JPS5915330B2 - Method for producing radiation-resistant polyethylene - Google Patents

Method for producing radiation-resistant polyethylene

Info

Publication number
JPS5915330B2
JPS5915330B2 JP2058081A JP2058081A JPS5915330B2 JP S5915330 B2 JPS5915330 B2 JP S5915330B2 JP 2058081 A JP2058081 A JP 2058081A JP 2058081 A JP2058081 A JP 2058081A JP S5915330 B2 JPS5915330 B2 JP S5915330B2
Authority
JP
Japan
Prior art keywords
acenaphthylene
polyethylene
radiation
film
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2058081A
Other languages
Japanese (ja)
Other versions
JPS57135818A (en
Inventor
浄 早川
薫 川瀬
尋巳 山北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2058081A priority Critical patent/JPS5915330B2/en
Publication of JPS57135818A publication Critical patent/JPS57135818A/en
Publication of JPS5915330B2 publication Critical patent/JPS5915330B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、耐放射線性ポリエチレンの製造方法、さらに
詳しくいえば、ポリエチレンにグラフト重合させて耐放
射線性を付与する方法に関するもの 。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing radiation-resistant polyethylene, and more specifically, to a method for imparting radiation resistance to polyethylene by graft polymerization.

である。ポリエチレンは、結晶性高分子で成形品、特に
フィルムとして大量に用いられているが、空気中で高線
量の放射線を照射した場合には、著しく硬化してもろく
なり、放射線に対する使用可能上限 。
It is. Polyethylene is a crystalline polymer that is used in large quantities as molded products, especially films. However, when exposed to high doses of radiation in the air, it hardens significantly and becomes brittle, reaching the upper limit of its use against radiation.

は数10Mrad以下と考えられている。放射線照射に
より硬化してもろくなる原因は、主として放射線酸化で
、それに伴ない主鎖切断が進行するためと考えられる。
本発明者らは、ポリエチレンの耐放射線性を改良すべく
鋭意研究を重ねた結果、ポリエチレンフ5 イルムにア
セナフチレン又はアセナフチレンとエチレン性不飽和化
合物との混合物を、ガス状又は溶液状で接触させながら
電離性放射線を照射することによりこの目的が達成でき
ることを見いだし、この知見に基づいて本発明をなすに
至つた。
is thought to be several tens of Mrad or less. The cause of hardening and brittleness due to radiation irradiation is thought to be mainly due to radiation oxidation and accompanying main chain scission.
As a result of intensive research aimed at improving the radiation resistance of polyethylene, the present inventors have discovered that polyethylene film is exposed to acenaphthylene or a mixture of acenaphthylene and an ethylenically unsaturated compound while in gaseous or solution form. It has been discovered that this objective can be achieved by irradiating with ionizing radiation, and the present invention has been completed based on this knowledge.

″o すなわち、本発明は、ポリエチレンフィルムにア
セナフチレン単独又はアセナフチレンとエチレン性不飽
和化合物との混合物を、ガス状又は溶液状で接触させな
がら、電離性放射線を照射し、グラフト重合させること
を特徴とする耐放射線性ポ15りエチレンの製造方法を
提供するものである。本発明においては、ポリエチレン
をフィルム状に成形し、ガス状又は溶液状のアセナフチ
レン単独又はアセナフチレンとエチレン性不飽和化合物
の混合物と接触させて電離性放射線を照射させる20こ
とにより、高いグラフト率でグラフト重合させることが
できる。アセナフチレンは、融点93℃を有する常温で
は固体の化合物であるが、比較的高い昇華蒸気圧を有す
る。
That is, the present invention is characterized in that acenaphthylene alone or a mixture of acenaphthylene and an ethylenically unsaturated compound is brought into contact with a polyethylene film in a gaseous or solution state, and ionizing radiation is irradiated to cause graft polymerization. In the present invention, polyethylene is formed into a film, and acenaphthylene alone or a mixture of acenaphthylene and an ethylenically unsaturated compound in gaseous or solution form is formed into a film. Graft polymerization can be achieved at a high grafting rate by contacting and irradiating ionizing radiation20.Acenaphthylene is a solid compound at room temperature with a melting point of 93°C, but has a relatively high sublimation vapor pressure.

ノ5 このアセナフチレンの結晶をポリエチレンフィル
ムを入れた真空密閉容器に入れ放置すれば、容器内はア
セナフチレンの蒸気で満たされ、ポリエチレンフィルム
はアセナフチレン蒸気を速やかに吸収して数分で飽和肌
着状態に達し、黄色化する。
No. 5 If this acenaphthylene crystal is placed in a vacuum-sealed container containing a polyethylene film and left to stand, the inside of the container will be filled with acenaphthylene vapor, and the polyethylene film will quickly absorb the acenaphthylene vapor and reach a saturated condition in a few minutes. , turns yellow.

EOこれにガンマ−線などの電離性放射線を照射すれば
、吸着されたアセナフチレンの大部分はポリエチレンに
グラフト反応して消費されるが、新たにアセナフチレン
蒸気が容器内に存在する結晶から補給されるので、グラ
フト反応量は時間とともにJ5ほぼ直線的に増加する。
この際、結晶で存在しているアセナフチレンの固相重合
反応も進行するが、上記グラフト反応に比べて重合速度
は遅いので、グラフト反応はこれによりほとんど影響さ
れない。ポリエチレンにアセナフチレンとエチレン性不
飽和化合物のコポリマーをグラフト反応させることも可
能である。用いられるエチレン性不飽和化合物は、無水
マレイン酸、マレイン酸イミド誘導体などの固体モノマ
ーであつてもインデンなどの液体モノマーであつてもよ
い。この場合には、アセナフチレンとエチレン性不飽和
化合物を互に接触しないように真空密閉容器中に存在さ
せ、ポリエチレンフイルムに両方の蒸気を吸着させ、電
離性放射線を照射することによりグラフト反応させる。
アセナフチレン又はアセナフチレンとエチレン性不飽和
化合物を蒸気として存在させ、ポリエチレンフイルムと
グラフト反応させる場合には、モノマー蒸気圧が低いた
め比較的多量の照射線量を要するが、反応によるフイル
ムの変形が少なく、放射線照射後の未反応モノマー除去
のための洗浄、乾燥などの後処理が不要であるなどの利
点がある。
EO If this is irradiated with ionizing radiation such as gamma rays, most of the adsorbed acenaphthylene will undergo a graft reaction with polyethylene and be consumed, but new acenaphthylene vapor will be replenished from the crystals present in the container. Therefore, the amount of graft reaction increases almost linearly with time.
At this time, the solid phase polymerization reaction of acenaphthylene present in the form of crystals also proceeds, but since the polymerization rate is slower than the above-mentioned graft reaction, the graft reaction is hardly affected by this. It is also possible to graft react a copolymer of acenaphthylene and an ethylenically unsaturated compound to polyethylene. The ethylenically unsaturated compound used may be a solid monomer such as maleic anhydride or a maleic acid imide derivative, or a liquid monomer such as indene. In this case, acenaphthylene and the ethylenically unsaturated compound are placed in a vacuum sealed container so that they do not come into contact with each other, the vapors of both are adsorbed onto a polyethylene film, and a graft reaction is caused by irradiation with ionizing radiation.
When acenaphthylene or acenaphthylene and an ethylenically unsaturated compound are present in the form of vapor and graft-reacted with a polyethylene film, a relatively large amount of irradiation dose is required due to the low monomer vapor pressure. It has the advantage that post-treatments such as washing and drying to remove unreacted monomers after irradiation are not required.

本発明のグラフト重合は、アセナフチレン又はアセナフ
チレンとエチレン性不飽和化合物をアセトン、ベンゼン
などの溶媒に溶解し、この溶液にポリエチレンフイルム
を浸して、電離性放射線を照射することによつても行う
ことができる。この場合には、放射線照射後、フイルム
に付着している未反応モノマーをメタノールなどの溶媒
で洗浄して除去し、フイルムを乾燥する必要があるが、
グラフト重合のための放射線照射時間が短くてすみ、モ
ノマー分子の平均自由行路などの影響がないため、むら
のない均一なグラフトが可能である。本発明により得ら
れるポリアセナフチレンーグラフトポリエチレンフイル
ムは、通常のポリエチレンフイルム及び放射線架橋ポリ
エチレンフイルムよりも非常にすぐれた耐放射線性を有
し、100Mrad以上の高線量の放射線照射に対して
もわずかしか酸化されず、ヤング率の増加も少なくポリ
エチレン本来の柔軟性を失わない。一般に、ポリアセナ
フチレンのグラフト率が増加するに従つて、耐放射線性
は増大してくるが、特にヤング率の増加を抑制する効果
は顕著で、わずか2%のグラフト率ですでにその効果が
明瞭に現われる。
The graft polymerization of the present invention can also be carried out by dissolving acenaphthylene or acenaphthylene and an ethylenically unsaturated compound in a solvent such as acetone or benzene, immersing a polyethylene film in this solution, and irradiating it with ionizing radiation. can. In this case, after irradiation, it is necessary to remove unreacted monomers attached to the film by washing with a solvent such as methanol, and then dry the film.
Since the radiation irradiation time for graft polymerization is short and there is no effect on the mean free path of monomer molecules, even and uniform grafting is possible. The polyacenaphthylene-grafted polyethylene film obtained according to the present invention has much better radiation resistance than ordinary polyethylene films and radiation crosslinked polyethylene films, and has only a slight resistance to radiation at high doses of 100 Mrad or more. It is only oxidized, the Young's modulus increases little, and the original flexibility of polyethylene is not lost. Generally, as the grafting ratio of polyacenaphthylene increases, the radiation resistance increases, but the effect of suppressing the increase in Young's modulus is particularly remarkable, and even with a grafting ratio of only 2%, this effect is already noticeable. appears clearly.

このように顕著な効果が現われるのは、グラフト反応は
主としてポリエチレンの無定形部分に進行し、酸素の拡
散の容易な非晶質部分の酸化がグラフト重合によりポリ
エチレンに結合したポリアセナフチレンの芳香環の安定
化効果によつて妨げられるためと考えられる。
The reason why such a remarkable effect appears is that the graft reaction mainly proceeds to the amorphous part of polyethylene, and the oxidation of the amorphous part where oxygen can easily diffuse increases the aroma of polyacenaphthylene bonded to polyethylene through graft polymerization. This is thought to be due to the stabilizing effect of the ring.

以上の通り、本発明方法により得られるポリアセナフチ
レンでグラフト化したポリエチレンは、すぐれた耐放射
線性を有しており、原子力機器、X線機器などの被覆、
絶縁などの用途に有効に利用することができる。
As mentioned above, the polyethylene grafted with polyacenaphthylene obtained by the method of the present invention has excellent radiation resistance and can be used as a coating for nuclear power equipment, X-ray equipment, etc.
It can be effectively used for purposes such as insulation.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 インフレーシヨンにより成形した厚さ0.030m71
Lの低密度ポリエチレンフイルムを幅約15C7rL、
長さ約1mに切断し、ガーゼと共に巻いてソツクスレ一
抽出器に挿入し、アセトンで7時間、メタノールで7時
間それぞれ抽出したのち、風乾し、真空乾燥したものを
、縦、横それぞれ8CfLに切断してポリエチレン試料
とした。
Example 1 Thickness 0.030m71 molded by inflation
L low density polyethylene film with a width of about 15C7rL,
Cut into approximately 1 m length, wrap with gauze, insert into a sox-slitter extractor, extract with acetone for 7 hours and methanol for 7 hours, air dry, vacuum dry, and cut into 8 CfL lengthwise and widthwise. This was used as a polyethylene sample.

次いで、再結晶及び昇華により精製したアセナフチレン
の結晶414.7Tf19を直径5mm1高さ3CTI
Lの小試験管に入れて直径15m7!Lの硬質ガラス製
試験管底部に置き、この試験管内部に上記ポリエチレン
試料2枚(それぞれ179。
Next, acenaphthylene crystals 414.7Tf19 purified by recrystallization and sublimation were placed in a 5mm diameter x 3CTI
Put it in a small L test tube and it will have a diameter of 15m7! Place the above two polyethylene samples (each weighing 179 lbs.) inside the test tube.

7m9及び186.8Tf1f1)を巻いてアセナフチ
レンと直接接触しないように挿入した。
7m9 and 186.8Tf1f1) were wound and inserted so as not to come into direct contact with acenaphthylene.

次いでこの試験管の上部に封管操作を容易にするための
ガラス管を溶着し、この試験管を水銀拡散ポンプと液体
窒素トラツプを用いる真空装置に接続して、その底部を
液体窒素で冷却しながら約20分排気し、10−3mm
で封管した。この封管した試験管を60C0ガンマ一線
照射装置内に置き、常温で5×104R/時の線量率で
712.9時間ガンマ一線を照射し、直ちに開管してポ
リエチレン試料2枚を取り出した。
Next, a glass tube was welded to the top of this test tube to facilitate sealing, and the test tube was connected to a vacuum device using a mercury diffusion pump and a liquid nitrogen trap, and the bottom of the tube was cooled with liquid nitrogen. 10-3mm
The tube was sealed. The sealed test tube was placed in a 60C0 gamma single-ray irradiation device and irradiated with gamma-ray at a dose rate of 5 x 104 R/hour for 712.9 hours at room temperature, and immediately opened to take out two polyethylene samples.

2枚のポリエチレン試料を約100meのメタノールに
浸して、1時間かきまぜてから、メタノールを取り換え
て一昼夜放置したのち取り出して乾燥し、それぞれの重
量を測定した。
Two polyethylene samples were immersed in about 100 me of methanol, stirred for 1 hour, replaced with methanol, left overnight, taken out, dried, and weighed.

各試料の重量増加は、それぞれ64.0m9(グラフト
率35.6%)及び101.1巧(グラフト率54.1
70)であつた。また、アセナフチレン結晶の重合率は
13.070であつた。上記のグラフト率35.670
の試料と、対照として未処理ポリエチレン試料及び未処
理ポリエチレン試料をアセナフチレン結晶を存在させず
に密封状態で真空下に6チC0ガンマ一線を常温で5X
104R/時の線量率で712.9時間照射して得られ
た架橋ポリエチレン試料について、各試料を機械方向に
対して垂直に幅8mT!Lに切断し、各々その2枚ずつ
をゆるい共栓の付いた試験管に入れ、(9.6×105
R/時の線量率で100Mrad空気中でガンマ一線を
照射し、一昼夜放置後物性を測定し、ガンマ一線照射前
の物性との比較を行つた。
The weight increase of each sample was 64.0 m9 (grafting rate 35.6%) and 101.1 m9 (grafting rate 54.1%), respectively.
70). Moreover, the polymerization rate of acenaphthylene crystals was 13.070. Grafting rate above 35.670
sample, and as a control, an untreated polyethylene sample and an untreated polyethylene sample were subjected to 6x C0 gamma line under vacuum in a sealed state without the presence of acenaphthylene crystals at room temperature.
For cross-linked polyethylene samples obtained by irradiation for 712.9 hours at a dose rate of 104 R/hr, each sample was measured perpendicular to the machine direction with a width of 8 mT! Cut into L pieces, put two of each into a test tube with a loose stopper, (9.6 x 105
Gamma rays were irradiated in the air at a dose rate of R/hour at 100 Mrad, and the physical properties were measured after being left for a day and night, and compared with the physical properties before gamma ray irradiation.

結果を第1表に示す。なお、引張り試験における測定条
件は、試片長25m77!、幅5.0韮、引張り速度1
00mTIL/分、温度23℃であつた。第1表から、
本発明のポリアセナフチレンーグラフトポリエチレン試
料は、対照試料と比較すると、酸化によつて生ずるカル
ボニル基の生成に由来する1720(1−JモV1−1の
光学密度増及びポリマー分子中に酸素が導入されること
に起因する重量増加率がK以下であり、放射線照射によ
る酸化に対する抵抗性が大きく改善されたことがわかる
。また、ヤング率についても、対照の試料は急激な増加
を示し、破断時の伸びが著しく小さくなり、フイルムが
硬化してもろくなつているが、本発明の試料は、ヤング
率の増加率も少なく、伸長性やフイルムの柔軟性が失な
われていないことがわかる。実施例 2試験管にアセナ
フチレン499.61ZfIを人れ、精製したアセトン
を加えて完全にアセナフチレンを溶解しこれに厚さ0.
030mm1重量223.1巧の実施例1で用いたのと
同様のポリエチレン試料を浸して凍結排気、溶解脱気を
繰り返したのち実施例1と同様にして封管した。
The results are shown in Table 1. The measurement conditions for the tensile test were a specimen length of 25m77! , width 5.0, tension speed 1
The temperature was 23° C. and 00 mTIL/min. From Table 1,
Compared to the control sample, the polyacenaphthylene-grafted polyethylene sample of the present invention has an optical density increase of 1720 (1-JMoV1-1) derived from the formation of carbonyl groups caused by oxidation and an increase in the optical density of It can be seen that the weight increase rate due to the introduction of is K or less, and the resistance to oxidation due to radiation irradiation has been greatly improved. Also, the control sample showed a rapid increase in Young's modulus. Although the elongation at break has become significantly smaller and the film has hardened and become brittle, the sample of the present invention also shows a small increase in Young's modulus, indicating that it has not lost its elongation and film flexibility. Example 2 Place acenaphthylene 499.61ZfI in a test tube, add purified acetone to completely dissolve acenaphthylene, and add acenaphthylene 499.61ZfI to a thickness of 0.
A polyethylene sample similar to that used in Example 1 having a size of 0.30 mm and a weight of 223.1 mm was immersed, subjected to repeated freezing and evacuation, melting and degassing, and then sealed in a tube in the same manner as in Example 1.

これに4.9X104R/時の線量率で72、4時間常
温でガンマ一線を照射し、開管してフイルムを取り出し
、アセトン100771f.でよく洗浄したのち真空乾
燥したところ、フイルムの重量増加は32.0T!1f
1(グラフト率14.3%)であつた。
This was irradiated with gamma rays at a dose rate of 4.9 x 104 R/h for 72.4 hours at room temperature, the tube was opened, the film was taken out, and acetone 100771f. After washing thoroughly with water and vacuum drying, the weight of the film increased by 32.0T! 1f
1 (grafting rate 14.3%).

また、溶液中のアセナフチレンの重合率は4。670で
あつた。
Further, the polymerization rate of acenaphthylene in the solution was 4.670.

得られたフイルムに実施例1と同様の条件でガンマ一線
を照射したところ、ヤング率の増加は全くなく柔軟性を
保持していた。
When the obtained film was irradiated with gamma rays under the same conditions as in Example 1, there was no increase in Young's modulus and flexibility was maintained.

実施例 3 実施例1で用いたのと同じ小試験管2本にアセナフチレ
ン221.27T1f!と精製無水マレイン酸203.
9巧を別々に入れ、これらを実施例1で用いたのと同じ
直径15mmの硬質ガラス試験管の底部に置いた。
Example 3 Acenaphthylene 221.27T1f in the same two small test tubes used in Example 1! and purified maleic anhydride 203.
9 tubes were placed separately and these were placed at the bottom of the same 15 mm diameter hard glass test tube used in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンフィルムにアセナフチレン単独又はア
セナフチレンとエチレン性不飽和化合物との混合物をガ
ス状又は溶液状で接触させながら電離性放射線を照射し
、グラフト重合させることを特徴とする耐放射線性ポリ
エチレンの製造方法。
1. A method for producing radiation-resistant polyethylene, which comprises irradiating a polyethylene film with ionizing radiation while contacting acenaphthylene alone or a mixture of acenaphthylene and an ethylenically unsaturated compound in gaseous or solution form to cause graft polymerization.
JP2058081A 1981-02-13 1981-02-13 Method for producing radiation-resistant polyethylene Expired JPS5915330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058081A JPS5915330B2 (en) 1981-02-13 1981-02-13 Method for producing radiation-resistant polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058081A JPS5915330B2 (en) 1981-02-13 1981-02-13 Method for producing radiation-resistant polyethylene

Publications (2)

Publication Number Publication Date
JPS57135818A JPS57135818A (en) 1982-08-21
JPS5915330B2 true JPS5915330B2 (en) 1984-04-09

Family

ID=12031144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058081A Expired JPS5915330B2 (en) 1981-02-13 1981-02-13 Method for producing radiation-resistant polyethylene

Country Status (1)

Country Link
JP (1) JPS5915330B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190428U (en) * 1984-11-20 1986-06-12
JPS6190427U (en) * 1984-11-20 1986-06-12
JPH0216665Y2 (en) * 1985-02-25 1990-05-09
JPH0313211Y2 (en) * 1984-02-24 1991-03-27
JPH0370008U (en) * 1989-11-06 1991-07-12
JPH0334104Y2 (en) * 1985-07-18 1991-07-19
JPH0334103Y2 (en) * 1984-05-01 1991-07-19
JPH0540776Y2 (en) * 1987-03-20 1993-10-15

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI317365B (en) * 2002-07-31 2009-11-21 Jsr Corp Acenaphthylene derivative, polymer, and antireflection film-forming composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313211Y2 (en) * 1984-02-24 1991-03-27
JPH0334103Y2 (en) * 1984-05-01 1991-07-19
JPS6190428U (en) * 1984-11-20 1986-06-12
JPS6190427U (en) * 1984-11-20 1986-06-12
JPH0216665Y2 (en) * 1985-02-25 1990-05-09
JPH0334104Y2 (en) * 1985-07-18 1991-07-19
JPH0540776Y2 (en) * 1987-03-20 1993-10-15
JPH0370008U (en) * 1989-11-06 1991-07-12

Also Published As

Publication number Publication date
JPS57135818A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
Yasuda et al. Effect of electrodeless glow discharge on polymers
Doytcheva et al. Ultraviolet‐induced crosslinking of solid poly (ethylene oxide)
Hegazy et al. Radiation grafting of acrylic acid onto fluorine‐containing polymers. I. Kinetic study of preirradiation grafting onto poly (tetrafluoroethylene)
Oswald et al. The deterioration of polypropylene by oxidative degradation
US3503903A (en) Polymers of improved performance capabilities and processes therefor
JPS5915330B2 (en) Method for producing radiation-resistant polyethylene
US4407846A (en) Method of producing a hydrophilic membrane from a polyethylene base film
Hopfenberg et al. Sorption kinetics and equilibria in annealed glassy polyblends
US3137674A (en) Polyethylene modified with a vinyl compound
Turner Water sorption of poly (methyl methacrylate): 1. Effects of molecular weight
Mitov et al. In situ electron spin resonance study of styrene grafting of electron irradiated fluoropolymer films for fuel cell membranes
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
Haruvy et al. Nylon 6 water‐permeable membranes prepared by electron beam radiation‐induced graft copolymerization
Yang et al. Radiation‐induced graft polymerization of 4‐vinyl pyridine to styrene–butadiene–styrene triblock copolymer
Hegazy et al. Radiation‐initiated graft copolymerization of individual monomer and comonomer onto polyethylene and polytetrafluoroethylene films
Zhitariuk et al. Influence of some factors on radiation grafting of styrene on poly (ethylene terephthalate) nuclear membranes
JPH0261976B2 (en)
Rieke et al. Properties of polyethylene-acrylic acid graft copolymers
Campbell et al. Post‐irradiation free‐radical reactions in poly (ethylene terephthalate)
El-Azmirly et al. Radiation-induced graft copolymerization of styrene on to nylon-6 via various routes
Stark et al. Moisture effects during cure of high‐performance epoxy matrices
Seguchi et al. Electron spin resonance studies on radiation graft copolymerization in polyethylene. II. Grafting initiated by allyl radicals trapped in irradiated polyethylene
Machi et al. Mechanical properties of radiation‐induced graft copolymers of styrene to polyethylene
Browne et al. The effect of solvent uptake on the relaxation behaviour, morphology and mechanical properties of a poly (ether ether ketone)/poly (etherimide) blend
Wündrich Effect of temperature and physical state on the inhibition by additives of radiation‐induced degradation of poly (methyl methacrylate)