JPS5915331A - Logical gate circuit - Google Patents

Logical gate circuit

Info

Publication number
JPS5915331A
JPS5915331A JP12388682A JP12388682A JPS5915331A JP S5915331 A JPS5915331 A JP S5915331A JP 12388682 A JP12388682 A JP 12388682A JP 12388682 A JP12388682 A JP 12388682A JP S5915331 A JPS5915331 A JP S5915331A
Authority
JP
Japan
Prior art keywords
transistor
circuit
power supply
gate circuit
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12388682A
Other languages
Japanese (ja)
Inventor
Hideki Matsuura
英樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12388682A priority Critical patent/JPS5915331A/en
Publication of JPS5915331A publication Critical patent/JPS5915331A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00307Modifications for increasing the reliability for protection in bipolar transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To improve the reliability of a logical gate circuit, by preventing a large current which is instantaneously generated when the power supply voltage reaches the minimum value at which the logical gate circuit can be actuated during a rise of the power supply circuit. CONSTITUTION:A transistor TR16 is turned on when the power supply voltage VCC applied to a terminal 14 rises up to the base-emitter voltage VBEQ16 of the TR16. In this case, a TR9 is kept off. Then a TR5 is turned on when the voltage VCC rises up more and exceeds the base-emitter voltage (VBEQ5)+VCEQ16. In this case, the TR16 and TR9 are on and off respectively with TRQ17, 18 and 19 turned off respectively. Therefore, the TR9 is not turned on at a time point when the voltage VCC rise up to turn on the TR5. This circuit avoid flowing a large power supply current ICC. As a result, no evil effect is given to the operation of a system using a logical gate.

Description

【発明の詳細な説明】 本発明は論理ゲート回路、特KDTL(ダイオード・ト
ランジスタ・ロジック)tたはTTL(トランジスタ・
トランジメタ・ロジック)を含む飽和型バイポーラ論理
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to logic gate circuits, especially KDTL (diode transistor logic) or TTL (transistor logic).
The invention relates to saturated bipolar logic circuits including transistor logic.

第1図は従来のT T Lの一代表例を示す回路図であ
る。1は入力端子細、2はショットキーバリアダイオー
ド、5は位相反転トランジスタ、9は出力トランジスタ
、11tJニレベルシフトトランジスタ、13はバッフ
ァトランジスタでトランジスタ11とダーリントン接続
されて出力バッファ回路を構成する。8けプルダウント
ランジスタで抵抗6,7と共にプルダウン回路を構成す
る。14は電源端子、15け出力端子、3 + 4 r
 6 r 7 +10.12は抵抗でおる。
FIG. 1 is a circuit diagram showing a typical example of a conventional TTL. 1 is an input terminal, 2 is a Schottky barrier diode, 5 is a phase inversion transistor, 9 is an output transistor, 11tJ two-level shift transistor, and 13 is a buffer transistor which is connected to the transistor 11 in Darlington to form an output buffer circuit. A pull-down circuit is composed of 8 pull-down transistors together with resistors 6 and 7. 14 is a power supply terminal, 15 is an output terminal, 3 + 4 r
6 r 7 +10.12 is the resistance.

このようなTTL回路の電源電圧(以下VCCと略記)
に対する電源電流(以下IOCと略記)の変化は以下の
通9となる。
The power supply voltage of such a TTL circuit (hereinafter abbreviated as VCC)
The change in the power supply current (hereinafter abbreviated as IOC) with respect to the following equation 9 is as follows.

VCCがトランジスタ50ペース・エミッタ間電圧(v
nzqs ) (!: )ランジメタ9のベース・エミ
ッ間電圧(VBF、Qg)の和より小さい場合工。。は
流れない。VCCが上昇しVゆQ5 + VBF、QI
に達するとトランジスタ5及びトランジスタ9は導通状
態となり抵抗3,4及びトランジスタ5,9を通してI
CCが流れ始める。この際トランジスタ5のコレクタ電
位はVCCからトランジスタ5のコレクタ・エミッタ間
電圧(VCEQ5 ) +VB践9へ変化(〜、トラン
ジスタ11及び13は遮断状態となるが、トランジスタ
5及び9が導通状態となってからトランジスタ5のコレ
クタ電位がトランジスタ11及び二3を遮断状態とする
のに十分な値(VBEQII” vBEQ13+ VC
EQ9以下)まで低下する間トランジスタ11゜及び1
3は導通状態となる。従って抵抗12及びトランジスタ
11,13.9を通じて”CCとOND間に低インピー
ダンスの電流通路ができるため瞬間的に非常に大きな電
流が流れることになる。
VCC is the transistor 50 pace-emitter voltage (v
nzqs ) (!: ) If it is smaller than the sum of the base-emitter voltage (VBF, Qg) of RangeMeta 9. . does not flow. VCC increases and VYQ5 + VBF, QI
When the transistor 5 and the transistor 9 reach the conductive state, the I
CC starts playing. At this time, the collector potential of transistor 5 changes from VCC to the collector-emitter voltage of transistor 5 (VCEQ5) +VB (~, transistors 11 and 13 are cut off, but transistors 5 and 9 are turned on). , the collector potential of transistor 5 is a value sufficient to turn off transistors 11 and 23 (VBEQII" vBEQ13+VC
Transistors 11° and 1
3 is in a conductive state. Therefore, a low impedance current path is created between the CC and the OND through the resistor 12 and the transistors 11 and 13.9, so that a very large current momentarily flows.

またこの電流はドライバー、バッファ等の如くオフバッ
ファ抵抗12が小さい場合特に大きく、実使用状態での
最大ICC値を越える可能性もある。
Further, this current is particularly large when the off-buffer resistance 12 is small, such as in a driver, a buffer, etc., and there is a possibility that it exceeds the maximum ICC value in actual use.

この瞬間的な大電流はこのような論理回路を用いたシス
テムを構成した際、そのシステムの動作に電源のON、
OFFの頻度が高いところで使用された場合の寿命の低
下、ノイズ発生による他のICの誤動作等の悪影響を及
#よすことが考えられる。
When configuring a system using such a logic circuit, this instantaneous large current is required to operate the system when the power is turned on,
If the device is used in a place where it is frequently turned off, it may have negative effects such as a reduction in the lifespan and malfunction of other ICs due to noise generation.

以上述べた如く第1図に示した従来の論理グー値 ト回路は、電源電圧上昇時にその直が論理ゲート回路の
動作可能最低値に達した時瞬間的に大きな電源電流が流
れそれによりこの論理ゲートを用いたシステムの動作に
悪影響を及はすという欠点を有する。
As mentioned above, in the conventional logic gate circuit shown in FIG. This has the disadvantage that it adversely affects the operation of the system using the gate.

本発明はこのような事情Kaみてなされたもので従来回
路にみられた電流電圧上昇時にその値が論理ゲート回路
の動作可能最低値に達した瞬間に大電流が流れる現象を
防止した論理ゲート回路を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a logic gate circuit that prevents the phenomenon in which a large current flows at the moment when the current and voltage increase, which occurs in conventional circuits, the value reaches the minimum operable value of the logic gate circuit. The purpose is to provide

本発明によればダイオードまたはトランジスタからなる
入力ゲート回路とエミッタ接地の出力トランジスタとの
間に位相反転トランジスタを挿入し、該位相反転トラン
ジスタのコレクタと前We出力トランジスタのコレクタ
との間に、出力バッファトランジスタを含む出力バッフ
ァ回路を有する論理ゲート回路において、電源電圧が前
記論理ゲート回路の動作可能な最低電圧より低い場合に
は導通状態K、且つ前記最低電圧より高い場合には遮断
状態になるようにベースがバイアスされたエミッタ接地
のトランジスタの出力信号により前記論理回路の出力ト
ランジスタの遮断または導通を制御し電源電圧上昇時の
瞬間的大電流のない論理ゲート回路が得られる。
According to the present invention, a phase inversion transistor is inserted between an input gate circuit consisting of a diode or a transistor and a common emitter output transistor, and an output buffer is inserted between the collector of the phase inversion transistor and the collector of the previous We output transistor. In a logic gate circuit having an output buffer circuit including a transistor, when the power supply voltage is lower than the minimum voltage at which the logic gate circuit can operate, it is in a conductive state K, and when it is higher than the minimum voltage, it is in a cutoff state. The output signal of the emitter-grounded transistor whose base is biased controls the cut-off or conduction of the output transistor of the logic circuit, thereby providing a logic gate circuit that does not generate an instantaneous large current when the power supply voltage rises.

第2図は本発明の一実施例を示す回路図で、第1図に示
した従来回路と異なるところは、出力トランジスタ9の
ベースにコレクタが接続され、トランジスタ17,18
.19及び抵抗20,21゜22.23より成るベース
バイアス回路を持ったエミッタ接地トランジスタ16を
有することである。
FIG. 2 is a circuit diagram showing an embodiment of the present invention. The difference from the conventional circuit shown in FIG. 1 is that the collector is connected to the base of the output transistor 9, and the transistors 17, 18
.. 19 and a common emitter transistor 16 with a base bias circuit consisting of resistors 20, 21, 22, and 23.

以下にこのような本発明TTLの動作について述べる。The operation of the TTL of the present invention will be described below.

電源電圧(Vcc )がトランジスタ16のベース・エ
ミッタ間電圧(”BFQ+c+)以下では電源電流(工
。。)は流れない。VCCが上昇してvBつ、16に達
するとトランジスタ16は抵抗23全通してベース電流
が供給され導通状態となる。ここでトランジスタ9けベ
ースがトランジスタ16のコレクタに接続されているた
めトランジスタ16が導通状態にある間はベース電位が
トランジスタ16のコレクタ・エミッタ間電圧(VCE
Q16)となり遮断状態を保つ。さらにVccが上昇し
てトランジスタ5のベース・エミッタ間電圧(VBEQ
II ) +VCEQ16を越えるとトランジスタ5は
導通状態となる。この時トランジスタ16は導通状態、
トランジスタ9は遮断状態、トランジスタ17,18.
19も遮断状態にある。従来回路ではVCCが上昇しト
ランジスタ5が導通状態となると同時にトランジスタ9
も導通状態となるためトランジスタ5のコレクタ電位が
低下するまでトランジスタ11及び13も導通状態とな
り瞬間的に大きなIOCが流れたが、本発明回路でI/
1Vccが上昇しトランジスタ5が導通状態となった時
点ではトランジスタ9は導通状態とはならないため大き
なIOCが流れることはない。さらにVCCが上昇しト
ランジスタ17.18゜190ベース・エミッタ間電圧
の和VBEQ 17+VBEQ、+ VHEQ19に達
するとトランジスタ17.18.19は導通状態となり
そのためトランジスタ16はベース電位がトランジスタ
17のコレクタ・エミッタ間電圧V。。Q17へ低下し
遮断状態となる。トランジスタ16が遮断状態となると
遮断状態にあったトランジスタ9はトランジスタ5より
ベース電流が供給されるようになり、初めて導通状態と
なる。
When the power supply voltage (Vcc) is less than the base-emitter voltage (BFQ+c+) of the transistor 16, the power supply current (...) does not flow.When VCC rises and reaches 16 vB, the transistor 16 connects the entire resistor 23. Since the base of transistor 9 is connected to the collector of transistor 16, while transistor 16 is in conduction, the base potential is equal to the collector-emitter voltage (VCE) of transistor 16.
Q16) and maintains the cut-off state. Further, Vcc increases and the base-emitter voltage of transistor 5 (VBEQ
II) When +VCEQ16 is exceeded, transistor 5 becomes conductive. At this time, the transistor 16 is in a conductive state.
Transistor 9 is in a cut-off state, transistors 17, 18 .
19 is also in a blocked state. In the conventional circuit, VCC rises and transistor 5 becomes conductive, and at the same time transistor 9 becomes conductive.
Since transistors 11 and 13 also become conductive until the collector potential of transistor 5 falls, a large IOC momentarily flows, but with the circuit of the present invention, I/
At the time when 1Vcc rises and transistor 5 becomes conductive, transistor 9 does not become conductive, so no large IOC flows. When VCC further increases and reaches the sum of the base-emitter voltages of transistors 17, 18, 190, VBEQ 17 + VBEQ, + VHEQ19, transistors 17, 18, and 19 become conductive, so that the base potential of transistor 16 increases between the collector and emitter of transistor 17. Voltage V. . It drops to Q17 and enters the cut-off state. When the transistor 16 enters the cut-off state, the transistor 9, which has been cut off, is supplied with base current from the transistor 5, and becomes conductive for the first time.

この時トランジスタ16は遮断状態にあるので、1〜1
5より成る論理ゲート回路の動作には影響を与えない。
At this time, the transistor 16 is in a cut-off state, so 1 to 1
It does not affect the operation of the logic gate circuit consisting of 5.

第3図は本発明の他の実施例を示す回路図でトランジス
タ16のコレクタを好ましくはショットキ・ダイオード
24.24’を介して複数の論理ゲート回路の出力トラ
ンジスタ9,9′のベースにそれぞれ接続したものであ
る。ダイオード24.24’は動作時における論理ゲー
ト回路相互間の干渉を防ぐために挿入されている一方向
性素子であって論理和回路であるが、順方向電圧(VF
)とトランジスタ16のコレクタ・エミッタ間両、圧(
VCIQ 16 )との和(vF+Vc0)は出力トラ
ンジスタのベース・エミッタ間電圧(vBE9)より小
さけれはよくその種類は問わない。
FIG. 3 is a circuit diagram illustrating another embodiment of the invention, in which the collector of transistor 16 is connected, preferably via Schottky diodes 24, 24', to the bases of output transistors 9, 9' of a plurality of logic gate circuits, respectively. This is what I did. The diodes 24 and 24' are unidirectional elements inserted to prevent interference between logic gate circuits during operation, and are an OR circuit.
) and the voltage (
The type of output transistor does not matter as long as the sum (vF+Vc0) with VCIQ 16 ) is smaller than the base-emitter voltage (vBE9) of the output transistor.

本実施例の効果は先に説明しだ一実施例と同様であるほ
か、複数の論理〜ゲート回路を含む場合に回路構成が簡
単になる効果もある。
The effects of this embodiment are the same as those of the first embodiment described above, and also have the effect of simplifying the circuit configuration when a plurality of logic to gate circuits are included.

以上述べたように本発明によれは、電源電圧上昇時にそ
の値が論理ゲート回路の動作可能な最低仙に達I7た際
に発生する瞬間的な大電流の発生が防止されるので、論
理ゲート回路の信頼性が改善される効果がある。
As described above, according to the present invention, the generation of an instantaneous large current that occurs when the power supply voltage rises and the value reaches the lowest value I7 in which the logic gate circuit can operate is prevented, so the logic gate This has the effect of improving circuit reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のTTLの代表例を示す回路接続図、第2
図は本発明論理ゲート回路の一実施例を示す回路接続図
、第3図は本発明論理ゲート回路の他の実施例を示す回
路接続図である。 1・・・・・・入力端子部、2・・・・・・入力ショッ
トキ・バリアダイオード、3,4,6,7,10,12
゜20.21.22.23・・・・・・抵抗、5.8,
9゜11.13,16,17,18,19.9’・・・
・・・トランジスタ、24.24’・°°パ・ショット
キ・バリアダイオード、14・・・・・・電源端子、1
5・・・・・・出力端子。
Figure 1 is a circuit connection diagram showing a typical example of conventional TTL, Figure 2
The figure is a circuit connection diagram showing one embodiment of the logic gate circuit of the invention, and FIG. 3 is a circuit connection diagram showing another embodiment of the logic gate circuit of the invention. 1... Input terminal section, 2... Input Schottky barrier diode, 3, 4, 6, 7, 10, 12
゜20.21.22.23...Resistance, 5.8,
9゜11.13, 16, 17, 18, 19.9'...
・・・Transistor, 24.24'・°°Paper Schottky barrier diode, 14...Power terminal, 1
5... Output terminal.

Claims (1)

【特許請求の範囲】[Claims] ダイオードまたはトランジスタからなる入力ゲート回路
とエミッタ接地の出力トランジスタとの間に位相反転ト
ランジスタを挿入し、該位相反転トランジスタのコレク
タと前記出力トランジスタのコレクタとの間に出力バッ
7アトランジスタを含む出カバソファ回路を有する論理
ゲート回路において、電源電圧が前記論理ゲート回路の
動作可能な最低電圧より低い場合には導通状態に、且つ
前記最低電圧より高い場合には遮断状態になるようにベ
ースがバイアスされたエミッタ接地のトランジスタの出
力信号により前記論理回路の出力トランジスタの遮断ま
たは導通を制御する手段を備えてなることを特徴とする
論理ゲート回路。
A phase inversion transistor is inserted between an input gate circuit consisting of a diode or a transistor and an emitter-grounded output transistor, and an output buffer transistor is provided between the collector of the phase inversion transistor and the collector of the output transistor. In a logic gate circuit having a circuit, the base is biased so that when the power supply voltage is lower than the minimum voltage at which the logic gate circuit can operate, it is in a conductive state, and when it is higher than the minimum voltage, it is in a cutoff state. 1. A logic gate circuit comprising means for controlling cut-off or conduction of an output transistor of the logic circuit using an output signal of a transistor whose emitter is grounded.
JP12388682A 1982-07-16 1982-07-16 Logical gate circuit Pending JPS5915331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12388682A JPS5915331A (en) 1982-07-16 1982-07-16 Logical gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12388682A JPS5915331A (en) 1982-07-16 1982-07-16 Logical gate circuit

Publications (1)

Publication Number Publication Date
JPS5915331A true JPS5915331A (en) 1984-01-26

Family

ID=14871793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12388682A Pending JPS5915331A (en) 1982-07-16 1982-07-16 Logical gate circuit

Country Status (1)

Country Link
JP (1) JPS5915331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183858A (en) * 1989-03-31 1993-02-02 Takeda Chemical Industries, Ltd. Core-shell polymer, production and use thereof
US5280076A (en) * 1990-09-21 1994-01-18 Takeda Chemical Industries, Ltd. Core-shell polymer and its use
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation
US5183858A (en) * 1989-03-31 1993-02-02 Takeda Chemical Industries, Ltd. Core-shell polymer, production and use thereof
US5290858A (en) * 1989-03-31 1994-03-01 Takeda Chemical Industries, Ltd. Core-shell polymer, production and use thereof
US5280076A (en) * 1990-09-21 1994-01-18 Takeda Chemical Industries, Ltd. Core-shell polymer and its use

Similar Documents

Publication Publication Date Title
EP0167542A1 (en) Transient active pull-down
JPH0879050A (en) Bicmos logic circuit
US4406955A (en) Comparator circuit having hysteresis
US4039867A (en) Current switch circuit having an active load
US4912344A (en) TTL output stage having auxiliary drive to pull-down transistor
JPS60153205A (en) Totem pole transistor output stage circuit
JPH02100419A (en) Ecl circuit
JPS5915331A (en) Logical gate circuit
JPS6010815A (en) Logic circuit
JPH04227326A (en) Hysteresis ttl buffer circuit for high-speed inversion
JPH07321621A (en) Semiconductor integrated circuit
KR940005975B1 (en) Output circuit
IE53407B1 (en) Transistor circuit
US4675548A (en) Antisaturation circuit for TTL circuits having TTL input and output compatibility
JPS6281120A (en) Semiconductor device
JP2586601B2 (en) Current mirror circuit
JPH01220520A (en) Current switching circuit
JP2998368B2 (en) TTL logic circuit
JP2674344B2 (en) Level conversion circuit
JP3847787B2 (en) Current one-shot circuit
JPH0413853Y2 (en)
JPH01137822A (en) Semiconductor integrated circuit
JPH0611624Y2 (en) Muting circuit
JP2585098B2 (en) Interface for bipolar logic elements
JPS5979638A (en) Logical gate circuit