JPS59152935A - Electrically conductive composition - Google Patents

Electrically conductive composition

Info

Publication number
JPS59152935A
JPS59152935A JP2834583A JP2834583A JPS59152935A JP S59152935 A JPS59152935 A JP S59152935A JP 2834583 A JP2834583 A JP 2834583A JP 2834583 A JP2834583 A JP 2834583A JP S59152935 A JPS59152935 A JP S59152935A
Authority
JP
Japan
Prior art keywords
conductive
conductive composition
inorganic powder
weight
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2834583A
Other languages
Japanese (ja)
Inventor
Hiroshi Ubukawa
生川 洋
Hayami Yoshimochi
吉持 「はや」視
Koichi Saito
晃一 斉藤
Osamu Ohara
大原 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2834583A priority Critical patent/JPS59152935A/en
Publication of JPS59152935A publication Critical patent/JPS59152935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrically conductive composition having excellent applicability, economicity, and properties as a paint or adhesive, and composed of a film-forming liquid resin composition and electrically conductive inorganic particles obtained by coating the surface of scaly non-metallic inorganic particles with an electrically conductive substance. CONSTITUTION:The objective composition is composed of (A) 10-60pts.wt. of electrically conductive inorganic particles obtained by coating the surface of scaly non-metallic inorganic particles (e.g. mica-group or orthoclorite-group minerals, etc.) with an electrically cnductive substance having a volume resistivity of <=1OMEGA.cm (e.g. silver, Al, Cu, graphite, etc.) and (B) 90-40pts.wt. (in terms of solid content) of a film-forming liquid resin composition (e.g. polyvinyl acetate, polyurethane resin, etc.). The amount of the electrically conductive substance is preferably 1/5-1 times weight of the inorganic particle.

Description

【発明の詳細な説明】 本発明は導電性組成物に関する。詳しくは。[Detailed description of the invention] The present invention relates to electrically conductive compositions. For more information.

鱗片状非金属無機粉粒体の表面が体積固有抵抗lΩ・σ
以下の導電性物質で被覆されてなる導電性無機粉粒体1
0〜60重量部と、皮膜形成能を有する液状樹脂組成物
90〜40重量部(固形分換算)からなる、塗料または
接着剤として優れた性2− 能を有する導電性組成物に関する。
The surface of the scale-like nonmetallic inorganic powder has a volume resistivity of lΩ・σ
Conductive inorganic powder 1 coated with the following conductive substance
The present invention relates to a conductive composition having excellent properties as a paint or adhesive, comprising 0 to 60 parts by weight and 90 to 40 parts by weight (in terms of solid content) of a liquid resin composition having film-forming ability.

近年、電子機器の発達と共に電磁障害という新しい社会
問題が生じてきた。これは諸環境下での各種ノイズによ
ってコンピューターが誤動作する等のトラブルであり、
最近では各種装置がコンピューターによって制御されて
いるので大きな事故になりかねない。特に機器の軽量化
、コンパクト化の要求によって、そのハウジングが殆ん
どプラスナックでできていることも問題点の一つであり
、米国ではFCC等の規制値も制定されている。その対
策として、現在では1)金属溶射、2)導電性塗料。
In recent years, with the development of electronic devices, a new social problem called electromagnetic interference has arisen. This is a problem where the computer malfunctions due to various noises in various environments.
Nowadays, various devices are controlled by computers, which can lead to major accidents. In particular, due to the demand for lighter and more compact equipment, one of the problems is that most of the housings are made of plastic snacks, and in the United States, regulatory values such as the FCC have been established. As a countermeasure, we currently use 1) metal spraying and 2) conductive paint.

3)導電性フィラー混入プラスチックスの3つの方法も
しくは素材が使われているが、l)の方法は高価でかつ
剥離による感電や火災事故につながる可能性があり、徐
々に2)の方法に変りつつある。一方、3)の方法も有
望視されているが、現在のところ成形加工性と電磁じゃ
へい性を満足できる材料は開発されていない。従ってこ
のような用途に対して現在では2)の方法が最も有効で
あり、金属微粒子や炭素微粒子を液状樹脂に分散させ大
導電性=3− 塗料や導電性接着剤が市販されており、電磁じゃへい材
料、電極材料、帯電防止材料1抵抗発熱体等に使用され
ている。しかし1良好な導電性を有する金属粒子分散型
の塗料や接着剤は分散粒子として銀、銅、銀−銅合金、
ニッケル粒子が主流であり、高価であると共に、比重の
大きい金属粒子が多量に添加されているために沈降分離
しやすく。
3) Three methods or materials have been used: plastics containing conductive fillers, but method 1) is expensive and may lead to electric shock or fire accidents due to peeling, so method 2) is gradually changing. It's coming. On the other hand, method 3) is also seen as promising, but at present no material has been developed that satisfies moldability and electromagnetic resistance. Therefore, method 2) is currently the most effective method for such applications, and involves dispersing fine metal particles or carbon particles in a liquid resin. It is used for barrier materials, electrode materials, antistatic materials, 1-resistance heating elements, etc. However, paints and adhesives containing metal particles dispersed with good electrical conductivity include silver, copper, silver-copper alloys, etc. as dispersed particles.
Nickel particles are the mainstream, are expensive, and are easy to settle and separate because a large amount of metal particles with a high specific gravity are added.

また加工性が悪くて密着不良を生じ易く、かつ皮膜中で
金属粒子が移行するという問題点11−ている。一方、
炭素粒子分散型の場合は樹脂との比重の差は小さく、前
述の問題点は少ないが1導電性に乏しく、帯電防止材料
もしくは抵抗発熱体としての用途にしか応用できないと
いう欠点がある。
In addition, the processability is poor and adhesion failure is likely to occur, and metal particles migrate in the film. on the other hand,
In the case of the carbon particle dispersed type, the difference in specific gravity from the resin is small, and the above-mentioned problems are few, but one drawback is that it has poor conductivity and can only be used as an antistatic material or a resistance heating element.

以上のような現状に鑑み1本発明者はかかる問題点を改
良した優れ六導電性塗料および導電性接着剤を開発すべ
く鋭意研究を重ねた結果、本発明に到った。
In view of the above-mentioned current situation, the present inventor has conducted intensive research to develop an excellent conductive paint and conductive adhesive that improves the above problems, and as a result, has arrived at the present invention.

すなわち、本発明は、(A)鱗片状非金属無機粉粒体の
表面が体積固有抵抗1Ω・m以下の導電性物質で被覆さ
れてなる導電性無機粉粒体10〜6〇4− 重量部と、CB)皮膜形成能を有する液状樹脂組成物9
0〜40重量部(固形分換算)からなる導電性組成物で
ある。
That is, the present invention provides (A) 10 to 604 parts by weight of a conductive inorganic powder, the surface of which is a scaly nonmetallic inorganic powder coated with a conductive substance having a volume resistivity of 1 Ω·m or less. and CB) Liquid resin composition 9 having film-forming ability
It is a conductive composition consisting of 0 to 40 parts by weight (in terms of solid content).

本発明の導電性組成物は、以下に述べるような特徴を有
しており、塗料または接着剤として使用される。第1に
、鱗片状非金属無機粉粒体の表面のみを導電性にするこ
とは、導電性フィラーを連結させる上で非常に有効であ
り、従来のものにくらべて少量の添加で優れ大導電性を
付与することができ、かつ優れ光電磁じゃへい性を発現
することができる。第2に、鱗片、状非金属無機粉粒体
は。
The conductive composition of the present invention has the characteristics described below and is used as a paint or adhesive. First, making only the surface of the scale-like nonmetal inorganic powder conductive is very effective in connecting conductive fillers, and compared to conventional ones, it has excellent conductivity with a small amount of addition. properties, and can exhibit excellent photoelectromagnetic resistance. Second, scale-shaped nonmetallic inorganic powder and granules.

鉱物粒子と異なり、鱗片状でありかつ軽量であるので沈
降等の心配はなく1分散は良好であり、とくに塗工時に
鱗片状粉粒体が平行に並ぶので塗工性に優れている。第
3に1得られた皮膜が軽量であるので1近年小型化、軽
量化が重要視されている電気、電子機器のノ・ウジング
等に応用する場合には有効である。その他、釧等の高価
な金属を多量に消費することがないので省資源や価格の
点でも有利である。″!大木本発明よる導電性組成物か
5− らなる塗料や接着剤は、基材との密着性や塗膜としての
物理的および化学的安定性は従来のものと変るところは
なく、前述の用途以外にも上記特徴を生かして価格や加
工性の点で従来品が使用できなかった分野へ広く応用で
きるものである。
Unlike mineral particles, they are scaly and lightweight, so there is no need to worry about sedimentation, and the dispersion is good. In particular, since the scaly powder is arranged in parallel during coating, it has excellent coating properties. Thirdly, since the obtained film is lightweight, it is effective when applied to electrical and electronic appliances, etc., where miniaturization and weight reduction have been emphasized in recent years. In addition, since large amounts of expensive metals such as chime are not consumed, it is advantageous in terms of resource saving and cost. ``!Ohki: Paints and adhesives made of the conductive composition of the present invention have the same adhesion to substrates and physical and chemical stability as a coating film, and have the same properties as those of conventional ones. In addition to the above-mentioned uses, it can be widely applied to fields where conventional products could not be used due to cost and processability.

本発明で用いられる鱗片状非金属無機粉粒体としては、
雲母、タルク、セリサイト、ガラスフレーク、層状グラ
ファイト、バーミキュライト、ベントナイト、アタパル
ジャイト等が挙げられる。
The scaly nonmetallic inorganic powder used in the present invention includes:
Examples include mica, talc, sericite, glass flakes, layered graphite, vermiculite, bentonite, and attapulgite.

該鱗片状無機粉粒体は、塗工性や塗膜の緒物性の点から
0.1〜500μm、アスペクト比は10以上であるこ
とが好ましい。とくに、雲母族、脆雲母族または緑泥石
族に属する天然ま六は人工の鉱物やガラスフレークは最
も好ましく用いられる鱗片状非金属無機粉粒体であり、
具体的には天然の白雲母(マスコバイト)、金雲母(フ
ロゴバイト)1黒雲母(バイオタイト)、ヒル石(バー
ミキュライト)およびフッ素を含有する合成雲母やフレ
ーク2イニング用のガラスフレークを挙げることができ
る。
The scale-like inorganic powder preferably has a diameter of 0.1 to 500 μm and an aspect ratio of 10 or more from the viewpoint of coatability and physical properties of the coating film. In particular, natural minerals and artificial minerals belonging to the mica group, brittle mica group, or chlorite group and glass flakes are the most preferably used scaly nonmetallic inorganic powder particles,
Specifically, natural muscovite (muscovite), phlogovite (phlogovite), biotite (biotite), vermiculite (vermiculite), and synthetic mica containing fluorine and glass flakes for flake 2 innings can be mentioned. can.

6一 該鱗片状無機粉粒体の表面を被覆する導電性物質として
は5体積固有抵抗がlΩ・crn以下の導電性物質であ
ればいかなるものでも使用できるが、導電性、付着性1
価格等の点から銀、銅、鉄、ニッケル、アルミニウム、
スズ、クロム、チタン。
6. As the conductive material that coats the surface of the scale-like inorganic powder, any conductive material having a volume resistivity of 1Ω・crn or less can be used;
Silver, copper, iron, nickel, aluminum,
tin, chrome, titanium.

まγ;1は 亜鉛、金、白金のいずれか絣妾等その合金や黒鉛が適し
ており、特に高導電性が要求される場合には銀1銅、ニ
ッケルが好ましく、帯電防止材料や抵抗発熱体として利
用される場合には黒鉛が好ましい。被覆に用いられる該
導電性物質の付着量は用途にもよるが、該鱗片状非金属
無機粉粒体の1〜1重量倍量が好ましい。舎重量倍量よ
り少ない場合は導電性に乏しく、また1重量倍量より多
い場合は導電性物質の脱落が生じやすくなって種々のト
ラブルのもとになるばかりか1価格や重量の点でも不利
になる。金属または黒鉛による表面の被覆方法はいずれ
の方法によってもよいが5例えば適当な濃度の金属塩化
合物溶液中に該鱗片状無機粉粒体表面散させ、つぎに溶
液を還元して鱗片状無機粉粒体表面に金属粒子を析出さ
せる方法等7− の無電解メッキ法や真空蒸着法、スパッタリング法、イ
オンブレーティング法等が使用できる。普た、適当なバ
インダーを該鱗片状無機粉粒体の表面にコーティングし
た上に導電性物質の微粒子を接着させる方法も使用でき
る。被覆された導電性物質の厚さは100X〜1μm、
好ましH−to、osμm〜100μmが諸性能上望ま
しい。
For γ; 1, zinc, gold, platinum, their alloys such as kasuri, or graphite are suitable; especially when high conductivity is required, silver 1 copper and nickel are preferable, and antistatic materials and resistance heating materials are suitable. When used as a material, graphite is preferred. The amount of the conductive substance used for coating depends on the application, but is preferably 1 to 1 times the weight of the scaly nonmetallic inorganic powder. If the amount is less than twice the weight of the building, the conductivity will be poor, and if it is more than 1 times the weight, the conductive material will easily fall off, causing various troubles, as well as being disadvantageous in terms of price and weight. become. Any method may be used to coat the surface with metal or graphite.5 For example, the surface of the scaly inorganic powder is scattered in a metal salt compound solution of an appropriate concentration, and then the solution is reduced to form a scaly inorganic powder. Electroless plating method, vacuum evaporation method, sputtering method, ion blating method, etc., as described in 7. Methods for depositing metal particles on the surface of the grains, etc., can be used. Alternatively, it is also possible to use a method in which the surface of the scaly inorganic powder is coated with a suitable binder and then fine particles of a conductive substance are adhered thereto. The thickness of the coated conductive material is 100X to 1 μm,
Preferably H-to, os μm to 100 μm is desirable from the viewpoint of various performances.

本発明に用いられる皮膜形成能を有する液状樹脂組成物
は一般に塗料や接着剤として用いられている如何なるも
のでも使用できるが、特に塗料として使用する場合には
1ポリ酢酸ビニル、ポリ塩化ビニル、ポリウレタン等の
エマルジョン型の樹脂組成物、アクリル樹脂1塩化ビニ
ル樹脂、ポリウレタン樹脂、エポキシポリアミド樹脂、
シリコン樹脂等の溶液型樹脂組成物、フェノール樹脂。
The liquid resin composition having film-forming ability used in the present invention can be any of those commonly used as paints and adhesives, but in particular when used as a paint, 1-polyvinyl acetate, polyvinyl chloride, polyurethane can be used. Emulsion type resin compositions such as acrylic resin monovinyl chloride resin, polyurethane resin, epoxy polyamide resin,
Solution type resin compositions such as silicone resins, phenolic resins.

メラミン樹脂、エリア樹脂、エポキシ樹脂、不飽和yj
−’ IJエステル樹脂等の熱硬化型または二液型の樹
脂組成物を挙げることができる。なかでもエポキシ系、
ボリウレクン系およびアクリル系の樹脂組成物が好まし
い。一方、接着剤として使用する=8− 場合にはクロロプレン樹脂、シリコン樹脂等の溶液型の
樹脂組成物、ポリ酢酸ビニル等のエマルジョン型の樹脂
組成物、エポキシ樹脂1不飽和ポリエステル樹脂、エリ
ア樹脂、フェノール樹脂、シアノアクリレート樹脂、イ
ンンアネート系樹脂等の重縮合型の樹脂組成物を挙げる
ことができるが。
Melamine resin, area resin, epoxy resin, unsaturated yj
-' Thermosetting type or two-component type resin compositions such as IJ ester resin can be mentioned. Among them, epoxy-based
Polyurekne-based and acrylic-based resin compositions are preferred. On the other hand, when used as an adhesive = 8-, solution type resin compositions such as chloroprene resin and silicone resin, emulsion type resin compositions such as polyvinyl acetate, epoxy resin 1 unsaturated polyester resin, area resin, Examples include polycondensation type resin compositions such as phenol resins, cyanoacrylate resins, and inanate resins.

特にエポキシ系の樹脂組成物が好ましい。また用途や目
的に応じてこれらの混合物も使用できる。
In particular, epoxy resin compositions are preferred. A mixture of these can also be used depending on the use and purpose.

本発明の導電性組成物は、・導電性鱗片状非金属無機粉
粒体が10〜60重量部、液状樹脂組成物90〜40重
量部(固形分換算)で実施される。
The conductive composition of the present invention is prepared using: 10 to 60 parts by weight of the conductive scaly nonmetallic inorganic powder and 90 to 40 parts by weight (in terms of solid content) of the liquid resin composition.

導電性鱗片状非金属無機粉粒体の含有量が10重量部よ
り少ない場合は導電性が乏しくなり、また60重量部よ
り多い場合には皮膜の密着性や強度が低下する。従来の
金属微粒子分散戯の導電性塗料の場合には金属微粒子を
70〜90重量%も添加しなければ十分な導電性が得ら
れず、゛導電性フィラーの添加量を大幅に減少できる点
が本発明による導電性組成物の特徴の一つである。また
1本発明の導電性組成物には、さらに鱗片状非金属無9
− 機粉粒体の分散性改良を目的とした分散剤や1分散安定
性および皮膜の耐摩耗性の向上を目的とした滑剤等の微
量諸添加剤を使用してもよく、通常の顔料添加型塗料や
接着剤に使用されているものと同様のものが使用できる
If the content of the conductive scaly nonmetallic inorganic powder is less than 10 parts by weight, the conductivity will be poor, and if it is more than 60 parts by weight, the adhesion and strength of the film will be reduced. In the case of conventional conductive paints in which fine metal particles are dispersed, sufficient conductivity cannot be obtained unless 70 to 90% by weight of fine metal particles are added. This is one of the characteristics of the conductive composition according to the present invention. In addition, the conductive composition of the present invention further includes a scaly nonmetal-free 9
- Minor amounts of various additives such as dispersants for improving the dispersibility of milled powder particles and lubricants for improving dispersion stability and abrasion resistance of the coating may be used, and ordinary pigment additions may be used. The same materials used for mold paints and adhesives can be used.

本発明の導電性組成物の調製は、通常の塗料や接着剤と
同様に混合、分散により行なうことができるが、一般に
塗料として用いる場合は溶媒稀釈により調製するか低重
合度の液状樹脂組成物を使用して低粘度のスラリー状に
調製するのが一般的である。まな、接着剤として用いる
場合は高粘度のペースト状に調製する。
The conductive composition of the present invention can be prepared by mixing and dispersing in the same manner as ordinary paints and adhesives, but when used as a paint, it is generally prepared by diluting with a solvent or using a liquid resin composition with a low degree of polymerization. It is common to prepare a low viscosity slurry using . However, when used as an adhesive, it is prepared in the form of a high viscosity paste.

本発明による導電性組成物を実際に使用する場合は一般
の塗料や接着剤と同様に先ず下地基材の表面を脱脂およ
び必要に応じてエツチング処理もしくはプライマー処理
した後、スプレー、ローラー、刷毛、ヘラ等で所定量塗
布する。特にスプレー塗工の場合は鱗片状粉粒体が基材
面に平行に並び易くなるので有利である。乾燥もしくは
硬化後の塗膜の厚さは用途や目的によって異なるが、−
lO− 般に5〜100μmが好ましい。
When the conductive composition according to the present invention is actually used, the surface of the base material is first degreased and, if necessary, etched or primed, in the same way as general paints and adhesives, and then sprayed, roller, brushed, etc. Apply the specified amount with a spatula, etc. Especially in the case of spray coating, it is advantageous because the scale-like powder particles tend to be arranged parallel to the surface of the substrate. The thickness of the coating after drying or curing varies depending on the use and purpose, but -
lO- Generally, 5 to 100 μm is preferred.

本発明の導電性組成物により得られた塗膜の導電性を直
接評価する方法としては1例えば、 lEC−93−1
958に準拠した円板法で体積固有抵抗を測定する方法
や、塗膜の2点間の表面抵抗を測定する方法がある。一
般に、導電性組成物を電磁じゃへい材料として使用する
場合には、該材料の体積固有抵抗はlΩ・儒以下の導電
性でおることが必要であるが、帯電防止材料として使用
する場合には、1Ω・副より大きくてもよい。
Methods for directly evaluating the conductivity of a coating film obtained using the conductive composition of the present invention include 1, for example, lEC-93-1
There is a method of measuring the volume resistivity using a disk method based on 958, and a method of measuring the surface resistance between two points on the coating film. Generally, when a conductive composition is used as an electromagnetic barrier material, the volume resistivity of the material must be less than 1Ω・Fu, but when it is used as an antistatic material, , may be larger than 1Ω.sub.

電磁じゃへい効果の測定法は米国FCC(Federa
lCommunication Comm1g5lon
 )の定めた方法に準することが望ましいが1簡便的に
は5例えば「工業材料」第29巻12月号の31ページ
もしくは38ページに記載されている方法でも評価可能
でbる。この方法はノイズ発生源としてはモーターまた
はスパークを使用し、信号をダイポールアンテナで受け
てスペクトラムアナライザーもしくは電界強度計で検出
する方法であるが、検出には準尖頭検波方式を採用すべ
きである。
The method for measuring the electromagnetic interference effect is based on the US FCC (Federa)
lCommunicationComm1g5lon
It is preferable to follow the method specified in 1), but for convenience, it is also possible to evaluate by the method described in, for example, pages 31 or 38 of "Kogyo Zaizai" Vol. 29, December issue. This method uses a motor or spark as the noise source, receives the signal with a dipole antenna, and detects it with a spectrum analyzer or field strength meter, but a quasi-peak detection method should be used for detection. .

以上のように本発明による導電性組成物は塗料および接
着剤として用いられた場合に優れた導電性を有するので
、(1)圧電素子、光電素子、コンデンサー等の電子部
品の電極取出しゃコネクター等の電極材料、(2)テレ
ビゲーム1電子製版機、電子タイプライタ−1電子式タ
イムレコーダー、電子卓上計算機、電子ミシン1電子レ
ジスター、電子レンジ、パーソナルコンピューター、フ
ァクシミリ、複写機、プリンター、VTR,プロッター
1ワードプロセツサー、ディスプレイ、超音波診断装置
等の電子機器、通信機器1医療機器、計測機器等のハウ
ジングに塗布することによる電磁じゃへい材料、(8)
IC,LSI等の生産工場や製油工場に代表される各種
工場、炭坑、病院などで使用さレルヘルト、ホース、シ
ート、ケーブル、コンベア、運搬マガジン、収納ボック
ス、床シート、人体アース成形品やタンクローリ−等の
自動車、航空機に塗布することによる帯電防止材料、(
4)屋根、滑走路の融雪、ガラスのくもり市め1サーミ
スターのボディ等に利用される抵抗発熱体等として広く
利用できるものである。
As described above, the conductive composition according to the present invention has excellent conductivity when used as a paint or an adhesive, so (1) it can be used as an electrode connector for electronic components such as piezoelectric elements, photoelectric elements, and capacitors, etc. Electrode materials for (2) video games 1 electronic plate making machine, electronic typewriter 1 electronic time recorder, electronic desk calculator, electronic sewing machine 1 electronic register, microwave oven, personal computer, facsimile, copying machine, printer, VTR, plotter 1. Electromagnetic barrier material applied to the housings of electronic devices such as word processors, displays, ultrasonic diagnostic equipment, communication devices, 1. medical devices, measuring instruments, etc. (8)
Used in IC, LSI production plants, various factories such as oil refineries, coal mines, hospitals, etc., hoses, sheets, cables, conveyors, transport magazines, storage boxes, floor sheets, human body earth molded products, and tank trucks. Antistatic materials by applying to automobiles, aircraft, etc., (
4) It can be widely used as a resistance heating element for use in roofs, snow melting on runways, glass fogging, the body of thermistor, etc.

以下、実施例により本発明を具体的に説明するが、これ
らの実施例により本発明は何等限定されるものではない
。実施例中、t¥jに断わらない限り「部」は全て重量
部を意味する。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. In the examples, all "parts" mean parts by weight unless otherwise specified.

実施例1、比較例1.2 平均粒径45μm、平均アスペクト比45の金雲母粉体
を塩化スズでセンシタイジング処理した後。
Example 1, Comparative Example 1.2 Phlogopite powder having an average particle size of 45 μm and an average aspect ratio of 45 was subjected to sensitizing treatment with tin chloride.

塩化パラジウムでアクチベーション処理し、続いて硫酸
ニッケルと次亜リン酸ナトリウム系のアルカリ性メッキ
浴中で、該雲、母粉体表面に無電解メッキした。得られ
た導電性粉粒体中のニッケル含有量Vi35重量%であ
り1真北重V!1.9であった。
Activation treatment was performed with palladium chloride, and then electroless plating was performed on the cloud and mother powder surfaces in an alkaline plating bath of nickel sulfate and sodium hypophosphite. The nickel content Vi in the obtained conductive powder is 35% by weight, which is 1 true north weight V! It was 1.9.

また走査型電子顕微鏡による観察結果では、ニッケルの
被覆膜厚は約0.4μmであり、該導電性粉粒体の50
 f/1−rAの加圧下での体積固有抵抗は10Ω・副
以下であり、優れた導電性を有していた。
Furthermore, according to the results of observation using a scanning electron microscope, the thickness of the nickel coating film was approximately 0.4 μm, and the thickness of the nickel coating was approximately 0.4 μm.
The volume resistivity under a pressure of f/1-rA was less than 10 Ω·sub, and it had excellent electrical conductivity.

つぎに該導電性粉粒体100重量部を市販のアクリル系
クリア塗料(固形分32重量%)800重量部中に添加
して分散・混合して導電性組成物金13− 調製した。分散性は良好で、放置による沈降分離は認め
られなかった。かかる方法で調製した導電性組成物を、
厚さ約2W+のエツチング処理したABS樹脂製の板状
物表面に刷毛塗りし、乾燥した後、厚さ約50μmの塗
膜を形成せしめた(実施例1)。
Next, 100 parts by weight of the conductive powder was added to 800 parts by weight of a commercially available acrylic clear paint (solid content: 32% by weight), dispersed and mixed to prepare conductive composition Gold 13-. The dispersibility was good, and no sedimentation separation due to standing was observed. The conductive composition prepared by such a method is
The coating was applied with a brush onto the surface of an etched ABS resin plate having a thickness of approximately 2W+, and after drying, a coating film having a thickness of approximately 50 μm was formed (Example 1).

このようにして得られた導電性組成物塗布グラスチック
板を1 「工業材料」第29巻12月号38ページに記
載の方法と同様の電磁じゃへい効果測定装置を作製し、
モーターをノイズ発生源とし。
Using the conductive composition-coated glass plate thus obtained, an electromagnetic interference effect measuring device similar to the method described in "Industrial Materials" Vol. 29, December issue, page 38 was prepared.
Use the motor as a noise source.

スペクトラムアナライザーにて解析した結果、10メガ
ヘルツの周波数に対して47デシベル、100メガヘル
ツで40デシベル、1ギガヘルツテ43デシベルのしゃ
へい効果があった。
As a result of analysis using a spectrum analyzer, the shielding effect was 47 decibels for a frequency of 10 MHz, 40 decibels for a frequency of 100 MHz, and 43 decibels for a frequency of 1 gigahertz.

まfc、実施例1と同様のニッケル被覆雲母およびアク
リル系クリア塗料を用い、該ニッケル被覆雲母20重量
部を該アクリル系クリア塗料(固形分32重1%)80
0重量部中に添加して1実施例1と同様の方法により導
電性組成物を調製し。
Using the same nickel-coated mica and acrylic clear paint as in Example 1, 20 parts by weight of the nickel-coated mica was added to 80 parts by weight of the acrylic clear paint (solid content: 32% by weight).
A conductive composition was prepared in the same manner as in Example 1 by adding 0 parts by weight.

実施例1と同様に約50μmの塗膜を形成せしめた14
− (比較例1)。電磁じゃへい効果を上記周波数で調べる
と2〜3デシベルでほとんど効果はみとめられなかった
。さらに、実施例1と同様のニッケル被覆雲母およびア
クリル系クリア塗料を用い、該ニッケル被覆雲母440
重量部を該アクリル系クリア塗料(固形分32重i%)
800重量部中に添加して、実施例1と同様の方法によ
り導電性組成物を調製し、実施例1と同様に約50μm
の塗膜を形成せしめた(比較例2)。しかしながら、得
られた皮膜は非常に脆く、該ニッケル被覆雲母が剥離し
て使用に耐えるものではなかった。このように5本発明
による導電性組成物を電磁じゃへい塗料として使用した
場合、優れた効果を有していることは明らかである。
A coating film of approximately 50 μm was formed in the same manner as in Example 1.
- (Comparative Example 1). When the electromagnetic interference effect was investigated at the above frequency, almost no effect was observed at 2 to 3 decibels. Furthermore, using the same nickel-coated mica and acrylic clear paint as in Example 1, the nickel-coated mica 440
The weight part is the acrylic clear paint (solid content 32% by weight)
800 parts by weight to prepare a conductive composition in the same manner as in Example 1.
A coating film of (Comparative Example 2) was formed. However, the resulting film was very brittle and the nickel-coated mica peeled off, making it unusable. As described above, it is clear that when the conductive composition according to the present invention is used as an electromagnetic barrier coating, it has excellent effects.

実施例2、比較例3 平均粒径15μm、アスペクト比30の金雲母粉体な実
施例1と同様の無電解メッキ処理し、厚さ0.3μmの
銅皮膜を金属母表面に析出させ、銅で約47重量%表面
被覆された導電性粉粒体を得た。
Example 2, Comparative Example 3 Phlogopite powder with an average particle size of 15 μm and an aspect ratio of 30 was subjected to the same electroless plating treatment as in Example 1, and a copper film with a thickness of 0.3 μm was deposited on the metal matrix surface. A conductive powder material having a surface coating of about 47% by weight was obtained.

得られた導電性粉粒体の加圧下での体積固有抵抗はlO
Ω・α以下であつブヒ。つぎに市販のアミンを硬化剤と
しfc2液型二型エポキシ樹脂250重量部し、該導電
性粉粒体を100重量部を分散、混練し、本発明による
導電性組成物を調M[また。
The volume resistivity of the obtained conductive powder under pressure is lO
Atsu Buhi below Ω・α. Next, 250 parts by weight of a commercially available amine as a curing agent was added to 250 parts by weight of an FC 2-component epoxy resin, and 100 parts by weight of the conductive powder was dispersed and kneaded to prepare a conductive composition according to the present invention.

の皮膜を得た(実施例2)。該皮膜の体積固有抵抗は1
00・副でおり1表面抵抗は0.5Ωでおった。また、
実施例2と同様の銅被覆雲母およびエポキシ樹脂を用い
、該銅被覆雲母25重量部を該エポキシ樹脂250重量
部に分散、混練し導電性組成物を調製し、実施例2と同
様の方法で厚さ約50μmの皮膜を得た(比較例3)。
A film of (Example 2) was obtained. The volume resistivity of the film is 1
00.1 surface resistance was 0.5Ω. Also,
Using the same copper-coated mica and epoxy resin as in Example 2, 25 parts by weight of the copper-coated mica was dispersed and kneaded in 250 parts by weight of the epoxy resin to prepare a conductive composition. A film with a thickness of about 50 μm was obtained (Comparative Example 3).

該皮膜の体積固有抵抗は10 Ω・α以下であり2表面
抵抗は1010Ω以上であった。このように1本発明に
よる導電性組成物からなる接着剤は、導電性に優れてい
ることが明らかである。
The volume resistivity of the film was 10 Ω·α or less, and the 2-surface resistance was 10 10 Ω or more. As described above, it is clear that the adhesive made of the conductive composition according to the present invention has excellent conductivity.

比較例4 実施例1におけるニッケル被覆金雲母の代りに真比重1
0.5の銀の微粒子を用い、全く同一混合比の銀粒子1
00 g(置部と市販アクリル系クリア塗料(固形分3
2重量%)800重量部とを分散・混合して導電性塗料
を調製しようと試みたが沈降分離が激しくうまくいかな
かった。また分散直後に塗布して、乾燥後に得られた皮
膜にテスターを当ててみても全く針は振れなかった。該
組成物中の銀粒子の容積を計算すると固形分中4.6容
積チであった0このように従来の導電性塗料に用いられ
ている金属粒子を本発明による組成比で混合しても全く
導電性は発現できない。
Comparative Example 4 True specific gravity 1 instead of nickel-coated phlogopite in Example 1
Silver particles 1 with exactly the same mixing ratio using 0.5 silver particles
00 g (Okibe and commercially available acrylic clear paint (solid content 3
An attempt was made to prepare a conductive paint by dispersing and mixing 800 parts by weight of 2% by weight, but the sedimentation separation was severe and did not work. Further, when the tester was applied to the film obtained immediately after dispersion and dried, the needle did not waver at all. When the volume of the silver particles in the composition was calculated, it was found to be 4.6 volume units in the solid content. Thus, even if metal particles used in conventional conductive paints are mixed in the composition ratio according to the present invention, No conductivity can be developed.

実施例3 平均粒子径230μIn、平均アスペクト比60のEガ
ラスフレークをアクリル樹脂系ハイドロゾルの溶液に浸
漬後、半乾きの状態で、導電性黒鉛微粒子であるアセチ
レンブラック中で分散混合し。
Example 3 E-glass flakes having an average particle diameter of 230 μIn and an average aspect ratio of 60 were immersed in an acrylic resin hydrosol solution, and then dispersed and mixed in acetylene black, which is conductive graphite fine particles, in a semi-dry state.

熱風中で過剰のアセチレンブラックを分離しつつ乾燥し
て黒鉛被覆導電性ガラスフレークを得た。
Graphite-coated conductive glass flakes were obtained by drying in hot air while separating excess acetylene black.

得られた導電性粉粒体の真比重は1.6であり、アセチ
レンブラックの付着量は約20重tq6であった。つぎ
に市販塩ビ樹脂塗料(固形分約25チ)17− 285重量部中に該導電性粉粒体100重量部を分散・
混合し、固形分換算で58重量%の該導電性粉粒体を含
有する導電性組成物を得た。該導電性組成物をジアゾコ
ピー器の用紙取出し口に試みに塗布したところ静電気に
よる用紙のまつわり付きは全く解消し1帯電防止材料と
して使用できることが判明した。
The true specific gravity of the resulting conductive powder was 1.6, and the amount of acetylene black deposited was about 20 weight tq6. Next, 100 parts by weight of the conductive powder was dispersed in 17-285 parts by weight of a commercially available PVC resin paint (solid content: approximately 25 cm).
The mixture was mixed to obtain a conductive composition containing 58% by weight of the conductive powder in terms of solid content. When the conductive composition was applied to the paper outlet of a diazo copier, it was found that the clinging of the paper due to static electricity was completely eliminated and the composition could be used as an antistatic material.

特許出願人株式会社り ラ し 代理人弁理士本多 堅 18−Patent applicant: Rishi Co., Ltd. Representative Patent Attorney Ken Honda 18-

Claims (1)

【特許請求の範囲】 (1)  (A)鱗片状非金属無機粉粒体の表面が体積
固有抵抗lΩ・σ以下の導電性物質で被覆されてなる導
電性無機粉粒体10〜60重量部と1(B)皮膜形成能
を有する液状樹脂組成物90〜40MR部(固形分換算
)からなる導電性組成物。 (2)該鱗片状非金属無機粉粒体は、その表面が該鱗片
状非金属無機粉粒体の舎〜1重量倍量の導電性物質で被
覆されている粉粒体である特許の厚さに対する比)10
以上の粉粒体である特許請求の範囲第(1)項または第
(2)項に記載の導電性組成物。 (4) 該鱗片状無機粉粒体が雲母族、脆雲母族または
緑泥石族に属する天然または人工の鉱物である特許請求
の範囲第(1)項、第(2)項または第(8)1− 項に記載の導電性組成物。 (6)該鱗片状無機粉粒体がガラスフレークである特許
請求の範囲第(1)項、第(2)項または第(8)項に
記載の導電性組成物。 (6)該導電性物質が銀、アルミニウム、銅1ニッケル
、クロム、チタン、スズ、アンチモン、亜鉛、金、白金
、鉄から選ばれる少なくとも1種の金属単体またはこれ
を含む合金である特許請求の範囲第(1)項、第(2)
項、第(3)項、第(4)項または第(6)項に記載の
導電性組成物。 (テ)該導電性物質が黒鉛である特許請求の範囲第(1
)環1第(2)項、第(8)項、第(4)項または第(
6)項に記載の導電性組成物。
[Scope of Claims] (1) (A) 10 to 60 parts by weight of a conductive inorganic powder or granule obtained by coating the surface of a scaly nonmetallic inorganic powder with a conductive substance having a volume resistivity of 1Ω·σ or less and 1(B) a conductive composition comprising 90 to 40 MR parts (in terms of solid content) of a liquid resin composition having film-forming ability. (2) The scale-like nonmetallic inorganic powder is a powder whose surface is coated with an electrically conductive material in an amount equal to 1 times the weight of the scale-like nonmetallic inorganic powder. ratio) 10
The conductive composition according to claim (1) or (2), which is the above powder or granule. (4) Claims (1), (2), or (8), wherein the scaly inorganic powder is a natural or artificial mineral belonging to the mica group, brittle mica group, or chlorite group. 1- The conductive composition according to item 1. (6) The conductive composition according to claim (1), (2) or (8), wherein the scaly inorganic powder is a glass flake. (6) A patent claim in which the conductive substance is an elemental metal or an alloy containing at least one metal selected from silver, aluminum, copper-nickel, chromium, titanium, tin, antimony, zinc, gold, platinum, and iron. Range items (1) and (2)
The conductive composition according to item (3), item (4), or item (6). (Te) Claim No. 1 in which the conductive substance is graphite
) Ring 1, term (2), term (8), term (4) or term (
6) The conductive composition according to item 6).
JP2834583A 1983-02-21 1983-02-21 Electrically conductive composition Pending JPS59152935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2834583A JPS59152935A (en) 1983-02-21 1983-02-21 Electrically conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2834583A JPS59152935A (en) 1983-02-21 1983-02-21 Electrically conductive composition

Publications (1)

Publication Number Publication Date
JPS59152935A true JPS59152935A (en) 1984-08-31

Family

ID=12246008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2834583A Pending JPS59152935A (en) 1983-02-21 1983-02-21 Electrically conductive composition

Country Status (1)

Country Link
JP (1) JPS59152935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192499A (en) * 2000-01-14 2001-07-17 Otsuka Chem Co Ltd Electroconductive resin composition
KR100919611B1 (en) * 2007-12-20 2009-09-29 엔바로테크 주식회사 Conductive Polyurethane Resin containing Graphen
JP2013206777A (en) * 2012-03-29 2013-10-07 Dowa Electronics Materials Co Ltd Silver-coated flake-like glass powder and method of manufacturing the same
JP2015514852A (en) * 2012-04-26 2015-05-21 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Silicone composition protecting against contaminants
WO2019239955A1 (en) * 2018-06-12 2019-12-19 Dic株式会社 Electrically conductive adhesive sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192499A (en) * 2000-01-14 2001-07-17 Otsuka Chem Co Ltd Electroconductive resin composition
KR100919611B1 (en) * 2007-12-20 2009-09-29 엔바로테크 주식회사 Conductive Polyurethane Resin containing Graphen
JP2013206777A (en) * 2012-03-29 2013-10-07 Dowa Electronics Materials Co Ltd Silver-coated flake-like glass powder and method of manufacturing the same
JP2015514852A (en) * 2012-04-26 2015-05-21 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Silicone composition protecting against contaminants
WO2019239955A1 (en) * 2018-06-12 2019-12-19 Dic株式会社 Electrically conductive adhesive sheet
JPWO2019239955A1 (en) * 2018-06-12 2020-12-17 Dic株式会社 Conductive adhesive sheet
CN112105699A (en) * 2018-06-12 2020-12-18 Dic株式会社 Conductive adhesive sheet
CN112105699B (en) * 2018-06-12 2023-05-23 Dic株式会社 Conductive adhesive sheet

Similar Documents

Publication Publication Date Title
US4518524A (en) Silver coating composition for use in electronic applications and the like
US6576336B1 (en) Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
TWI296641B (en) Electroconductive paint composition and electroconductive film for electromagnetic wave shielding prepared therefrom
CN101108947A (en) Silver-plated copper powder electrically-conducting paint and method of manufacturing the same
JPS59152935A (en) Electrically conductive composition
JPS58129072A (en) Electrically conductive primer composition
JPH0195170A (en) Conductive paint
US20020037369A1 (en) Coating composition for producing electrically conductive coatings
JPS6060168A (en) Electrically conductive paint
CN111094500B (en) Conductive adhesive
EP0450701A1 (en) Conductive coating composition
JPS61163975A (en) Electrically conductive paint composition
JP2989912B2 (en) Conductive paint
US6776928B2 (en) Conductive coating composition
JP2524587B2 (en) Fuerofusufol composition with improved conductivity and passivation resistance
US11072711B2 (en) Electrically conductive particles, composition, article and method of manufacturing electrically conductive particles
JPH08167320A (en) Conductive composition
JPS6218481A (en) Electrically conductive coating composition
JPH01297475A (en) Copper powder for electrically conductive coating material and electrically conductive coating composition
CA2478175A1 (en) Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
KR20080062128A (en) Conductive paste with copper filler for emi shielding use
JPH0214258A (en) Copper powder for electroconductive coating compound and electroconductive coating compound composition
TW201942369A (en) Surface-treated copper foil and copper-clad laminate
JPS6351471B2 (en)
EP0292190B1 (en) Electrically conductive coating composition