops. As a result, the inflow of compressed air into the capsule detection tube 1241Fi with its mouth closed is almost stopped, and this state is detected by the flow rate sensor (e). In this way, when it is detected that the capsule (6) has stopped at the working position, the metering pump (2) is stopped and the capsule (6) is stopped at the working position.
Work such as irradiating the sample (5) in 6) with an appropriate substance is performed over a predetermined period of time. At this time, the analysis room (
4) The compressed air pumped from the direction is transferred to the pneumatic pipe (3).
and the capsule (6) through the micro gap between each communication hole Q.
Since the mosquito flows out of the pneumatic tube (3), the capsule (61
It will be cooled down. When the specified work is completed,
After opening the solenoid valve αO, using a known method, the pressure feeding of compressed air from the analysis chamber (4) direction is converted to suction, and the capsule (6
) is returned to the station (7) in the analysis room (4).

そして、マニピュレーター(8)を用いてカプセル(6
)をステーシコン(7)から脱却し、試料(5)を取り
出し、てその分析等の調査作業を行なうものであるなお
、定量くみ出しポンプ0槌による単位時間あたりの排気
IF1′は、カプセル(6)の重量に応じて、所望の均
一速度で降下するよう実験によって決定しておけば良い
。オタ、作墳領域の条件により、作業ヘッド(2)を倒
立状態や横設状態で配置することも可能である。さらに
、分析室(4)のステーション(7)も、上述」た作業
ヘッド(2)をにじめとする実施例と同様に構成し、カ
プセル(6)を取り出せるように開閉自在とすれば、カ
プセル(6)の搬送の安全性は一層向上するが、ステー
ション(7)においてはカプセル(6)が軟着できる構
成であれば十分である。
Then, use the manipulator (8) to remove the capsule (6).
) is removed from the stationary controller (7), the sample (5) is taken out, and investigation work such as analysis is performed. It may be determined through experiments that the object descends at a desired uniform speed depending on the weight of the object. Depending on the conditions of the burial mound construction area, it is also possible to arrange the working head (2) in an inverted or horizontal position. Furthermore, if the station (7) of the analysis room (4) is also constructed in the same manner as the above-mentioned embodiment in which the working head (2) is humid, and can be opened and closed to take out the capsule (6), Although the safety of transporting the capsule (6) is further improved, it is sufficient that the station (7) has a structure that allows the capsule (6) to be attached softly.

さらにまた、カプセルを圧送するための流体は、空気の
ほか9素ガス等を用いることも可能である。またさらに
、流圧制御機構と【、て上述の実施例では定量くみ出し
ポンプ0槌を用いたが、前記機構としてはポンプ以外の
機器でも良く、マた流体を排出するのみならず流入させ
る機能を有している機器を用いることもできる。なおさ
らに、流体センサーとしては、流量変化による検出のほ
か、流圧変化による検出を行うものでも良い。
Furthermore, as the fluid for pumping the capsule, it is also possible to use a 9-element gas or the like in addition to air. Furthermore, the fluid pressure control mechanism and the above-mentioned embodiments use a metering pump, but the mechanism may be a device other than a pump, and may have the function of not only discharging fluid but also allowing it to flow in. You can also use the equipment you have. Furthermore, the fluid sensor may be one that performs detection based on changes in fluid pressure in addition to detection based on changes in flow rate.

以上説明したところで明らかなように、本発明によれば
次の如き諸効果を奏することができる。
As is clear from the above explanation, according to the present invention, the following effects can be achieved.

第1に、カプセルの高速搬送が可能であるから、作業終
了後極めて短時間のうちに分析等の調査が必要な試料を
搬送する場合に最適である。第2に、カプセルは一旦停
止させた後、速度制御を行って所定位置に停止させるか
ら、カプセルに衝撃が加わるて破損されることがなく、
安全、円滑かつ正確に所定位置に停止させることができ
、また均一速度に制御を行なうことが可能だから、作業
位置近傍での作業環境を損うことがなく、試料に対して
正確な作業を施こすことができる。第3K。
First, since the capsule can be transported at high speed, it is ideal for transporting samples that require investigation such as analysis within a very short time after the work is completed. Second, since the capsule is stopped once and then stopped at a predetermined position by controlling its speed, the capsule is not damaged by impact.
It is possible to safely, smoothly and accurately stop the sample at a predetermined position, and it is also possible to control the speed at a uniform speed, so it is possible to perform accurate work on the sample without damaging the work environment near the work position. It can be rubbed. 3rd K.

カプセルが停止したことを流体によって検出するから、
正確な作業時間の設定が可能となり、また電子部品が使
用不可能な環境下での検出に最適である。第4に、作業
ヘッドは神々の姿勢に配置可能であるから、作業領域に
最適の状態で配置することができる。第5に、弁機構を
はじめとする各種搬送動作制御機器は、作業領域を隔離
[2て設けることができるから、作業領域の影響をうけ
ず、保守点検が容易である。
Because the fluid detects when the capsule has stopped,
It allows accurate work time settings and is ideal for detection in environments where electronic components cannot be used. Fourthly, since the working head can be placed in the divine posture, it can be placed in the optimal state in the working area. Fifth, various conveyance operation control devices such as valve mechanisms can be provided in isolated working areas, so they are not affected by the working area and maintenance and inspection is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の好適な実施例を示し、第1図に搬送設備全
体を示す概略図、第2図は流体搬送装置の斜視図、第3
図は同じく概略的な縦断面図、第4図はカプセルの停止
状態を示す気送管の縦断面図である。
The figures show preferred embodiments of the present invention, with FIG. 1 being a schematic diagram showing the entire conveying equipment, FIG. 2 being a perspective view of the fluid conveying device, and FIG.
This figure is also a schematic vertical cross-sectional view, and FIG. 4 is a vertical cross-sectional view of the pneumatic tube showing the stopped state of the capsule.

Claims (1)

【特許請求の範囲】[Claims] 人間が立入ることができない悪環境下にある作業領域に
設けられて閉塞空間を形成する作業ヘッドと、一端部が
この作業ヘッド内に緊密に導入されてその作業位置にま
で伸び、他端部は作婁領域での作業結果を調査する分析
室等調査領域の閉塞空間に緊密に導入され、作業対象た
る試料を内蔵したカプセルを流体によって往復動するよ
う流体流発生装置に連繋される一方、前記作業ヘッド内
に位置する一端部周面には、カプセルが停止する作業位
置たる末端に連通孔を透設するとともに、この連通孔と
長手方向に間隔をおいて排出孔を透設シ、り気送管と、
この気送管の前記連通孔から前記排出孔に向けて流体を
流入させるよう前記作業ヘッドに対して緊密に設けられ
弁機構を備えた流体導入管と、この流体導入管によって
前記気送管内に流入された流体の圧力を制御する流圧制
御機構と、前記気送管の排出孔から気送管内の流体を排
出するよう前記作業ヘッドに対して緊密九設けられ弁機
構を備えた流体排出管と、前記気送管の連通孔端に連通
されて前記気送管内に流体を流入させる一方、カプセル
が正規の作業位置に停止して前記流体の流入に変化が起
きるとこれを検出する流体センサーを備えたカプセル検
出管とから成ることを特徴とする試料を内蔵したカプセ
ルに対する気送管内作業位置での停止及び返送を行う流
体搬送装置。
A working head is installed in a working area in a hostile environment that is inaccessible to humans and forms a closed space; one end is tightly introduced into this working head and extends to the working position; is tightly introduced into a closed space in a research area such as an analysis room where the work results in the work area are investigated, and is connected to a fluid flow generator so that the capsule containing the sample to be worked on is reciprocated by the fluid. A communication hole is provided in the peripheral surface of one end located in the working head at the end where the capsule stops, which is the working position, and a discharge hole is provided at a distance from the communication hole in the longitudinal direction. pneumatic tube,
a fluid introduction pipe provided with a valve mechanism and closely connected to the working head so as to allow fluid to flow from the communication hole of the pneumatic pipe toward the discharge hole; a fluid pressure control mechanism for controlling the pressure of the inflowing fluid; and a fluid discharge pipe provided with a valve mechanism and tightly connected to the working head so as to discharge the fluid in the pneumatic pipe from the discharge hole of the pneumatic pipe. and a fluid sensor that communicates with the communication hole end of the pneumatic tube to allow fluid to flow into the pneumatic tube, and detects when the capsule stops at a normal working position and there is a change in the inflow of the fluid. 1. A fluid transport device for stopping a capsule containing a sample at a working position in a pneumatic pipe and returning the capsule, comprising: a capsule detection tube having a capsule detection tube;
JP2655583A 1983-02-19 1983-02-19 Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier Granted JPS59153718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2655583A JPS59153718A (en) 1983-02-19 1983-02-19 Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2655583A JPS59153718A (en) 1983-02-19 1983-02-19 Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier

Publications (2)

Publication Number Publication Date
JPS59153718A true JPS59153718A (en) 1984-09-01
JPS6354607B2 JPS6354607B2 (en) 1988-10-28

Family

ID=12196773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2655583A Granted JPS59153718A (en) 1983-02-19 1983-02-19 Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier

Country Status (1)

Country Link
JP (1) JPS59153718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233029A (en) * 1988-07-22 1990-02-02 Aisan Ind Co Ltd Conveyer by pneumatic pressure
CN101857143A (en) * 2009-04-12 2010-10-13 北京银融科技有限责任公司 Pneumatic pipeline transmission system and receiving method of transmitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552819A (en) * 1978-10-09 1980-04-17 Kawasaki Steel Corp Receiver for high-speed pneumatic conveyor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552819A (en) * 1978-10-09 1980-04-17 Kawasaki Steel Corp Receiver for high-speed pneumatic conveyor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233029A (en) * 1988-07-22 1990-02-02 Aisan Ind Co Ltd Conveyer by pneumatic pressure
CN101857143A (en) * 2009-04-12 2010-10-13 北京银融科技有限责任公司 Pneumatic pipeline transmission system and receiving method of transmitter

Also Published As

Publication number Publication date
JPS6354607B2 (en) 1988-10-28

Similar Documents

Publication Publication Date Title
CN108291858B (en) Sampling vessel and sampling system and associated operating method
US5810045A (en) Valve device for introducing particulate materials into a high pressure air stream
US4516437A (en) Microsample handling apparatus
US5584326A (en) Compact apparatus for the storage, delivery and mixing of fluid substances
US5056962A (en) Method of sampling solid materials and sampling system to execute the method
US3239278A (en) Apparatus for injecting bulk solids into a vessel
KR20160014169A (en) Foup stage nozzle unit and load port having therof
JPS59153718A (en) Fluid transport apparatus for stopping and returning capsule containing sample therein at work position in pneumatic carrier
JPS63314439A (en) Apparatus for sampling radioactive or poisonous material from process component
KR101611518B1 (en) Exhaust and load port having therof
US9550219B2 (en) Apparatus of inhalation type for stocking wafer at ceiling and inhaling type wafer stocking system having the same
CN108317896A (en) Multi-channel type light-gas gun flow equilibrium control high speed enters water emission system
JP2001227472A (en) Fluid apparatus such as pump, accumulator and the like
KR101638454B1 (en) Exhaust and load port having therof
CN109737306B (en) Radioactive feed liquid conveying device and system
EP3399018B1 (en) Aeration method of isolator system
CN106568674A (en) Fluid testing device, and a method of testing a pressurized fluid for dissolved and/or entrained gasses
FI130413B (en) Conveyor
JPS6218851B2 (en)
CN113791178B (en) Sampling detection device and reaction kettle with same
EP4116743A1 (en) System and method for controlling a concentration variation of a radioactive chemical element within a calibration chamber
KR102312875B1 (en) Testing Device for wetting type scattering inhibitor
JPS58147125A (en) Wet processing device
US20240066164A1 (en) Isolator for processing medical substances and method for decontaminating an isolator
JPS5776300A (en) Apparatus for transporting work liquid under constant pressure